
The ITRON Project: Overview and Recent Results

Hiroaki Takada Yukikazu Nakamoto Kiichiro Tamaru

Dept. of Information and Computer Sciences Software Design Lab. System ULSI Engineering Lab.

Toyohashi Univ. of Technology NEC Corporation TOSHIBA Corporation

1–1 Hibarigaoka, Tempaku-cho 2–11–5 Shibaura, Minato-ku 580–1 Horikawa-cho, Saiwai-ku

Toyohashi 441–8580, Japan Tokyo 108-0023, Japan Kawasaki 210–8520, Japan

Abstract

The ITRON Project is to standardize real-time operating
system and related specifications for embedded systems.
We have defined and published the series of ITRON real-
time kernel specifications. Of these, the�ITRON real-time
kernel specification, which was designed for consumer
electronic applications and other small-scale embedded
systems, has been implemented for many kind of processors
and adopted in numerous end products, making it an
industry standard in this field. Based on the achievements,
we have broadened the scope of our standardization efforts
beyond the kernel specifications to related aspects.

This paper briefly outlines the history and the current
status of the ITRON project and introduces its recent
results, including the ITRON TCP/IP API specification,
an application program interface (API) specification for
TCP/IP protocol stacks suitable for embedded systems,
and the JTRON2.0 specification, an interface definition
for hybrid environments of Java Runtime Environment
and ITRON-specification kernel. We also describe the
current standardization activities in the project, focusing
on �ITRON4.0, the next generation�ITRON real-time
kernel specification.

1 Introduction

Advances in microprocessor technology continue to open
up new application fields for embedded systems, and today
nearly almost all the electrical and electronic products
around us are controlled by embedded systems. At the
same time, the equipment controlled by embedded systems
has become more sophisticated, often incorporating many
functions in one product. As a result, embedded system
software has grown in scale and complexity. Moreover, as
products increasingly adopt digital technology, advanced
microprocessors have enabled more of the processing to
be implemented in software, making embedded system
software more important.

Real-time operating system is among the key com-
ponents in designing embedded systems. Currently, the
real-time operating system market is so fragmented that we
can say that there exists no international standard in this
field. The main reason is that embedded software tended to
be developed with a company’s propriety software technol-
ogy. With the increasing complexity of embedded system
software, however, introducing some software components
from outside software vendors becomes unavoidable, thus
the standardization of real-time operating system becomes
very important.

The ITRON Project, which is one of the subprojects
of the TRON Project [1, 2], is to standardize real-time
operating system and related specifications for embedded
systems. The series of ITRON real-time kernel specifica-
tions have been defined and published so far [3]. Real-time
kernels conformant to the specifications have been im-
plemented for many kind of processors and adopted in
numerous embedded system designs. Now, it can safely
be said that the ITRON specifications are an industry
standard in this field in Japan. In this first stage of the
ITRON Project, we focused our standardization efforts on
the real-time kernel specifications. The reason is that many
embedded systems (especially, small-scale ones) use only
kernel functions.

As embedded systems grow larger and more complex,
however, the relative importance of real-time kernels is de-
creasing. The need has increased for standardization efforts
that take into account software components, development
tools, and other specifications related to embedded system
software and hardware. Among them, we have deter-
mined to put an emphasis on software component-related
standardization at first, and started several standardization
activities described in the following sections. With these
activities, the second stage of the ITRON Project has started
[4].

In order to promote the circulation and use of software
components, two directions of standardization efforts are

ITRON1

µITRON
(ver. 2)

ITRON2

IMTRON

A
A
A

AAAAA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA

A
A
A

AµITRON
3.0

19921987 1989 1993

ITRON/
FILE

21st century1984

AAA AAA
A

for 32-bit MPUs

for 8-bit and
16-bit MCUs

first ITRON
kernel spec.

enhanced scalability
HFDS support

AA
AA
AA

AAAA
AAAA
AA
AAAAA
AAAAAA

AA
AA
AA

A
µITRON

4.0

AA
AA
AA

AAA
AAA

AAA
AAAAA
AAAAA
AAA
AAA
AAA

AA
AA
Asoftware

components

1998

Figure 1: History of the ITRON specifications

necessary.
At first, it is necessary to satisfy the preconditions for

their circulation and use. In more specific, the software
components should be portable to different platforms. In
addition, because some software components have hard
timing constraints, the framework to guarantee the timing
constraints of each component within a system is neces-
sary. In other words, what is needed is a framework that
allows coexistence of those software components with ap-
plications while satisfying their real-time constraints, and
enabling use of multiple software components each with
their own real-time needs.

The second direction is to standardize the application
program interface (API) of software components, which
must be done for each kind of software components.

This paper first presents the overview of the current
ITRON real-time kernel specifications, and then intro-
duces two recently published specifications of software
components. We also describe the current standardization
activities in the project, focusing on�ITRON4.0, the next
generation�ITRON real-time kernel specification.

2 ITRON Real-Time Kernel Specifications

The overview of the current ITRON real-time kernel speci-
fications, the results of the first stage of the ITRON Project,
is presented in this section.

2.1 History
Since the ITRON Project started in 1984, we have studied
standard real-time OS specifications for embedded systems,
and have developed and made available the series of
ITRON real-time kernel specifications as a result (Figure 1).

The first ITRON real-time kernel specification was is-
sued in 1987 as the ITRON1 specification [5]. Several
kernel products were developed based on this specification
and applied to systems, mainly by way of proving the
applicability of the specification. In 1989, two revised
specifications were released. The�ITRON specification

(Ver. 2.0) was developed with a smaller set of functions
targeted to 8-bit and 16-bit MCUs, and the ITRON2 spec-
ification for 32-bit processors. Of these, the�ITRON
specification met the industry’s demands very well, and
has been adopted in a number of embedded system de-
signs.

Thereafter, the expanding use of MCUs resulted in the
�ITRON specification being implemented for 32-bit pro-
cessors, which was not anticipated when the specification
was designed. We therefore decided to revise the speci-
fication approach by drawing up a scalable specification,
able to be used with MCUs ranging from 8-bit to 32-bit
processors. The result of this work was issued in 1993 as
the�ITRON3.0 specification.

2.2 Design Principles

The ITRON specifications are designed so that the fol-
lowing requirements on an operating system standard for
embedded systems are satisfied [3].

� Being able to derive maximum performance from
hardware
Given the severe hardware resource limitations of
a typical MCU-based system, the ability to derive
maximum performance from the available hardware
is a prerequisite for real-time OS adoption.

� Helping to improve software productivity
Especially important is standardization from a training
standpoint, such as adopting consistent concepts and
terminology, and standardizing design methods.

� Being uniformly applicable to various processor scales
and types
The hardware used in an embedded system is normally
designed optimally for its application. The processor
scale, moreover, may vary widely from 8-bit to 32-bit
processors depending on the kind of equipment to be
controlled.

In addition to the above requirements, another very
important issue is whether the specifications are truly open.
This means not only that the specification documents can
be obtained, but also that everyone is free to implement
and sell products based on those specifications.

The ITRON real-time kernel specifications were de-
signed according to the following principles.

� Allow for adaptation to hardware, avoiding excessive
hardware virtualization
In order for a real-time kernel to take maximum advan-
tage of the performance built into the MCU and deliver
excellent real-time response, the specifications must
avoid excessive virtualization of hardware features.
Adaptation to hardware means changing the real-time

kernel functions and internal implementation methods
as necessary based on the hardware architecture and
performance, raising the overall system performance.

� Allow for adaptation to the application
Adaptation to the application means changing the
kernel functions and internal implementation methods
based on the functions and performance required by
the application, in order to raise the overall system
performance. In the case of an embedded system, the
kernel object code is generated separately for each
application, so adaptation to the application works
especially well.

� Emphasize software engineer training ease
The ITRON specifications employ standardization as
a way of making it easier for software developers to
acquire the necessary skills. Consistency in use of
terminology, system call naming and the like help
ensure that once something is learned, it will have
wide applicability thereafter. Another way training is
emphasized is by making available educational text
materials.

� Specification series organization and/or division into
levels
To enable adaptation to a wide diversity of hardware,
the specifications are organized into a series and/or
divided into levels based on the degree of need for
each function. When the kernel is implemented, the
level can be chosen based on the kinds of applications
aimed for and their required functions.

� Provide a wealth of functions
The primitives that the kernel provides are not limited
to a small number but cover a wide range of different
functions. By making use of the primitives that
match the type of application and hardware, system
implementers should be able to achieve high runtime
performance and write programs more easily.

A basic approach common to several of these de-
sign principles is “loose standardization.” This refers
to the approach of leaving room for hardware-specific
and application-specific features rather than trying to ap-
ply strict standards to the extent that runtime performance
would be harmed. Loose standardization makes it possi-
ble to derive the maximum performance benefits from a
diversity of hardware for a diversity of application.

2.3 Current Status

The ITRON real-time kernel specifications, esp.�ITRON,
have been implemented for many kind of processors and
adopted in numerous end products, making it an industry
standard in this field in Japan.

Audio/Visual Equipment, Home Appliance

TVs, VCRs, digital cameras, settop box, audio compo-
nents, microwave ovens, rice cookers, air-conditioners,
washing machines

Personal Information Appliance, Entertainment

PDAs (Personal Digital Assistants), personal organiz-
ers, car navigation systems, game gear, electronic mu-
sical instruments

PC Peripheral, Office Equipment

printers, scanners, disk drives, CD-ROM drives,
copiers, FAX, word processors

Communication Equipment

answer phones, ISDN telephones, cellular phones,
PCS terminals, ATM switches, broadcasting equipment,
wireless systems, satellites

Transportation, Industrial Control, etc.

automobiles, plant control, industrial robots, elevators,
vending machines, medical equipment

Table 1: ITRON-specification kernel applications

Currently, more than 40 real-time kernel products im-
plemented for around 30 different processors are regis-
tered with the ITRON Technical Committee, and 10 to 20
non-registered products are known. Major Japanese semi-
conductor makers have implemented ITRON-specification
real-time kernels on their own processors, and several soft-
ware vendors have implemented for widely used proces-
sors. Support for the ITRON-specification kernel is starting
to come from U.S. software vendors as well. Moreover,
because the�ITRON-specification kernel is small in size
and relatively easy to develop, many companies have built
kernels for their own in-house use in addition to the prod-
ucts mentioned above. There are also several�ITRON
implementations available as free software.

Obviously, with so many ITRON-specification kernels
having been implemented, they are being used in many
different application fields. Table 1 gives some examples
of the huge number of applications making use of an
ITRON-specification kernel. The survey conducted by the
ITRON Technical Committee from late 1997 through early
1998 in Japan shows that the ITRON specifications are
in especially wide use in consumer products fields, where
they are a de-facto industry standard (Figure 2). Among the
cases where an ITRON-specification kernel is used, many
of these use an in-house implementation of the kernel,
attesting to the true openness of this standard specification.

AAAAAAAAAAAAAAAAAAAA

A
A
A
A
A
A
A
A
A

AAAAAAAAAAAAAAAAAAAAAA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA

AA
AA

AA
AA

A
A
A
AA
A
A

AA
AA
AA
AA
AA
AA

AA
AA
AA
AA

AA

A
A
A
A
A

AA
AA
AA
AA
AA
AA

AA
AA
AA

AA
AA
AA

A
A
A

A
A
A

AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA

A
A
A

A
A

AA
AA
AA
AA
AA
AA
AA
AA

AA
AA

AA
AA
AA
AA
AA

0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Pe
rs

on
al

 in
fo

.
ap

pl
ia

nc
e

C
om

m
un

ic
at

io
n

(t
er

m
in

al
)

O
th

er

A
ud

io
/v

is
ua

l
eq

ui
pm

en
t

E
le

ct
ri

c
eq

ui
pm

en
t

C
om

m
un

ic
at

io
n

(n
et

w
or

k)

H
om

e
ap

pl
ia

nc
e

E
nt

er
ta

in
m

en
t,

ed
uc

at
io

n
PC

 p
er

ip
he

ra
l,

of
fi

ce
 e

qu
ip

m
en

t
In

du
st

ri
al

 c
on

tr
ol

,
FA

M
ed

ic
al

eq

ui
pm

en
t

O
th

er
 c

om
m

er
ci

al

eq
ui

pm
en

t
O

th
er

 m
ea

su
ri

ng

in
st

ru
m

en
t

T
ra

ns
po

rt
at

io
n-

re
la

te
d

AAAAA
AAAAAOS not used

Other commercial OS

ITRON-specification OS

Other in-house OS

CTRON

Figure 2: Real-time OS use in embedded systems
(TRON Association Survey, 1997-1998, in Japan)

3 ITRON TCP/IP API Specification

3.1 Motivations

A TCP/IP protocol stack is one of the most important
software components for embedded systems, and its im-
portance is ever increasing. We determined to start the
efforts to standardize software component APIs with this
important field. As a result, the first version of the ITRON
TCP/IP API specification was published in May, 1998 [6].

The most widely used API for the TCP/IP protocol
stack today is the socket interface originally designed
for BSD UNIX operating system. The socket interface,
however, has the problems listed below when it is applied
to embedded systems.

� The socket interface is designed to be protocol-
independent, thus has some overhead.

� A TCP/IP protocol stack with the socket interface must
depend on dynamic memory management facility.
When memory space is running short, for example,
the protocol stack silently discards packets. This is
not suitable for many embedded systems.

� The number of data copies becomes larger with the
socket interface.

� The socket interface is designed to be compatible with
the UNIX process model, which is quite different from
the ITRON task model.

3.2 Overview

The ITRON TCP/IP API specification defines a standard
API for the TCP protocol and the UDP protocol over
IPv4 (version 4 of the Internet Protocol). The other APIs
necessary for a TCP/IP protocol stack product (for example,
APIs for managing the IP routing table and for managing
the ARP table) are out of the scope in the current version.

Considering that many existing internet software are
based on the socket interface and that many software
engineers are familiar with it, the ITRON TCP/IP API is
based on the socket interface, and the problems listed above
are remedied. It is also possible to implement a library
implementing the socket interface on top of the API.

Some of the important differences with the socket inter-
face are listed below.

� The API for TCP and that for UDP are separately
specified. In other words, the ITRON TCP/IP API
is protocol-dependent, while the socket interface is
protocol-independent. In addition, the current version
is focused on IPv4.

� In stead of adopting the socket abstraction, end points
for communications are directly handled. Moreover,
the end point to wait for TCP connection requests
(which corresponds to a socket on whichlisten is
called) and the end point for a TCP connection are
managed as different objects, while a socket is an
abstraction of both objects. In the specification, the
former one is named a TCP reception point (abbre-
viated as “rep”) and the latter one is named a TCP
communication end point (abbreviated as “cep”).

� A set of TCP service calls with which the number
of data copy can be reduced is defined in addition
to the usualread /write style APIs. Specifically,
tcp rcv buf returns the start address and the length
of the buffer in which the received data is stored. After
processing the data within the buffer, the application
program should calltcp rel buf to release the
buffer space. The service calls for sending data is
defined similarly.

� Non-blocking calls and callbacks are supported for
asynchronous handling of the protocols, which has a
different semantics with that of the socket interface of
UNIX. The infamousselect call is not supported,
because it can be emulated with the callbacks and
the eventflag function of the ITRON real-time kernel
specifications.

� When an UDP packet is received, a callback routine
is called instead of storing the packet within a buffer
managed by the protocol stack. Within the callback
routine, the application program should allocate a
buffer space for the UDP packet and copy the packet
to the buffer usingudp rcv dat . Otherwise, the
UDP packet is discarded. With this approach, the
application can know when memory space is running
short.

Currently, several companies are developing TCP/IP
protocol stacks based on the ITRON TCP/IP specification.
After the implementations are completed, we plan to review
the specification again and revise it.

4 JTRON2.0 Specification

4.1 Motivations

Java technology is drawing interest also in the field of
embedded systems these days. A Java runtime environment
is one in which programs downloaded from a network can
be run safely, and Java lends itself readily to creating a
graphical user interface (GUI). Despite obvious advantages
like these, the overhead for byte code processing and the
need for garbage collection make Java less than ideal for
real-time systems.

A practical approach for applying Java technology to
embedded real-time systems is to implement the Java
Runtime Environment on top of an ITRON-specification
kernel, then build an application system whereby the parts
for which Java is best suited are implemented as Java
programs, and the parts taking advantage of the ITRON-
specification kernel strengths are implemented as ITRON
tasks. With this approach, we can obtain their respective
advantages.

A key issue here is the interface for communication
between Java programs and ITRON tasks. This interface
has to be standardized; otherwise Java’s highly touted
portability will be lost. The JTRON specification is to
define this interface standard [7, 8].

4.2 Overview

Three types of interfaces are defined in the specification.
The first is the interface by which a Java program accesses
ITRON-specification kernel objects (Type 1). The sec-
ond is for sharing Java objects between a Java program
and ITRON tasks (Type 2), and the third is for stream
communication between a Java program and ITRON tasks
(Type 3) [9].

Type 1

With Type 1 interface, a Java program can access the
kernel objects such as tasks and semaphores through the
attach classes. In more specific, an attach class and its
instance correspond to an object type and an object of
the ITRON specification, respectively. A method of an
attach class corresponds to a service call of the ITRON
specification. For example, a semaphore attach class is
defined corresponding to the semaphore object and has
signal method corresponding to thesig sem service
call of the ITRON specification.

Type 2

With Type 2 interface, a Java program and ITRON tasks
communicate through ashared object. A shared object is
exported from the Java program by registering the object
to the shared object manager. ITRON tasks can obtain the

pointer to the shared object and directory access it with a
structure definition generated by javah command.

In order to access a shared object exclusively, explicit
locking/unlocking mechanism is provided to the shared ob-
jects. In addition, the Java program should callunshare
method to cease the object sharing. The unsharing opera-
tion on a shared object is blocked when the shared object
is locked, with which an ITRON task can access the shared
object in safe while the task locks the object.

In the JTRON2.0 specification, the API for a Java
program to share, unshare, lock, and unlock a shared object
is defined, as well as the API for ITRON tasks to lock,
unlock, and get the pointer to a shared object.

Type 3

Type 3 interface provides a simple stream-base message
passing facility between a Java program and ITRON tasks.
From the Java program, the stream for communicating
with ITRON tasks can be handled just like the Java native
stream. The API for a Java program to obtain the stream is
defined in the JTRON2.0 specification.

5 Next Generation�ITRON Real-Time Ker-
nel Specification

The most important activity currently in progress is the stan-
dardization of�ITRON4.0, the next generation�ITRON
real-time kernel specification.

Note that the specification described in the following
sections is the current snapshot of the discussions. It may
be changed until the�ITRON4.0 specification is fixed.

5.1 Motivations
The two major motivations for designing new real-time
kernel specification are to raise the portability of software
components (and application software) developed on the
�ITRON-specification kernels and to incorporate new ker-
nel functionalities, including the functions supporting hard
real-time systems. In addition, we think that regular up-
dates of the specification is required to follow the rapid
advancement of microprocessor technology.

5.2 Standard Profile
Concept

The standard profile is a set of real-time kernel functions,
defined for raising the portability of software components.
The software components (or application software) which
are required to be portable among different�ITRON ker-
nels are recommended to use only the functions included
in the standard profile, and the real-time kernels to which
the software components are requested to be portable are
recommended to implement all the functions included in
the standard profile.

Extensions and subsettings of the standard profile are
still permitted in order to retain the advantages of the loose
standardization policy of the ITRON specifications.

Function Overview

The standard profile of the�ITRON4.0 specification in-
cludes almost all level S (standard level) functions of the
�ITRON3.0 specification. It also incorporates some ex-
tended functions of�ITRON3.0 and some new functions
including exception handling functions described below.

The functions supported in the standard profile of the
�ITRON4.0 specification are summarized in Table 2.

Task management

� Static API to create a task
� Services call for direct manipulation of a task

Task-dependent synchronization

� Service calls for task synchronizations

Task exception

� Static API to define a task exception routine
� Service calls for raising, disabling, and enabling task

exception

Synchronization and communication
� Static APIs to create synchronization and communica-

tion objects
� Service calls for four task-independent synchronization

and communication functions: semaphores, event-
flags, mailboxes, and data queues

Interrupt management

� Static API to define an interrupt handler
� Service calls for disabling and enabling interrupts

Memory pool management

� Static API to create a memory pool
� Service calls for allocating and releasing fixed-size

memory block from/to a memory pool

Time management

� Service calls for system clock setting and reference
� Service call for task delay
� Service call for provide time ticks
� Static API to create a cyclic hander
� Service calls for starting and stopping a cyclic handler

System status referencing

� Service calls for referencing the current system status

System management

� Static API to define a CPU exception handler
� Service call for referencing the kernel version

Table 2: Functions supported in the standard profile

Exception Handlings

Exception handling functions are totally defined for each
implementation in the current�ITRON specification. In
�ITRON4.0, two functions for exception handling, CPU
exception handlers and task exception routines, are defined
in the standard profile.

The CPU exception handlers are to handle CPU excep-
tions, such as zero-division or bus error. In the standard
profile, though the API to define a CPU exception handler
is defined, how to write a CPU exception handler is not
standardized. This is because the CPU exception mecha-
nisms of processors have great variety, thus it is difficult
to standardize it with low overhead. At least, a CPU
exception handler is required to be able to raise a task
exception.

The task exception routines are to handle exceptional
events in task contexts. Only one task exception routine
can be defined for each task for making the kernel footprint
small. An exceptional event are raised on a task with
ras tex (or iras tex when invoked from an interrupt
handler) service call. The kind of events is passed as
a parameter toras tex and then passed to the task
exception routine.

Static API

The service calls to create and delete kernel objects
(cre tsk , cre sem, etc.), which are level E (extended
level) functions in�ITRON3.0, are not included in the
standard profile of�ITRON4.0. In most�ITRON imple-
mentations without those service calls, kernel objects are
created statically referring to the kernel configuration file.
The syntax of the kernel configuration file is different for
each implementation and is not portable.

In the �ITRON4.0 specification, in order to ease the
software porting, descriptions in kernel configuration files,
called static API, are standardized. For example, the
directive for creating a task isCRETSK (note that it is
described in capital letters) and the parameters to it are
basically the same with thecre tsk service call. With
this approach, application programmers are requested to
study one API only.

5.3 Extended Functions for Hard Real-Time Sys-
tems

Two functions will be introduced to�ITRON4.0 as the
extended functions for hard real-time support: mutual
exclusion mechanism with priority ceiling and priority in-
heritance support and overrun detection mechanism. The
detailed specification of the functions is still under discus-
sions.

5.4 Automotive Control Profile

With current practice, real-time kernels are difficult to
apply to automotive control systems, mainly because au-
tomotive control applications generally require very short
response with very limited hardware resources, and because
the overhead of real-time kernels is not permissible. In
the recently developed systems, however, the control sys-
tems grow larger and require more sophisticated run-time
software.

We formed a committee with automotive engineers to
bring together the requirements on real-time kernels used
in automotive control systems and to propose a real-time
kernel specification suitable for them.

One of the recommendations from the committee is
(basically) a subset definition of�ITRON including only
necessary functions for many automotive control applica-
tions. In addition, a mechanism to share a stack space with
multiple tasks is introduced. The subset definition will be
incorporated to the�ITRON4.0 specification, as another
profile than the standard profile.

5.5 Real-Time Kernel without Wait State

The other recommendation from the committee is a real-
time kernel specification without wait state. In the previous
versions of the ITRON kernel specifications, wait state is
mandatory. It is thought to be the prerequisite for a
real-time kernel.

In recent studies, however, many application systems,
especially small-scale systems, do not necessarily require
wait state. Without wait state, all the tasks within a system
can share one stack area, and thus removing wait state
is very effective for decreasing memory consumption and
reducing task dispatching overhead. Though it is still
questionable if a real-time kernel without wait state can be
called as a “real-time kernel,” it is useful to define such
real-time kernel specification as a subset of�ITRON an
introductory specification.

From these considerations, wait state is removed from
the minimum requirements of�ITRON4.0. As a result, the
minimum implementation of�ITRON4.0 is even smaller
than that of the current�ITRON specification.

6 Other Current Activities

6.1 Application Design Guidelines

Motivations

There are two motivations to define application design
guidelines for real-time embedded systems. One of them
is to provide a standard approach to design an embedded
system using a real-time kernel for embedded application
designers. For example, how to divide a system into tasks
and how to assign priorities to them should be covered.

guidelines for the grouping

application code fragments

software components

failed

succeeded

application software

standardized
parameters of tasks

based on RMA}assigning priorities

schedulability analysis tuning process

extracting parameters
of each task

grouping code fragments
into tasks/handlers

Figure 3: Basic flow of application design guidelines

We think that it is impossible to cover all application fields
of embedded systems with one set of guidelines, because
of the great variety of embedded systems. The set of
design guidelines being defined is an approach focusing on
real-time features of embedded systems.

The other motivation is to support software compo-
nents with hard real-time characteristics. In order to make
software components with hard real-time characteristics
coexist with applications while satisfying their real-time
constraints, both of the software components and the ap-
plications should be designed following a set of rules, or
design guidelines.

Overview

In order to guarantee the real-time constraints of application
systems, the application design guidelines adopt the rate
monotonic analysis (RMA) as the basic scheduling theory.

The guidelines are organized as follows (Figure 3).
At first, the application system should be divided into
processings which are basic computation units constituting
the system and which correspond roughly with functions in
C language or subroutines in assembler. The guidelines do
not cover this step, but show how to group the processings
into a task. To do that, parameters representing the
real-time characteristics of the processing, including the
deadline, the maximum execution time, the maximum
execution frequency, and the significance should be listed
up.

Then, the processings having the same (or similar) real-
time constraints are built up into a task. The priority of
a task is assigned according to the deadline monotonic
scheduling policy. After those step, the schedulability of
the system is checked using the RMA theory. If the system
is found to be unschedulable, some kind of tuning process
should be applied.

When a software component having real-time con-
straints is provided, the provided should present the real-
time characteristics of the component. The user of the

component can check the schedulability of the system con-
sisting of the software component and their own application
programs.

6.2 Device Driver Design Guidelines

Another current activity is to define the guidelines for
designing device drivers. Because the ITRON real-time
kernel specifications have no I/O functions, device drivers
are implemented on a real-time kernel. Therefore, device
drivers are directly used by application programs, not by
an operating system kernel. In order to avoid confusion,
we are using the termdevice interface components(DIC)
instead of device drivers.

We are now defining a hierarchical model of DICs. The
lowest level DIC has a special characteristics that it should
not add functions to the hardware device and that it should
not depend on real-time kernel functions. We think that the
lowest level DIC should be provided by the device maker.

7 Summary and Future Plan

In this paper, we have presented the overview and the
recent results of the ITRON Project. As the result of the
activities in the second stage, several outcomes are to be
obtained. The resulting specifications and the guidelines
will be made open following the basic policy of the TRON
Project.

Another important activity we are planning to start very
soon is the interface standardization between real-time
kernels and debugging tools such as software debuggers,
in-circuit emulators (ICE), and logic analyzers. With a
standard interface between them, making a debugging tool
support�ITRON-specification kernels becomes easier and
we can expect that more software development tools will
support�ITRON-specification kernels.

Other topics include the standardization of C++ API of
the ITRON specifications and the API standardization of
software components supporting graphical user interface
(GUI).

The market environments surrounding the ITRON
Project are changing very rapidly. We will continue
the efforts to catch up the the market requirements and
to contribute for the advancement of embedded system
technologies.

Acknowledgments

We would like to thank Dr. Ken Sakamura, the TRON
Project Leader, and the members of the ITRON Technical
Committee and other ITRON-related study groups and
committees for their support and efforts for the ITRON
Project.

References
[1] K. Sakamura, “The objectives of the TRON project,” in

TRON Project 1987, pp. 3–16, Springer-Verlag, 1987.

[2] K. Sakamura, “After a decade of TRON, what comes next?,”
in Proc. 11th TRON Project Int’l Symposium, pp. 2–16, IEEE
CS Press, Dec. 1994.

[3] H. Takada and K. Sakamura, “�ITRON for small-scale em-
bedded systems,”IEEE Micro, vol. 15, pp. 46–54, Dec.
1995.

[4] H. Takada and K. Tamaru, “Recent results of the ITRON
subproject,” inProc. 14th TRON Project Int’l Symposium,
pp. 31–35, TRON Association, Mar. 1998.

[5] H. Monden, “Introduction to ITRON, the industry-oriented
operating system,”IEEE Micro, vol. 7, pp. 45–52, Apr. 1987.

[6] Embedded TCP/IP Technical Committee and ITRON
Technical Committee,ITRON TCP/IP API Specification
(Ver. 1.00.01). May 1998. (only Japanese version is available
now, “http://www.itron.gr.jp/SPEC/tcpip-e.html”).

[7] Java Technology on ITRON-specification OS Techni-
cal Committee, JTRON2.0 Specification (Ver. 2.00.00).
Oct. 1998. (only Japanese version is available now,
“http://www.itron.gr.jp/SPEC/jtron2-e.html”).

[8] Y. Nakamoto and H. Takada, “Integration of Java and
�ITRON,” in Proc. 14th TRON Project Int’l Symposium,
pp. 37–40, TRON Association, Mar. 1998.

[9] Y. Nakamoto and H. Takada, “JTRON: A hybrid architec-
ture of Java runtime environment and real-time OS.” (in
submitting).

The ITRON Technical Committee provides various information
on the ITRON Project through the Internet, including the latest
ITRON specifications and the ITRON Newsletter. The URL is
“http://www.itron.gr.jp/”.

