## RTCSA'98



# The ITRON Project: Overview and Recent Results

28th Oct. 1998

#### Hiroaki Takada

Dept. of Information and Computer Sciences
Toyohashii Univ. of Technology

Yukikazu Nakamoto

**NEC Corporation** 

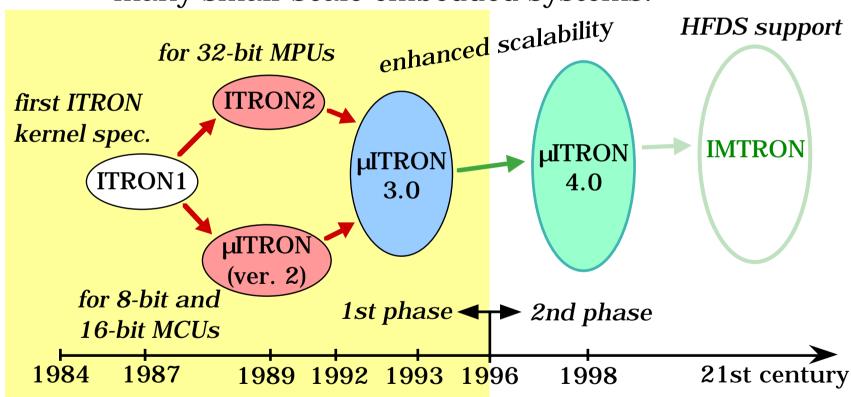
Kilichiro Tamaru
TOSHIBA Corporation

Hiroaki Takada

# ITRON Project

- one of the subprojects of the TRON Project
- a project to standardize real-time operating system and related specifications for embedded systems
   (esp. small-scale embedded systems)
- a joint project of industry and academia (non-government!)

core members:


Fujitsu, Hitachi, Mitsubishi Electric, NEC, Toshiba, Oki Electric Industry, Univ. of Tokyo, Toyohashi Univ. of Technology

- open specification policy
- 2nd phase started recently
  - ▶ 1st phase (1984 -)
  - ▶ 2nd phase (1996 -)

# ITRON Project – 1st Phase

ITRON

- focused on real-time kernel specifications
  - Only kernel functions are necessary for many small-scale embedded systems.



## Requirements on Standard RTOS Specification



- deriving maximum performance from hardware reducing the cost of final products
- improving software productivity easy training of software engineers facilitating the reuse of software components
- applicable to various scales and types of processors
   scalability 8-bit to 32-bit MCUs/MPUs
- truly open standard



The ITRON specifications have been designed to meet these requirements.

## Design Principles of the ITRON Specifications

- design concept: loose standardization maximum performance cannot be obtained with strict standardization
- design principles
  - allow for adaptation to hardware, avoiding excessive hardware virtualization
  - allow for adaptation to the application
  - emphasize software engineer training ease
  - organize specification series and divide into levels
  - provide a wealth of functions

# Functions Supported in µITRON3.0 Specification



- task management
- task-dependent synchronization
- basic synchronization and communication (semaphore, eventflag, mailbox)
- extended synchronization and communication (message buffer, rendezvous)
- interrupt management
- memory pool management
- time management
- system management
- no I/O management functions
  - ref) K. Sakamura Ed., "µITRON3.0: An Open and Portable Real-Time Operating System for Embedded Systems", IEEE CS Press, 1997.

## Implementation Status

- ! We do not know how many kernels are implemented based on the ITRON specifications.
- about 45 registered implementations for about 35 processors
- several non-registered commercial implementations
- → implemented for almost all major processors 8-bit to 32-bit MCUs/MPUs
- many in-house implementations
- some freely distributed implementations

## recently announced product

eCos: a free real-time kernel conformant to µITRON specification by Cygus Solutions

## Implementation Examples



| OS type                       | Single-chip         | General-purpose    |
|-------------------------------|---------------------|--------------------|
| No. of system calls           | Task part: 29       | Task part: 36      |
|                               | Non-task part: 15   | Non-task part: 27  |
| Scheduling                    | Fixed priority      | Variable priority  |
|                               | 1 task per priority |                    |
| System call interface         | Subroutine call     | Software interrupt |
| Exception management          | None                | Exit exception,    |
|                               |                     | CPU exception      |
| Wakeup request count          | Max. 15             | Max. 255           |
| Semaphore count               | Max. 255            | Max. 65,535        |
| System timer                  | 32-bit              | 48-bit             |
| Program size                  | 0.6 – 4.4 KB        | 1.9 – 5.3 KB       |
| Typical RAM use*              | 200 Bytes           | 640 Bytes          |
| Task switching time**         | 17μS                | $32.5\mu S$        |
| Max. interrupt masking time** | 9μS                 | 9.5µS              |

<sup>\*</sup> OS work area and various stack areas in the following configuration tasks: 10, semaphores: 2, eventflags: 2, mailboxes: 2, external interrupts: 2 levels

# Typical ITRON-specification Kernel Applications



#### Audio/Visual Equipment, Home Appliance

TVs, VCRs, digital cameras, settop box, audio components, microwave ovens, rice cookers, air-conditioners, washing machines, ...

#### Personal Information Appliance, Entertainment/Education

PDAs (Personal Digital Assistants), personal organizers, car navigation systems, game gear, electronic musical instruments

#### PC Peripheral, Office Equipment

printers, scanners, disk drives, CD-ROM drives, copiers, FAX, word processors, ...

#### Communication Equipment

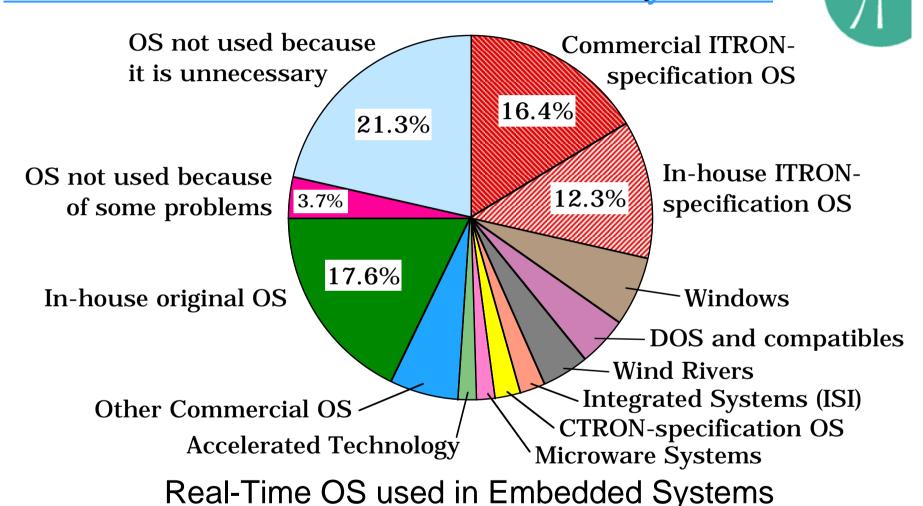
answer phones, ISDN telephones, cellular phones, PCS terminals, ATM switches, broadcasting equipment, wireless systems, satellites, ...

#### Transportation, Industrial Control, and Others

automobiles, plant control, industrial robots, elevators, vending machines, medical equipment, ...

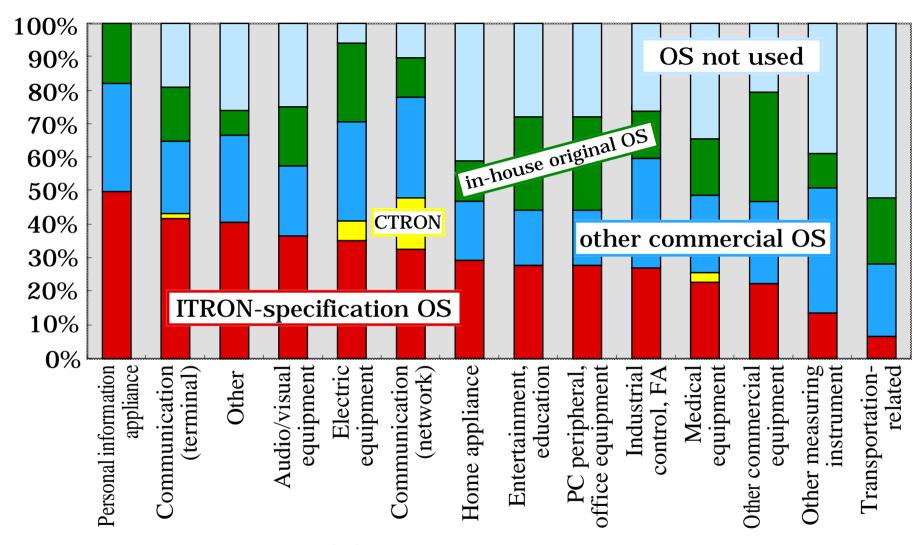
## **Application Status**



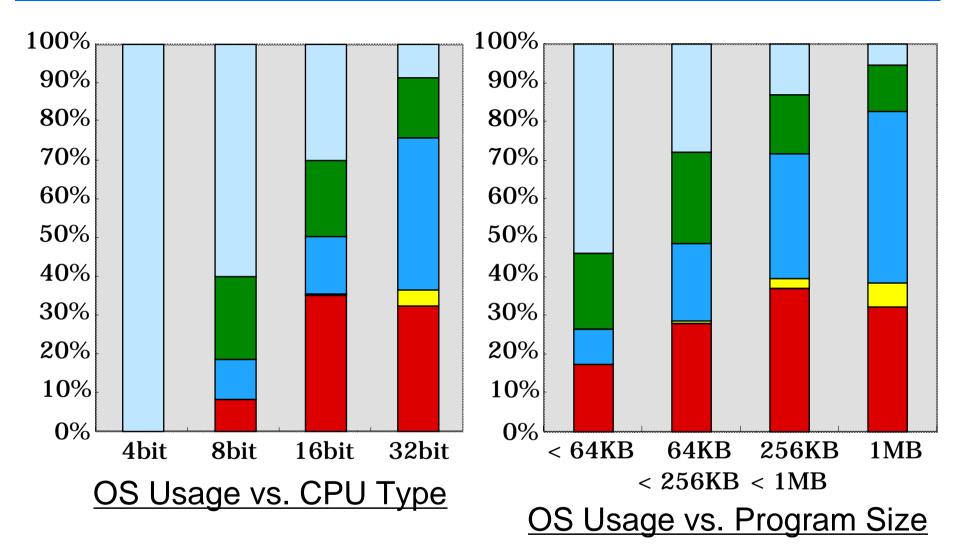

- widely used for various application fields
- de-facto real-time kernel standard in Japan

# **Application Examples**

two application examples to small-scale systems


| Application                            | FAX machine                      | CD player                       |
|----------------------------------------|----------------------------------|---------------------------------|
| MCU Type                               | 16-bit                           | 8-bit                           |
| RAM size                               | 2 KB                             | 512 Bytes                       |
| ROM size                               | 32 KB                            | 32 KB                           |
| Used Memory RAM                        | 1346 Bytes                       | 384 Bytes                       |
| ROM                                    | 28.8 KB                          | 17.8 KB                         |
| No. of Tasks                           | 6                                | 9                               |
| No. of Interrupt Handlers              | 6                                | 6                               |
| No. of Used System Calls               | 12                               | 7                               |
| Kernel Size RAM (ratio)<br>ROM (ratio) | 250 Bytes (19%)<br>2.5 KB (8.7%) | 146 Bytes (38%)<br>2.3 KB (13%) |

## Real-Time OS Used in Embedded Systems




(TRON Association Survey, 1997–1998, in Japan)

Hiroaki Takada



Real-Time OS Usage vs. Application Fields



(TRON Association Survey, 1997-1998, Japan)

## ITRON Project – 2nd Phase



- broaden the scope of the standardization to related aspects listed below
- ▶ software components (software IP)
  - satisfying the preconditions for promoting the development and circulation of software components
  - standard API for software components
- development environments
  - interface between real-time kernel and development environments
     eg) language binding, debugging support
- application-specific standards
  - satisfying application-specific requirements
- → several standardization activities are in progress

## Importance of Software Components



- Embedded systems is growing larger and more complex.
  - *eg*) digital camera automotive applications
- Some hardware components can now be implemented with software.
  - eg) software modem voice compression/decompression JPEG, MPEG



- Development of a system from scratch becomes more and more difficult.
- ▶ Lack of expertise is a serious problem.

# Standardization for Software Components

- (1) satisfying the preconditions for the circulation and use of software components
- (2) standard interface for software components in specific fields

## Standard Interface for Software Components

- Standardization should be done for each kind of software components.
  - *eg*) communication protocols (such as TCP/IP), file system, MPEG, ....
- started from most important fields
  - ► ITRON TCP/IP API Specification
  - ► JTRON Specification (Java on ITRON)

#### Preconditions for the Circulation and Use



! "Loose standardization" policy is an obstacle for the portability of software components.



- → next generation µITRON kernel specification
- ! Software components with hard real-time constraints should be supported. eg) software modem, MPEG
- coexistence of software components with applications while satisfying their real-time constraints
- enabling use of multiple software components with their own real-time constraints
  - → application design guidelines for R-T systems

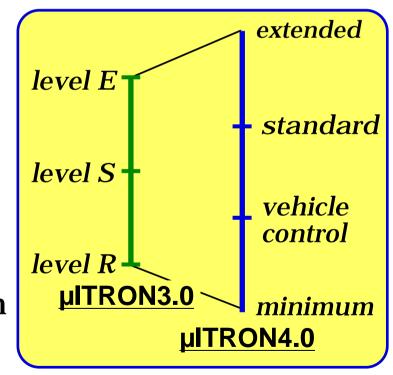
# μITRON4.0: next generation μITRON kernel Spec.

# ITRON

#### issue:

improving software portability while keeping the advantage of "loose standardization"

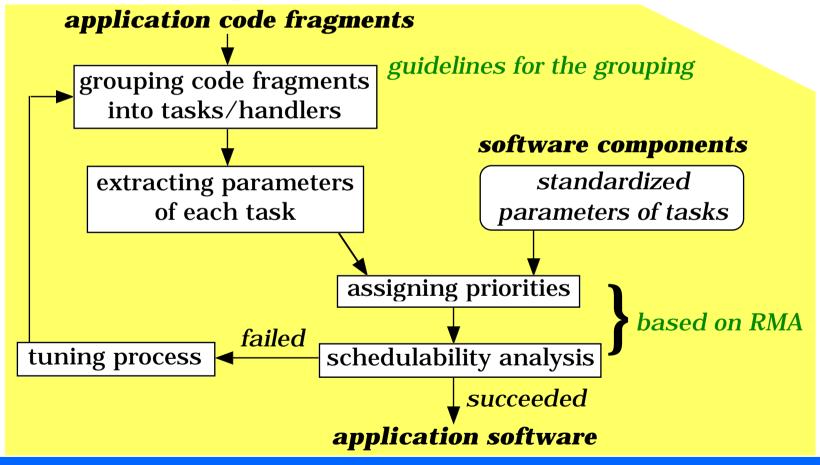
## standard profile:


the set of kernel functions strictly defined for raising software portability

#### extended functions:

optional features

## subsetting:


- vehicle control profile
- real-time kernel specification without wait state



ITRON

# Application Design Guidelines

a framework to satisfy the real-time constraints of software components



# ITRON TCP/IP API Specification

ITRON

- ▶ TCP/IP protocol stack is one of the most important software components, today.
- ▶ The socket interface is *not suitable* for (*esp.* small-scale) embedded systems.
  - necessity of dynamic memory management within the protocol stack
    - → Errors occurred within the protocol stack is not notified to the application.
  - difference between UNIX process model and ITRON (or real-time kernel) task model
- ▶ Standard TCP/IP API suitable for embedded system is required.

ITRON TCP/IP API Specification

## approach:

- based on the socket interface
- The socket interface can be implemented as a library on the new API.

#### differences with the socket interface:

- ▶ TCP API and UDP API are separately defined.
- "End point" abstraction is adopted instead of "socket" abstraction. TCP end point for waiting for connection requests and TCP connection end point are handled as different objects.
- ▶ TCP APIs for reducing data copies are also defined.
- Non-blocking calls and callbacks are supported.
- The callback routine is used for receiving UDP packets.

# JTRON Specification



- a practical approach for applying Java technology to embedded real-time systems
  - implementing Java runtime environment on realtime OS
  - taking the advantages of both environment

modules requiring real-time property

··· implemented on real-time OS

downloadable module, GUI

··· implemented on Java runtime environment

Communication interface between real-time tasks and Java applications should be standardized.

JTRON Specification

## three types of communication interfaces:

## Type 1: attach classes

Java applications can access real-time OS resources through attach classes.

## Type 2: shared object

- Real-time tasks can access shared objects exported from the Java application.
- explicit locking/unlocking mechanism
- Java application must explicitly call the unshare method on the object.

## Type 3: stream interface

Real-time tasks and Java applications can communicate through stream interface.

# **Other Activities**



 standardization activities targeted for automotive control applications

finished



the first application-specific activity

Requiremens on real-time kernel in automotive control applications have been clarified.

- → reflected to µITRON4.0
- device driver design guidelines

current

- hierarchical model of DIC (device interface component)
- debugging interface of real-time kernel future
  - standard interface between ITRON-specification kernel and debugging tools, including software debuggers, ICE, and logic analyzer
- C++ (incl. EC++) language binding future

# <u>Summary</u>



- µITRON real-time kernel is a de-facto industry standard in Japan.
- several 2nd phase activities
   ITRON TCP/IP API Specification
   JTRON2.0 Specification
   µITRON4.0 Real-Time Kernel Specification
   etc.



continue the effort to meet industry's needs ITRON Project is an open activity and is waiting for your contributions.

ITRON Home Page http://www.itron.gr.jp/