
Recent Results the ITRON Subproject

Hiroaki Takada Kiichiro Tamaru

Dept. of Information and Computer Sciences System ULSI Engineering Lab.

Toyohashi Univ. of Technology TOSHIBA Corporation

1{1 Hibarigaoka, Tempaku-cho 580{1 Horikawa-cho, Saiwai-ku

Toyohashi, Aichi 441{8580, Japan Kawasaki, Kanagawa 210{8520, Japan

Abstract

The ITRON Subproject started several new standard-

ization activities in 1996 and in 1997, with which the

second stage of the subproject has been launched. In

this paper, we briey survey these activities and report

their recent results. The most important result of them

is the proposed speci�cation of �ITRON4.0, the next

generation �ITRON real-time kernel speci�cation. In

this paper, the overview of the proposed speci�cation is

presented the future plan to complete the speci�cation

is described.

1 Introduction

Since the beginning of the TRON Project in 1984, the
ITRON Subproject has published a series of ITRON
real-time kernel speci�cations. The reason for putting
the emphasis on the kernel speci�cations is that many
embedded systems (especially, small-scale ones) use
only kernel functions.

As embedded systems grow larger and more com-
plex, however, the need has increased for standard-
ization e�orts that take into account software com-
ponents, development tools, and other speci�cations
related to embedded system software. Among them,
we have determined to put an emphasis on soft-
ware component-related standardization at �rst in the
ITRON Subproject, and started several standardiza-
tion activities described below. With these activities,
the second stage of the ITRON Subproject has started.

The standardization activities we started in 1996
and 1997 are as follows.

ITRON Hard Real-Time Support Study Group

The ITRON Hard Real-Time Support Study Group
was started in November, 1996 to satisfy the precon-
ditions for promoting the development and circulation

of software components. Speci�cally, the study group
is focused primarily on the following two themes.

The �rst is to resolve the issue that porting of soft-
ware components up to now has been di�cult due to
the large di�erence in speci�cations among ITRON-
speci�cation kernel implementations. This requires
that the level of standardization of the kernel speci�-
cations be raised while retaining the bene�ts of loose
standardization.

The second theme is to support software compo-
nents with hard real-time characteristics. Many soft-
ware components demand real-time response. Ex-
amples include software modem, voice compres-
sion/decompression, and MPEG encoding/decoding.
What is needed is a framework that allows coexistence
of those software components with applications while
satisfying their real-time constraints, and enabling use
of multiple software components each with their own
real-time needs.

In April, 1997, two working groups, the kernel-
speci�cation WG and the application design guideline
WG, were formed and have been working on these two
themes.

Embedded TCP/IP Technical Committee

In order to promote wide use of software components,
the application program interface (API) of software
components should be standardized. The ITRON
Technical Committee called the establishment of an
activity for standardizing the API of the TCP/IP pro-
tocol stack, which has taken increasing signi�cance
recently. As the result of the call, the Embedded
TCP/IP Technical Committee was established and
started in April, 1997.

Though the widely used API for the TCP/IP proto-
col stack today is the socket interface, some inadequa-
cies of the interface for embedded systems have been
pointed out. The major goal of the technical commit-



tee is to design a new TCP/IP API which matches the
requirements of embedded systems.

RTOS Automotive Application Technical Com-
mittee

With current practice, real-time kernels are di�cult to
apply to vehicle control systems, mainly because ve-
hicle control applications generally require very short
response with very limited hardware resources, and
because the overhead of real-time kernels is not per-
missible. In the recently developed systems, however,
the control systems grow larger and require more so-
phisticated run-time software.

The RTOS Automotive Application Technical
Committee was started in June, 1997 to bring together
the requirements on real-time kernels used in vehicle
control systems and to propose a real-time kernel spec-
i�cation suitable for them.

Java Technology on ITRON-speci�cation OS
Technical Committee

The ITRON Technical Committee established the
Java Technology on ITRON-speci�cation OS Techni-
cal Committee in November, 1997 to de�ne the inter-
face speci�cations between ITRON-speci�cation real-
time kernels and Java Application Environments for
embedded systems.

Java technologies are becoming increasingly impor-
tant in embedded systems arena. Although several
Java ports have already been created on ITRON-
speci�cation kernels, there is no standard reference.
The purpose of this committee is to standardize the
communication interface between Java applications
(or applets) and ITRON tasks, and the implementa-
tion approach of Java threads with ITRON tasks. If
some extensions to the ITRON speci�cation are found
to be necessary, the result will be reected to the next
version of the ITRON speci�cation.

Refer to the separate paper for the current states
of this committee [1].

In this paper, we will describe the recent results of
these activities.

2 Next Generation �ITRON Kernel

Speci�cation

The most important result of the recent activities
is the requirements on real-time kernels, which will
be incorporated to �ITRON4.0, the next generation
�ITRON real-time kernel speci�cation.

Note that the speci�cation described in the follow-
ing sections is the current snapshot of the discussions.

It may be changed until the �ITRON4.0 speci�cation
is �xed.

2.1 Motivations

The two major motivations for designing new real-
time kernel speci�cation are to raise the portability of
software components (and application software) de-
veloped on the �ITRON-speci�cation kernels and to
incorporate new kernel functionalities, including the
functions supporting hard real-time systems.

2.2 Standard Pro�le

Concept

The standard pro�le is a set of real-time kernel func-
tions, de�ned for raising the portability of software
components. The software components (or application
software) which are required to be portable among dif-
ferent �ITRON kernels are recommended to use only
the functions included in the standard pro�le, and the
real-time kernels to which the software components are
requested to be portable are recommended to imple-
ment all the functions included in the standard pro�le.

Extensions and subsettings of the standard pro�le
are still permitted in order to retain the advantages of
the loose standardization policy of the TRON project.

Function Overview

The standard pro�le of the �ITRON4.0 speci�cation
includes almost all level S functions of the �ITRON3.0
speci�cation. It also includes some extended func-
tions. Some important extended functions are de-
scribed in the following sections. Below, we will de-
scribe some other major modi�cations from the level S
of �ITRON3.0.

At �rst, �xed-sized memorypool and cyclic han-
dler functions, which are level E functions in the
�ITRON3.0 speci�cation, are incorporated to the
standard pro�le. The detailed speci�cation of the
cyclic handlers is revised. The system calls with time-
out (tslp tsk, twai sem, etc.), which are also level E
functions in �ITRON3.0, are now included in the stan-
dard pro�le.

The API related to interrupt handlers is clari�ed.
At �rst, the system calls started with \i" (for exam-
ple, iwup tsk) must be used within interrupt handlers.
The newly added ient int should be invoked at the
beginning of each interrupt handler described in the
C language, and iret int (renamed from ret int)
should be invoked at its end. isig tim, which is to
inform the kernel of time ticks, is also introduced.

Some system call names are modi�ed for consis-
tency. Speci�cally, preq sem is renamed to pol sem.



snd msg and rcv msg are renamed to snd mbx and
rcv mbx, respectively.

Each level X option will be determined to be or not
to be included in the standard pro�le. For example,
the TA WMUL option of eventags, with which multiple
tasks can wait for an eventag, is not included in the
standard pro�le. Other options are still under discus-
sion, currently.

Static De�nition of Kernel Objects

The system calls to create and delete kernel objects
(cre tsk, cre sem, etc.), which are level E functions
in �ITRON3.0, are not included in the standard pro�le
of �ITRON4.0.

In most �ITRON3.0 implementations without
those system calls, what kernel objects should be cre-
ated is described in the kernel con�guration �le, in-
stead. The syntax of the kernel con�guration �le is
not implementation-dependent and is not portable.

In the �ITRON4.0 speci�cation, in order to ease the
software porting, descriptions in kernel con�guration
�les are standardized. For example, the directive for
creating a task is CRE TSK (not that it is described in
capital letters) and the parameters to it are basically
the same with the cre tsk system call. With this
approach, application programmers are requested to
study one API only.

Exception Handlings

Exception handling functions are totally
implementation-dependent in the �ITRON3.0 speci-
�cation. In �ITRON4.0, two functions for exception
handling, CPU exception handlers and task exception
routines, are de�ned in the standard pro�le.

The CPU exception handlers are to handle CPU
exceptions, such as zero-division or bus error. In the
standard pro�le, though the API to de�ne a CPU ex-
ception handler is de�ned, how to write a CPU excep-
tion handler is not standardized. This is because the
CPU exception mechanisms of processors have great
variety, and because it is di�cult to standardize it with
low overhead. At least, a task exception routine must
be able to be invoked with a CPU exception handler.

The task exception routines are to handle excep-
tional events in task contexts. One task exception
routine can be de�ned for each task. An exceptional
event are raised on a task with ras tex (or iras tex)
system call. The kind of events is passed in a param-
eter to ras tex and is noti�ed to the task exception
routine with its parameter.

Terminology

Some terminologies used in the speci�cation are
changed or clari�ed. For example, RUN state, WAIT
state, SUSPEND state, and WAIT-SUSPEND state
are renamed to RUNNING state, WAITING state,
SUSPENDED state, and WAITING-SUSPENDED
state, respectively. Another example is that \delayed
dispatching" will not be used in the �ITRON4.0 speci-
�cation. The same concept will be described that \the
interrupt handlers have higher priority than the task
dispatcher" instead.

2.3 Extended Functions for Hard Real-

Time Systems

Two functions will be introduced to �ITRON4.0 as the
extended functions for hard real-time support: mutual
exclusion mechanism with priority ceiling and priority
inheritance support and overrun detection mechanism.
The detailed speci�cation of the functions is still under
discussions.

2.4 Vehicle Control Pro�le

One of the recommendations from the RTOS Automo-
tive Technical Committee is (basically) a subset de�-
nition of �ITRON including only necessary functions
for many vehicle control applications. In addition, the
mailbox functions are modi�ed to be convenient for
the applications. A mechanism to share a stack space
with multiple tasks is also introduced.

Roughly speaking, the subset de�nition is a bit
smaller than the level S functions of �ITRON3.0, thus
is quite smaller than the standard pro�le described
above. The subset de�nition will be incorporated to
the �ITRON4.0 speci�cation, as another pro�le than
the standard pro�le.

2.5 Real-Time Kernel without Wait State

The other recommendation from the RTOS Automo-
tive Technical Committee is a real-time kernel speci�-
cation without wait state. In the previous versions of
the ITRON kernel speci�cations, wait state is manda-
tory. It is thought to be the prerequisite for a real-time
kernel.

In recent studies, however, many application sys-
tems, especially small-scale systems, do not necessar-
ily require wait state. Without wait state, all the tasks
within a system can share one stack area, and thus
removing wait state is very e�ective for decreasing
memory consumption and reducing task dispatching
overhead. Though it is still questionable if a real-time
kernel without wait state can be called as a \real-time



kernel," it is useful to de�ne such real-time kernel spec-
i�cation as a subset of �ITRON an introductory spec-
i�cation.

3 Application Design Guidelines

3.1 Motivations

There are two motivations to de�ne application de-
sign guidelines for real-time embedded systems. One
of them is to provide a standard approach to design
an embedded system using a real-time kernel for em-
bedded application designers. For example, how to
divide a system into tasks and how to assign prior-
ities to them should be covered. We think that it
is impossible to cover all application �elds of embed-
ded systems with one set of guidelines, because of the
great varieties of embedded systems. The set of de-
sign guidelines being de�ned is an approach focusing
on real-time features of embedded systems.

Another motivation is to support software compo-
nents with hard real-time characteristics. In order to
make software components with hard real-time char-
acteristics coexist with applications while satisfying
their real-time constraints, both of the software com-
ponents and the applications should be designed fol-
lowing a set of rules, or design guidelines.

3.2 Overview of the Guidelines

In order to guarantee the real-time constraints of ap-
plication systems, the application design guidelines
adopt the rate monotonic analysis (RMA) [2] as the
basic scheduling theory. With the RMA theory, a
higher priority should be assigned to a task with
shorter deadline (this policy is called deadline mono-
tonic scheduling).

The guidelines are organized as follows. At �rst,
the application system should be divided into process-
ings which are basic computation units constituting
the system and which correspond roughly with func-
tions in C language or subroutines in assembler. The
guidelines do not cover this step, but show how to
construct processings into a task. To do that, param-
eters representing the real-time characteristics of the
processing, including the deadline, the maximum ex-
ecution time, the maximum execution frequency, and
the signi�cance should be listed up.

Then, the processings having the same (or similar)
real-time constraints are built up into a task. The
priority of a task is assigned according to the deadline
monotonic scheduling policy. After those step, the
schedulability of the system is checked using the RMA

theory. If the system is found to be unschedulable,
some kind of tuning process should be applied.

When a sotfware component having real-time con-
straints is provided, the provided should present the
real-time characteristics of the component. The user
of the component can check the schedulability of the
system consisting of the software component and their
own application programs.

4 TCP API for Embedded Systems

4.1 Motivations

As described in Section 1, the socket interface is the
most widely used API for TCP/IP protocol stacks.
The socket interface, however, has some problems
when it is applied to embedded systems. For exam-
ple, a TCP/IP protocol stack supporting the socket
interface must depend on dynamic memory manage-
ment facility. When memory space is running short,
the protocol stack silently discards packets. This is
not suitable for many embedded systems.

4.2 Overview of the API

The TCP/IP API proposed by the Embedded
TCP/IP Technical Committee is the API for the TCP
protocol and the UDP protocol over IPv4 (version 4 of
the Internet Protocol). The other APIs necessary for
a TCP/IP protocol stack product (for example, APIs
for managing the IP routing table and for managing
the ARP table) are out of the scope in the current
version.

Considering that many existing internet software
are based on the socket inferface and that many soft-
ware engineers are familiar with it, the proposed API
is based on the socket interface, and the problems in
applying the socket interface to embedded systems are
remedied. It is also possible to implement a library im-
plementing the socket interface on top of the proposed
API.

Some of the important di�erences with the socket
interface are as follows.

� The API for TCP and that for UDP are sepa-
rately speci�ed. In other words, the proposed
API is protocol-dependent, while the socket in-
terface is protocol-independent. In addition, the
current version is focused on IPv4.

� In stead of adopting the socket abstraction, end
points for communications are directly handled.
Moreover, the end point to wait for TCP con-
nection requests (which corresponds to a socket
on which listen is called) and the end point for



a TCP connection are managed as di�erent ob-
jects, while a socket is an abstraction of both ob-
jects. In the proposed speci�cation, the former
one is named a TCP reception point (abbreviated
as \rep") and the latter one is named a TCP com-
munication end point (abbreviated as \cep").

� A set of TCP APIs with which the number of
data copy can be reduced is de�ned in addition
to the usual read/write style APIs. Speci�-
cally, tcp rcv buf returns the start address and
the length of the bu�er in which the received
data is stored. After processing the data within
the bu�er, the application program should call
tcp rel buf to release the bu�er space. The
APIs for sending data is de�ned similarly.

� Non-blocking calls and callbacks are supported
for asynchronous handling of the protocols (the
socket interface of UNIX also supports them).
The infamous select call is not supported, be-
cause it can be emulated with the callbacks and
the eventag functions.

� When an UDP packet is received, the callback
function is called instead of storing the packet
within a bu�er managed by the protocol stack.
Within the callback function, the appliation pro-
gram should allocate a bu�er space for the UDP
packet and copy the packet to the bu�er using
udp rcv dat. Otherwise, the UDP packet is dis-
carded. With this approach, the application can
know when memory space is running short.

The �rst version of the TCP/IP API speci�cation
for embedded systems will be �nished very soon by the
Embedded TCP/IP Technical Committee. After that,
the ITRON Technical will approve the speci�cation as
an ITRON standard after a review process.

5 Future Plan

In order to complete the �ITRON4.0 speci�cation, we
will start the activity of the �ITRON4.0 Speci�cation
Study Group in April, 1998. The study group is an
open activity, in that anyone can participate in the ac-
tivity. According to the current plan, the speci�cation
will be �nished and published within a half year.

Another important activity we are planning to start
within 1998 is the interface standardization between
real-time kernels and debugging tools such as software
debuggers, in-circuit emulators (ICE), and logic ana-
lyzers. With a standard interface between them, mak-
ing a debugging tool support �ITRON-speci�cation
kernels becomes easier and we can expect that more

software development tools will support �ITRON-
speci�cation kernels.

6 Summary

In this paper, we have described the recent results of
the ITRON Subproject. As the result of the activities
since 1996, several outcomes are to be obtained. The
resulting speci�cations and the guidelines will be made
open following the basic policy of the TRON Project.

The market environments surrouding the ITRON
Subproject are changing very rapidly. We will con-
tinue the e�orts to catch up the the market require-
ments and to contribute for the advancement of em-
bedded system technologies.

Acknowledgments

We would like to thank the members of the ITRON
Technical Committee and the members of the other
ITRON-related study groups and committees de-
scribed in this paper for their support and e�orts for
the ITRON Subproject.

References

[1] Y. Nakamoto and H. Takada, \Integration of Java and
�ITRON," in Proc. 14th TRON Project Int'l Sympo-

sium, Mar. 1998.

[2] M. H. Klein, T. Ralya, B. Pollak, R. Obenza, and
M. G. Harbour, A Practitioner's Handbook for Real-

Time Analysis: Guide to Rate Monotonic Analysis

for Real-Time Systems. Kluwer Academic Publishers,
1993.

The ITRON Technical Committee provides regular in-

formation on the ITRON speci�cations via the Internet,

including the latest English-language speci�cations and

the ITRON Newsletter. The URL is \http://tron.um.u-

tokyo.ac.jp/TRON/ITRON/".


