
Hiroaki Takada

Recent Results of the ITRON Subproject

hiro@ertl.ics.tut.ac.jp

Kiichiro TamaruHiroaki Takada Kiichiro TamaruHiroaki Takada

12th Mar. 1998

Recent Results of the ITRON Subproject

Toyohashi Univ. of Technology TOSHIBA Corporation

12th Mar. 1998

Recent Results of the ITRON Subproject

Toyohashi Univ. of Technology TOSHIBA Corporation

§ TRON is an abbreviation of “The Real-time Operating system Nucleus.”
§ ITRON is an abbreviation of “Industrial TRON.”

TRON Project Int'l Symposium '98

hiro@ertl.ics.tut.ac.jp



Hiroaki Takada

Recent Results of the ITRON Subproject

satisfying application-specific requirements

ITRON Subproject in the 2nd Stage
1st stage: real-time kernel specification
2nd stage: related standards for embedded systems

software components (software IP)
satisfying the preconditions for promoting the de- 
velopment and circulation of software components
standard API for software components

development environments
interface between real-time kernel and develop- 
ment environments

eg) language binding, debugging support

application-specific standards

-

-

-

-



Hiroaki Takada

Recent Results of the ITRON Subproject

Standardization Activities
ITRON Hard Real-Time Support Study Group

(Nov. 1996 – Mar. 1998)
Kernel Specification WG
Application Design Guidelines WG

Embedded TCP/IP Technical Committee

RTOS Automotive Application Technical Committee

Java Technology on ITRON-Specification OS 
Technical Committee

(Apr. 1997 –)

(Jun. 1997 – Mar. 1998)

(Nov. 1997 –)



Hiroaki Takada

Recent Results of the ITRON Subproject

Development from scratch becomes more and more 
difficult.
Lack of expertise is a serious problem.

Importance of Software Components
Embedded systems is growing larger and more 
complex.

digital camera
automotive applications

Some hardware components can be implemented with 
software.

eg) software modem
voice compression/decompression
JPEG, MPEG

eg) 



Hiroaki Takada

Recent Results of the ITRON Subproject

Standardization for Software Components
(1) promoting the development, circulation, 

and use of software components
(2) standard API for software components in 

specific fields

Standardization should be done for each kind of 
software components.

Standard API for Software Components

should be started from most important fields

eg) communication protocols (TCP/IP)
file system, MPEG

TCP/IP protocol stack



Hiroaki Takada

Recent Results of the ITRON Subproject

coexistence of software components with applications 
while satisfying their real-time constraints
enabling use of multiple software components with 
their own real-time needs

Loose standardization is an obstacle for the 
portability of software components.

Software components with hard real-time constraints 
should be supported.

The standardization level should be raised.
next generation µITRON kernel specification

eg) software modem, MPEG

Promoting the Use of Software Components

application design guidelines for R-T systems

!

!



Hiroaki Takada

Recent Results of the ITRON Subproject

Next Generation µITRON Kernel Spec.

improving software portability
incorporating new kernel functions

issue:

performance vs. software portability

motivations:

hard real-time support-

improving software portability while keeping 
the advantage of “loose standardization”

approach:
defining several profiles

 profile = a standard set of kernel functions 
for a specific range of applications

subsetting is still acceptable (for small systems)

 µITRON4.0



Hiroaki Takada

Recent Results of the ITRON Subproject

The whole software is linked to one module.
Kernel objects (task, semaphore, etc.) are 
statically defined.

Standard Profile
concept:

system assumptions:

a set of kernel functions defined for raising
software portability

Software components should use only the 
functions included in the standard profile.
Kernels should implement all functions 
included in the standard profile.

-

-



Hiroaki Takada

Recent Results of the ITRON Subproject

Standard Profile – Function Overview
still under discussions

including almost all level S functions of µITRON3.0
incorporating from level E:

fixed-sized memorypool
cyclic handler

system calls with timeout

detailed specification is revised

tslp_tsk, twai_sem, ....
strict standardization:

System calls invoked from interrupt handlers 
should be iXXX_YYY.
Mailbox should be implemented with linked-list.



Hiroaki Takada

Recent Results of the ITRON Subproject

static API:

modifications:
ient_int and isig_tim are added.
Some system calls are renamed.

Kernel objects should be defined with static API.

System calls for creating and deleting kernel 
objects (task, semaphore, ...) are not included.

cre_tsk(...)  ...... system call (dynamic API) for 
creating a task

CRE_TSK(...) ... kernel configuration description 
(static API) for creating a task

preq_sem pol_sem
Some terminologies are changed or clarified.

suspend suspended



Hiroaki Takada

Recent Results of the ITRON Subproject

exception handlings:

CPU exception handler

task exception routine

Exception handling architecture is defined!

Exceptions are raised by the processor.
Handlers are invoked immediately.
Handlers are executed in non-task context.

-

-

-

Exceptions are raised with ras_tex system call.
Handlers are executed in the task context.
Handlers are invoked when the task is 
scheduled in the next time.

-

-

-

similar to UNIX signal handler, but much lighter 
(and simpler) mechanism



Hiroaki Takada

Recent Results of the ITRON Subproject

Extended Functions
Level E functions of µITRON3.0 which are not 
included in the standard profile are defined 
as extended functions.

-

-

-

-

system calls for creating, deleting, and 
referring kernel objects
messagebuffer and rendezvous
variable-sized memorypool
alarm handler etc.

Hard real-time support functions are incorporated.
-

-

mutual exclusion with priority ceiling and 
priority inheritance support
overrun detection



Hiroaki Takada

Recent Results of the ITRON Subproject

Vehicle Control Profile

 µITRON3.0

 µITRON4.0

level S

level E

level R

standard

minimum

vehicle 
control

A subset definition of µITRON 
for vehicle control applications 
has been proposed by 
automotive engineers

a bit smaller subset than 
level S of µITRON3.0

+ stack sharing mechanism

with
modified mailbox functions

incorporated as another profile



Hiroaki Takada

Recent Results of the ITRON Subproject

Minimum Profile without Wait States
Wait state is mandatody with the existing 
µITRON specifiations, and dormant state is optional.

should be exchanged!
Dormant state is useful for saving stack space.
All tasks can share one stack space if wait states 
are unnecessary to be supported.
Many application systems do not require wait 
state.

A profile without wait state should be defined as an 
introductory specification.



Hiroaki Takada

Recent Results of the ITRON Subproject

How to divide a system into tasks?
How to assign priorities to tasks?

Application Design Guidelines

guaranteeing real-time constraints of both 
software components and application based on 
real-time scheduling theories

RMA (rate monotonic analysis) is adopted.

providing novice system designers a good guidelines 
to design real-time applications using a real-time 
kernel

two purposes:
for Real-Time Systems



Hiroaki Takada

Recent Results of the ITRON Subproject

Framework of the Design Guidelines

guidelines for the grouping

application code fragments

software components

failed

succeeded

application software

standardized 
parameters of tasks

based on RMA}
assigning priorities 

schedulability analysis tuning process

extracting parameters 
of each task

grouping code fragments 
into tasks/handlers



Hiroaki Takada

Recent Results of the ITRON Subproject

Errors occurred within the protocol stack 
is not notified to the application.

ITRON TCP/IP API Specification
TCP/IP protocol stack is one of the most 
important software components, today.

The socket interface is not suitable for (esp. small-
scale) embedded systems.

necessity of dynamic memory management within 
the protocol stack

difference between UNIX process model and 
ITRON (RTOS) task model

status:

in final discussion stage and will be published soon



Hiroaki Takada

Recent Results of the ITRON Subproject

approach:

based on the socket interface
The socket interface can be implemented 
as a library on the proposed API.

difference from the socket interface:

TCP API and UDP API are separately defined.
“End point” abstraction is adopted instead of 
“socket” abstraction.  TCP end point for waiting for 
connection requests and TCP connection end point 
are handled as different objects.
TCP APIs for reducing data copies are also defined.
Non-blocking calls and callbacks are supported.
The callback routine can be used for receiving UDP 
packets. etc.



Hiroaki Takada

Recent Results of the ITRON Subproject

Future Plan
 µITRON4.0 Real-Time Kernel Specification

 planned to be published within 1998

Real-Time Kernel Debugging Interface
 new standardization activity in 1998

Application Design Guidelines
Device Driver Design Guidelines

 µITRON4.0 Specification Study Group
open study group for non-members

continued to be investigated

standard interface between ITRON-specification 
kernel and debugging environments

-



Hiroaki Takada

Recent Results of the ITRON Subproject

Summary
documents to be published in 1998

 ITRON TCP/IP API Specification
 JTRON ver.2 Specification
 µITRON4.0 Specification
 Application Design Guidelines

standardization activities in 1998

 µITRON4.0 Specification Study Group
 Embedded TCP/IP Technical Committee
 Java Technology on ITRON-Specification OS 

Technical Committee
 RTOS Automotive Application Study Group


	Title Page
	ITRON Subproject in the 2nd Stage
	Standardization Activities
	Importance of Software Components
	Standardization for Software Components
	Next Generation micro-ITRON Kernel Spec.
	Standard Profile
	Standard Profile - Function Overview
	Extended Functions
	Vehicle Control Profile
	Minimum Profile without Wait State
	Application Design Guidelines
	Framework of the Design Guidelines
	ITRON TCP/IP API Specification
	Future Plan
	Summary

