ITRON Internatinal Meeting '98

Overview of the µITRON4.0 and ITRON TCP/IP API Specification

4th Nov. 1998

Hiroaki Takada

ITRON Technical Committee
Toyohashii Univ. of Technology

ITRON Project – 2nd Phase

▶ a project to standardize RTOS and related specifications for embedded systems

1st Phase (1984–)

focused on real-time kernel specifications

2nd Phase (1996-)

- broaden the scope of the standardization effort to related aspects
 - software components (software IP)
 - development environments
 - application-specific standards

Several standardization activities are in progress.

<u>µITRON4.0</u> – What and Why?

• μITRON4.0 is the next generation μITRON real-time kernel specification.

Why it is necessary?

- raising software portability
 - Software portability becomes significant as embedded software is getting larger.
 - Our "loose standardization" policy often condradicts with software portability.
- incorporating the results of our recent investigations
 - hard real-time system supports
 - investigation on automotive applications
- following the advancement of microprocessors

Portability vs. Adaptability

- Software portability can be raised if we define the kernel functions more strictly.
- ► Adaptability (*incl.* scalability) is the most important advantage of µITRON, and we should keep it.

the set of kernel functions strictly defined for raising software portability

µITRON4.0 — loose standardization standard profile — strict standardization

- ▶ *Subsetting* is still acceptable for small systems.
- Extended functions are also defined.

Standard Profile - Concept

ITRON

Target System

- target processor: high-end 16bit to 32bit
- kernel size: 10KB to 20KB with all functions
- ▶ The whole software is linked to one module.
- Kernel objects are statically defined.

Function Overview

- ▶ including almost all level S functions of µITRON3.0
- ▶ incorporating some level E functions of µITRON3.0
- ► some modifications and more strict definitions based on µITRON3.0
- defining several new functions and APIs

Standard Profile - Function Overview (1)

ITRON

Level S of µITRON3.0

- basic task management and synchronizations
- semaphore, eventflag, mailbox
- interrupt management, basic time management

From Level E of µITRON3.0

- fixed-sized memory pool, cyclic handler
- service calls with timeout

Major Modifications / More Strict Definitions

- act_tsk with queueing instead of sta_tsk
- some terminologies and service call names
- how to write an interrupt handler in C language
- service calls used in an interrupt handler

<u>Standard Profile – Function Overview (2)</u>

Newly Defined Functions

- data queue (queue for one word messages)
- exception handling mechanism
 task exception routine, CPU exception handler
- referencing system status
- can_act, isig_tim

Static API

Standard description (in a system configuration file) for defining kernel objects statically.

```
cre_tsk(...) — service call for creating a task
```

CRE_TSK(...) — *static API* for creating a task

common parameters

Broader Scalability

ITRON

Extended Functions

- ▶ the other level E functions of μITRON3.0
- hard real-time support
- auto ID assignment

Automotive Control Profile

• a bit smaller subset than level S of μITRON3.0 with stack sharing mechanism

Minimum Requirements

Dormant state instead of waiting state is mandatory.

▶ All tasks can share a stack without waiting state.

Standardization Process

Hard Real-Time Study Group RTOS Automotive Application Technical Committee

µITRON4.0 Study Group

- kernel specification WG
- debugging interface specification WG
- application design guidelines WG
- device driver design guidelines WG

- open study group
- started in April, 1998
- μITRON4.0 real-time kernel specification will be publish in near future.

ITRON TCP/IP API Specification

- ▶ TCP/IP protocol stack is one of the most important software components, today.
- ▶ The socket interface is *not suitable* for (*esp.* small-scale) embedded systems.
 - necessity of dynamic memory management within the protocol stack
 - → Errors occurred within the protocol stack is not notified to the application.
 - difference between UNIX process model and ITRON (or real-time kernel) task model
- Standard TCP/IP API suitable for embedded system is required.
 ITRON TCP/IP API Specification

Design Approaches

- based on the socket interface The socket interface can be implemented as a library on the new API.
- laying importance on understandability
- minimizing the necessity of dynamic memory management within the protocol stack
- optimized API for each protocol (TCP and UDP)
- API for reducing the number of data copies
- considerations for real-time applications
- exploiting the use of static configuration
- harmonized with ITRON conventions, but applicable to other RTOS

Differences with the Socket Interface

- ▶ TCP API and UDP API are separately defined.
- "End point" abstraction is adopted instead of "socket" abstraction. TCP end point for waiting for connection requests and TCP connection end point are handled as different objects.
- ▶ Reduced copy API, TCP service calls for reducing the number of data copies, is also defined.

```
tcp_get_buf tcp_rcv_buf tcp_snd_buf tcp_rel_buf
```

- Non-blocking calls and callbacks are supported.
- ▶ The callback routine is used for receiving UDP packets.
- etc.

Standardization Process and Status

March 1997 Embedded TCP/IP Techincal

Committee is launched.

▶ April 1998 The specification (Ver. 1.0) is fixed.

May 1998 approved by the ITRON Technical

Committee as an ITRON specification.

within a few month

A minor update is planned (Ver. 1.1).

Several companies (in Japan) are developping protocol stack products conformant to the specification.

Summary

ITRON

Our Recent Results

- ► ITRON TCP/IP API Specification
- JTRON2.0 Specification

Current Activities

- µITRON4.0 Real-Time Kernel Specification
- Application Design Guidelines
- Device Driver Design Guidelines

Future Activities

▶ Interface specification between µITRON real-time kernel and debugging tools

ITRON Home Page

http://www.itron.gr.jp/