
2000/10/20 JCOD Presentation 1

JCOD Optimizing Technology

Vania Joloboff
Groupe Silicomp

http://www.ri.silicomp.com/

A project subsidized by Japan IPA Agency

2000/10/20 JCOD Presentation 2

Java To Native Compilation for
Embedded Systems

gImprove performance by order of magnitude
gThe only practical approach in embedded systems is

to have compiler outside the device as a compiler
hardly fits into devices such as a mobile phone, a
set top box or a printer…

gFlash compiler: the device is already in the hands of
the customer, who wants to download new
applications, typically stored in flash

2000/10/20 JCOD Presentation 3

Java Compilation on the market
today

gVery good performance improvement
425 times faster for TurboJ on Caffeine

gSignificant code expansion
4requires up to 8 times more memory

gLinked with RTOS dependent and VM
dependent code
4application port is not free...

2000/10/20 JCOD Presentation 4

Optimizing Optimization

gReal-world applications are not CPU only,
they do I/O’s and involve garbage collection

gConsider an application spending
480 in CPU, 10 in I/Os, 10 in other things such as

garbage collection
4A high performance compiler that would go 40

times faster would reduce to
• 2 + 10 + 10 = 22 that is, performance gain 78%

4A less optimizing compiler 8 times faster will
reduce to

• 10 + 10 + 10 = 30 that is, performance gain 70 %

2000/10/20 JCOD Presentation 5

Optimizing the trade-off

gBut for much better cost !
4Assuming memory cost represents 20 out of 100
4With compiler requiring 4 times more memory

• Device cost is 80 + (4*20) = 160
• 78 % better performance for 60% cost increase

4With JCOD type of technology
• Device cost is 80 + (1.75*20) = 115
• 70 % better performance for 15% cost increase

2000/10/20 JCOD Presentation 6

New Approach: JCOD Optimization

gDownload application after device
is shipped

gEase application portability
gEase application deployment
gMinimize memory cost

4do not compile everything
4generate small code

2000/10/20 JCOD Presentation 7

JCOD principles

gDo not compile everything
4Profile the application

• at run time or before hand
4Smart compiler to generate small code

gEase application deployment
4Use the .class file to store native code

gEase application portability
4Provide VM independence, RTOS independence
4Independence between compiler version and VM

version

2000/10/20 JCOD Presentation 8

Early Results

gOn SH processor (16 bits instructions) without
float support

% of app.
Compiled

% of memory
expansion

Performance
increase

0 0% 0%
4.0% 12% 37%

16.0% 45% 560%
22.0% 58% 630%
25.0% 67% 730%
27.0% 70% 733%
30.0% 80% 733%

100.0% 264% 790%

2000/10/20 JCOD Presentation 9

Normalized Chart

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Performance

Memory

4 16 22 25 27 30 100

2000/10/20 JCOD Presentation 10

Dynamic Profiling

gRun the application
gCompute for every methods (or only

some) a method cost
4Method cost based on loop cost and method

calls cost
gCompile only methods with a very high

method cost

2000/10/20 JCOD Presentation 11

Application Deployment

gTwo modes:
4Mostly connected appliances: Dynamic Mode

• Use a network compile server that is available
4Occasionally connected devices: Static Mode

• Do not use compile server. Compile in advance

2000/10/20 JCOD Presentation 12

Dynamic Mode

Vanilla VM

Dynamic Profiling
Native Code Loading

Compile Server

Device Client
LibraryDispatcher

Compiler
front-end

Compiler
back-end

2000/10/20 JCOD Presentation 13

Static Mode

gUser or Developer runs profiling tool to
determine what to compile

Native Code
Loading

.class files

.class files

Java VM

Profiling
Tool

Compiler

2000/10/20 JCOD Presentation 14

Target Independence

gDefine an object code format which is
4 independent from the RTOS
4 independent from the VM

gIdea:
4an object format with late binding
4the compiler generates processor dependent code

stored back into the class file

.class file new .class fileFlash compiler

2000/10/20 JCOD Presentation 15

Target Independence

gThe code generated by the compiler is
RTOS independent and VM independent
and loaded by an extended native loader

Native Code
Loader & Binder

.class file Regular VM

2000/10/20 JCOD Presentation 16

Flash Compiler Technology Advantages

gOptimize memory/performance trade-off
410 times faster for twice as much memory is feasible

gSame delivery mechanism as vanilla Java: class file
4Decision to compile can be postponed up to the last moment

(users can compile, not only software vendors) including the
VM itself

gApplications run on any VM, just faster with those
supporting compiled code loader

• Users or Developers don’t have to worry upon VM or RTOS
dependence

2000/10/20 JCOD Presentation 17

Japanese Contact

gJunkyo Fujieda
REGIS Inc
TEL: +81-44-201-5210
FAX: +81-44-200-7091
E-mail: jack@re-gis.com

