
Hiroaki Takada

ESC Spring '98Designing Embedded Systems with µITRON Kernel

Designing Small-Scale Embedded Systems
with µITRON Kernel

Designing Small-Scale Embedded Systems
with µITRON Kernel

1st Apr. 1998

Toyohashi Univ. of Technology

Hiroaki Takada
hiro@ertl.ics.tut.ac.jp

http://www.ertl.ics.tut.ac.jp/~hiro/

1st Apr. 1998

Toyohashi Univ. of Technology

Hiroaki Takada
hiro@ertl.ics.tut.ac.jp

http://www.ertl.ics.tut.ac.jp/~hiro/

Introductory

Hiroaki Takada

ESC Spring '98Designing Embedded Systems with µITRON Kernel

BackgroundBackground
Application fields of embedded systems continue to
expand to small-scale systems.

Software for (even small-scale) embedded systems
becomes larger and more complex.

How to raise software productivity?

high-level programming language
real-time operating system (RTOS)
advanced development environments and tools

Most embedded systems are real-time systems, in
that the systems have some timing constraints.

Hiroaki Takada

ESC Spring '98Designing Embedded Systems with µITRON Kernel

Typical Applications of Small-Scale Embedded Systems

Consumer Applications

Office Applications / PC Peripheral

Communications

Other Applications

TVs, VCRs, digital cameras, settop boxes, audio components,
air-conditioners, microwave ovens

printers, scanners, disk drives, copiers, FAX

answering machines, ISDN telephones, cellular phones,
modems, terminal adapters

automobiles (engine management, etc.), game gear,
vending machines, electronic musical instruments, (some
components for) factory automation

Hiroaki Takada

ESC Spring '98Designing Embedded Systems with µITRON Kernel

Contents of this ClassContents of this Class
What is a real-time kernel? What is the advantage?
application status of real-time kernels to small-scale
embedded systems
introducing some real-time kernels for small-scale
embedded systems

 µITRON
 OSEK/VDX OS
 µC/OS

basic approaches and techniques in designing a
small-scale embedded system with a real-time
kernels

Hiroaki Takada

ESC Spring '98Designing Embedded Systems with µITRON Kernel

Small-Scale Embedded SystemsSmall-Scale Embedded Systems
Following features are common to many (but not all)
small-scale embedded systems.

produced in great number and in cheap
The producing cost is a larger issue than the
development cost.

short development life-cycle

limited hardware resources

high reliability

 short time-to-market
 The software is seldom modified once the product
is shipped.

 small memory (esp. RAM) capacity
 required to fit in a single-chip MCU

 (for some systems)

Hiroaki Takada

ESC Spring '98Designing Embedded Systems with µITRON Kernel

What is a Real-Time Kernel?What is a Real-Time Kernel?
real-time kernel (or real-time operating system kernel)

also called as a real-time monitor
or a real-time executive

 is the basic run-time software on which a real-
time system is realized.
 is the core module of a real-time operating system.
 manages only the essential hardware resources of
a computer system (i.e. processor and memory.

There are only a few common I/O devices to be
supported in case of small-scale embedded systems.

Hiroaki Takada

ESC Spring '98Designing Embedded Systems with µITRON Kernel

 basic memory management
 interrupt handling
 timer handling, time management

functions supported by a real-time kernel

Real-time kernels were difficult to apply to small-scale
embedded systems

 execution time
 memory consumption

because of the overhead of real-time kernels in

 no external device handlings

 multitasking
 priority-based preemptive scheduling

 inter-task synchronization and communication
semaphore, eventflag, mailbox, ...

Hiroaki Takada

ESC Spring '98Designing Embedded Systems with µITRON Kernel

What is Multitasking?What is Multitasking?
task

 A task is a unit of concurrent processing.
 The programs within a task are executed
sequentially, while programs of different tasks
are executed concurrently.

scheduling
 selecting the executed task among the executable
ones

task dispatching (or task switching)
 changing the executed task
 The context of the old task is saved, and that of
the new task is restored.

scheduling algorithm

Hiroaki Takada

ESC Spring '98Designing Embedded Systems with µITRON Kernel

Priority-Based Preemptive SchedulingPriority-Based Preemptive Scheduling
priority-based scheduling

 Each task is assigned a priority.
 The task having the highest priority is selected
as the executed task.
 Lower priority tasks are never executed until the
highest priority task is blocked (or suspended).

preemptive scheduling
 If a higher priority task is started while a lower
priority task is being executed, the execution of
the lower priority task is suspended and the
higher priority task starts execution.

 preemption

Hiroaki Takada

ESC Spring '98Designing Embedded Systems with µITRON Kernel

Why You Need Multitasking?Why You Need Multitasking?
modular design

real-time property

relatively unimportant in case of small-scale systems

 Modular design is effective for raising the
maintainability and reliability of the system.
 Different groups of I/O devices should be handled
with different tasks, for example.

 The development and maintenance of a system
with real-time constraints can be facilitated.

real-time constraints
typically represented with deadlines...

major concern in this class

Hiroaki Takada

ESC Spring '98Designing Embedded Systems with µITRON Kernel

task X

task Y
 preemption

eg.) task X ... short execution time & short deadline
task Y ... long execution time & long deadline

easily realizable with a real-time kernel

without a real-time kernel
Task Y must repeatedly check if task X should
be executed.

degraded response; overhead for the checking

When task Y is modified, the check points
must also be reexamined.

higher priority

Hiroaki Takada

ESC Spring '98Designing Embedded Systems with µITRON Kernel

Application Status of Real-Time KernelsApplication Status of Real-Time Kernels

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4bit 8bit 16bit 32bit

ITRON-spec. OS

CTRON-spec. OS

other commercial OS

other in-house OS

OS not used

OS Usage vs. CPU Size
(TRON Association Survey, 1997-1998, Japan)

Hiroaki Takada

ESC Spring '98Designing Embedded Systems with µITRON Kernel

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
ITRON-spec. OS

CTRON-spec. OS

other commercial OS

other in-house OS

OS not used

OS Usage vs. ROM Size

< 64KB ≥ 64KB
< 256KB

≥ 256KB
< 1MB

≥ 1MB

Hiroaki Takada

ESC Spring '98Designing Embedded Systems with µITRON Kernel

0%

10%
20%
30%

40%
50%
60%
70%

80%
90%

100%

OS Usage vs. Application Fields

Hiroaki Takada

ESC Spring '98Designing Embedded Systems with µITRON Kernel

146 Bytes** (38%)
2.3 KB (13%)

Application Examples of Real-Time KernelsApplication Examples of Real-Time Kernels
FAX machine CD player

MCU Type 16-bit 8-bit
RAM size
ROM size

2 KB
32 KB

Used Memory

Kernel Size

RAM
ROM

RAM (ratio)
ROM (ratio)

1346 Bytes
28.8 KB

250 Bytes (19%)
2.5 KB (8.7%)

512 Bytes
32 KB
384 Bytes
17.8 KB

No. of Tasks
No. of Interrupt Handlers
No. of Used System Calls

9
6
7

 6
 6
12

Application

Both applications adopt µITRON-specification real-time kernels.

A stack saving technique is applied.
*

**

Real-time kernels are applicable to such small
embedded systems.

Hiroaki Takada

ESC Spring '98Designing Embedded Systems with µITRON Kernel

Requirements on a Real-Time KernelRequirements on a Real-Time Kernel
General requirements

(a) compactness
(b) low overhead
(c) dependability
(d) predictability

esp. for Small-Scale Embedded Systems
(a) scalability and adaptability

(b) exploiting static information

The real-time kernel code should be tunable
to a specific application.

Static information should be placed on ROM
area to save memory (RAM) consumption.

(c) low cost (of the real-time kernel itself)

Hiroaki Takada

ESC Spring '98Designing Embedded Systems with µITRON Kernel

Introduction to the µITRON SpecificationsIntroduction to the µITRON Specifications
ITRON Project

standardizing real-time operating systems and
related specifications for embedded systems

A series of the ITRON real-time kernel specifications
have been published and are widely used.

 µITRON specifications are designed for small-scale
embedded systems with limited hardware resources.

The ITRON specifications are open in that anyone is
free to implement and sell products based on them.

de-facto industry standard in Japan

recent version: µITRON3.0
under investigations: µITRON4.0

Hiroaki Takada

ESC Spring '98Designing Embedded Systems with µITRON Kernel

Design Principles of the ITRON Specifications
loose standardizationdesign concept:

maximum performance cannot be obtained with
strict standardization

design principles

Design Principles of the ITRON Specifications

 allow for adaptation to hardware; avoiding
excessive hardware virtualization
 allow for adaptation to the application
 emphasize software engineer training ease
 organize specification series and divide into levels
 provide a wealth of functions

Hiroaki Takada

ESC Spring '98Designing Embedded Systems with µITRON Kernel

Functions Supported in µITRON3.0 SpecificationFunctions Supported in µITRON3.0 Specification
task management
task-dependent synchronization
basic synchronization and communication

(semaphore, eventflag, mailbox)
extended synchronization and communication

(message buffer, rendezvous)
interrupt management
memory pool management
time management
system management

The specification can be downloaded from the ITRON Home Page.
http://tron.um.u-tokyo.ac.jp/TRON/ITRON

Hiroaki Takada

ESC Spring '98Designing Embedded Systems with µITRON Kernel

Implementation Status

Application Status

Implementation Status

about 45 registered implementations for about 35
processors
several non-registered commercial implementations

implemented for almost all major processors

many in-house implementations
some freely distributed implementations

8-bit to 32-bit MCUs/MPUs

We do not know how many real-time kernels are
implemented based on the ITRON specifications.

!

Application Status
widely used for various application areas
most popular RTOS specification in Japan

Hiroaki Takada

ESC Spring '98Designing Embedded Systems with µITRON Kernel

Implementation Examples
Two µITRON-specification kernels for an MCU

Implementation Examples

OS work area and various stack areas in the following configuration

Clock 16 MHz, using on-chip memory

*

**
tasks: 10, semaphores: 2, eventflags: 2, mailboxes: 2, external interrupts: 2 levels

No. of system calls

Scheduling

System call interface
Exception management

Wakeup request count
Semaphore count
System timer
Program size
Typical RAM use*
Task switching time**
Max. interrupt masking time**

Single-chip
Task part: 29
Non-task part: 15
Fixed priority
1 task per priority
Subroutine call
None

Max. 15
Max. 255
32-bit
0.6 – 4.4 KB
200 Bytes
17µS
9µS

General-purpose
Task part: 36
Non-task part: 27
Variable priority

Software interrupt
Exit exception,
CPU exception
Max. 255
Max. 65,535
48-bit
1.9 – 5.3 KB
640 Bytes
32.5µS
9.5µS

OS type

Hiroaki Takada

ESC Spring '98Designing Embedded Systems with µITRON Kernel

OSEK/VDX OS SpecificationOSEK/VDX OS Specification
OSEK/VDX Project

standardizing an open-ended architecture for
distributed control units in automobiles

A real-time kernel API, and software interfaces and
protocols for communication and network
management are jointly specified.

OSEK/VDX OS Specification
 very compact real-time kernel specification
targeted for automotive and distributed
applications
 version 2.0 released in Oct. 1997

http://www-iiit.etec.uni-karlsruhe.de/~osek/main.html

Hiroaki Takada

ESC Spring '98Designing Embedded Systems with µITRON Kernel

Designing with a Real-Time KernelDesigning with a Real-Time Kernel

theoretically ...

two important design issues with a real-time kernel
 How the system is decomposed into tasks?
 How priorities are assigned to the tasks?

Deadline monotonic priority assignment is the
optimal static priority assignment method, in
order not to miss any deadlines.
static ...

(various assumptions omitted)

The priority of a task is assigned statically.
deadline monotonic

... Task with shorter deadline should be
assigned a higher priority.

RMA (Rate Monotonic Analysis) theories

Hiroaki Takada

ESC Spring '98Designing Embedded Systems with µITRON Kernel

How Deadlines Look Like?How Deadlines Look Like?
Example 1. (input – output relation)

Example 3. (input – input relation)

An LED must be lighted on within 500 msec after
a switch is pushed.

A data must be taken out of a buffer within 10 msec
after the system receives the data. (Otherwise, the
data may be overwritten by the next data.)

deadline = 500 msec

deadline = 10 msec

A robot arm must be stopped within 200 msec
after a collision is detected.

deadline = 200 msec – [mechanical time]

Example 2. (input – output relation)

Hiroaki Takada

ESC Spring '98Designing Embedded Systems with µITRON Kernel

Decomposing into TasksDecomposing into Tasks

Another Guideline (from another motivation)
decomposition for modular design

Basic Guidelines
Programs (or routines) started with different events
should be included in different tasks.

Programs with different deadlines should be
included in different tasks.

Deadline monotonic priority assignment becomes
possible.

Different groups of I/O devices should be
handled with different tasks.

eg.)

Each task is started with a kind of event.

Hiroaki Takada

ESC Spring '98Designing Embedded Systems with µITRON Kernel

Basic Design FlowBasic Design Flow
application code fragments

grouping code
fragments into tasks

assigning priorities

schedulability test

application system

success

listing up deadlines

failed
tuning process

theoretical approach

experimental approach
with RMA

Hiroaki Takada

ESC Spring '98Designing Embedded Systems with µITRON Kernel

Another Type of Timing ConstraintsAnother Type of Timing Constraints
Example.

A series of data must be sent to an output port every
100 msec. (Permissible error of the period is 1%.)

translate

The program to send a data to the port should be
started at 99 msec after the previous data is sent,
and its deadline is 2 msec.

How if some pre-processing is necessary for
preparing the next data and its execution time is
longer than 2 msec?

The deadline of the pre-processing is longer.
Decompose into separate tasks !

Hiroaki Takada

ESC Spring '98Designing Embedded Systems with µITRON Kernel

Realizing Mutual ExclusionRealizing Mutual Exclusion
mutual exclusion

... When a task is accessing a shared resource,
the other tasks must not access it.

disabling task dispatchings (or interrupt services)
while a task is accessing a shared resource

using a semaphore
A semaphore (or an equivalent) is supported with
most real-time kernels.

disadvantages
 priority inversion problem

 Contending tasks may be blocked.

Hiroaki Takada

ESC Spring '98Designing Embedded Systems with µITRON Kernel

Before a task accesses a shared resource, the priority of the
task is temporarily raised to the same or a higher level than
any other task that can access the same shared resource.
After the access, the priority of the task is recovered to its
original level.

stack resource policy
sometimes called as priority ceiling protocol

advantages

limitations

Tasks are never blocked for mutual exclusion.

A task must not be blocked while it is accessing
a shared resource.
Which task accesses which shared resource
must be known beforehand.

Hiroaki Takada

ESC Spring '98Designing Embedded Systems with µITRON Kernel

APIs with µITRON KernelAPIs with µITRON Kernel
creating a task (statically)

cre_tsk / CRE_TSK

starting / terminating a task
sta_tsk / ext_tsk

The initial priority of the task is passed as a parameter.

changing the priority of a task
chg_pri

obtaining / releasing a semaphore
wai_sem / sig_sem

Many other APIs (about 100) are defined in the µITRON
specifications.

Only used code is linked to the application.

Hiroaki Takada

ESC Spring '98Designing Embedded Systems with µITRON Kernel

Blocked vs. TerminatedBlocked vs. Terminated
A blocked task will resume execution from the
blocked point.

The task context must be saved during the task
is blocked.

A terminated task will be started from the beginning.
The task context need not be saved when it is
terminated.

All the tasks that are never blocked can share a stack
(if the real-time kernel supports it).

! Notice that the name of task states are different
for each real-time kernel.

Apply to the other synchronization pattern !

Hiroaki Takada

ESC Spring '98Designing Embedded Systems with µITRON Kernel

Task States with µITRON KernelTask States with µITRON Kernel

RUNNING READY

DORMANT

NON-EXISTENT

WAITING

SUSPENDED

WAITING-SUSPENDED

cre_tsk del_tsk

ext_tsk
sta_tsk

ter_tsk

preempted

scheduled

blocked

terminated

Hiroaki Takada

ESC Spring '98Designing Embedded Systems with µITRON Kernel

Relaxing the Basic GuidelinesRelaxing the Basic Guidelines
Naive application of the basic guidelines may result
in too large number of tasks.

not good for saving memory space

The basic guidelines can be relaxed.
 A task with longer deadline can be included
in a task with shorter deadline.
 An event-driven task can be included in a
periodic task if the period is enough shorter
than the deadline of the event-driven task.
 many others ...

Hiroaki Takada

ESC Spring '98Designing Embedded Systems with µITRON Kernel

SummarySummary
A real-time kernel is an effective even for small-scale
embedded system.
trade-off between the elegant programming style
and the efficiency (esp. memory consumption)

A basic approach in designing with a real-time kernel
is introduced.

An effort in the ITRON Project

establishing “application design guidelines” for
real-time systems
important for the circulation of software components

 How to decompose the system into tasks?
 How priorities are assigned to the tasks?

Hiroaki Takada

ESC Spring '98Designing Embedded Systems with µITRON Kernel

For Further InformationFor Further Information

presentation material of this class
(will be available within a week)

http://www.ertl.ics.tut.ac.jp/~hiro/escs98-ohp.pdf

ITRON Home Page
http://tron.um.u-tokyo.ac.jp/TRON/ITRON/

RMA (Rate Monotonic Analysis)

Intermediate Courses on RTOS Use
311–321

331–341

Multitasking Design and Implementation Issues
in Embedded Systems
RTOS Design: How Your Application is Affected

[6] A Practitioner's Handbook for Real-Time Analysis:
Guide to Rate Monotonic Analysis for Real-Time Systems

	TiTle Page
	Background
	Contents of this Class
	Small-Scale Embedded Systems
	What is a Real-Time Kernel?
	What is Multitasking?
	Priority-Based Preemptive Scheduling
	Why You Need Multitasking?
	Application Status of Real-Time Kernels
	Application Examples of Real-Time Kernels
	Requirements on a Real-Time Kernel
	Introduction to the micro-ITRON Specifications
	Design Principles of the ITRON Specifications
	Functions Supported in micro-ITRON3.0 Specification
	Implementation Status
	Application Status
	Implementation Examples
	OSEK/VDX OS Specification
	Designing with a Real-Time Kernel
	How Deadlines Look Like?
	Decomposing into Tasks
	Basic Design Flow
	Another Type of Timing Constraints
	Realizing Mutual Exclusion
	APIs with micro-ITRON Kernel
	Blocked vs. Terminated
	Task States with micro-ITRON Kernel
	Relaxing the Basic Guidelines
	Summary
	For Further Information

