
ITRON Debugging Interface Specifications

Version 1.00.00

TRON Association ITRON Committee
ITRON Debugging Interface Specification Working Group

Copyright (C) 2000-2002 by ITRON Committee, TRON ASSOCIATION, JAPAN

ITRON Debugging Interface Specifications (Ver. 1.00.00)

This specification is copyrighted by the ITRON Committee of the TRON Association.
The ITRON Committee of the TRON Association permits you to copy and redistribute this
specifications free of charge or at cost as long as no part of it is altered. However, the redistri-
bution of a part of this specification is permitted only when a statement is made to indicate that
the redistributed information is an excerpt from the ITRON Debugging Interface Specifica-
tions, and to identify the source and the method of obtaining the entire contents of the specifi-
cations.

All inquiries about this specifications and its contents should be addressed to the following:

TRON Association ITRON Committee
5th floor, Katsuta Bldg., 1-3-39, Mita, Minato-ku, Tokyo 108-0073, Japan
Phone: +81-3-3454-3191 Fax: +81-3-3454-3224

2002, 15 February

• TRON is an abbreviation for "The Real-time Operating system Nucleus".
• ITRON is an abbreviation for "Industrial TRON".
• µΙTRON is an abbreviation for "Micro Industrial TRON".
• BTRON is an abbreviation for "Business TRON".
• CTRON is an abbreviation for "Central and Communication TRON".
• TRON, ITRON, µΙTRON, BTRON, and CTRON are not the names of specific products or product groups.

ITRON Debugging Interface Specification 1.00.00

iii Table of Contents

 I. CONTENTS

1 Formats in This Document ... 1
1.1 Notation..1
1.2 Naming Rules...3

1.2.1 Variable name/Argument name..3
1.2.2 Prefixes...3
1.2.3 Supplementary explanation ..4
1.2.4 Explanation...4

1.2.4.1Suffix ..5
1.2.4.2Unique name..5

1.2.5 Function names ..6
1.3 Terms and Definitions...8
1.4 Abbreviated Names...8

2 Overview .. 9
2.1 Background..9
2.2 Standardization Objective ..11
2.3 Approaches to Standardization ...12

2.3.1 Approach plans...12
2.3.2 Approach selection and its reasons..14

2.4 Concept ..15
2.4.1 Operation ..16

2.5 Characteristics...17
2.5.1 Two break method with task ID ..17
2.5.2 Scalable debugging environment ...19

3 Common Regulations ... 21
3.1 Interface Function Registration/Unregistration......................................21
3.2 Consistency ...22
3.3 Prohibition on Target Halt ..22
3.4 Types ..23
3.5 Bit Mask..24
3.6 Structure and Key of Getting Information...25
3.7 Error Codes..28

3.7.1 E_xxx error and ET_xxx error...28
3.7.2 Common errors...28
3.7.3 Similar errors ..29

3.8 Variable-Length Storage Region..30
3.8.1 Separate-space variable-length region...30
3.8.2 Same-space variable-length region ..31

ITRON Debugging Interface Specification 1.00.00

iv Table of Contents

3.9 Identification Number (ID)...32
3.10 Register Name ..33
3.11 Flag ..34
3.12 Register Set Description Table ...35
3.13 Special Blocking Mode ..38

4 RTOS Support Function Guideline 39
4.1 Standardization of Implemented Functionalities....................................39
4.2 Level Indications ...41

4.2.1 RIF level indication ...41
4.2.2 TIF level indication..42
4.2.3 Other interface..42

4.3 Terms and Definitions..43
4.3.1 Debugging tool..43
4.3.2 Debugging agent ..43

4.4 Break Mechanism..44
4.4.1 Decision of callback ..44
4.4.2 Break of condition-getting type ...46

4.5 Trace Log Mechanism...48
4.5.1 Set ..48
4.5.2 Start ..49
4.5.3 Execution ..50
4.5.4 Get ..51
4.5.5 End ...52
4.5.6 Delete ...52

5 RTOS Access Interface... 53
5.1 Functional Unit ..53
5.2 Get of Object Status..54
5.3 Get of Task Context...66

5.3.1 Get of register set description table ..66
5.3.2 Get of task context..68
5.3.3 Set of task context ..70

5.4 Issue of Service Call..72
5.4.1 Issue of service call ..72
5.4.2 Cancel of an issued service call ...75
5.4.3 Report of service call end ...76
5.4.4 Get of functional code...77
5.4.5 Get of service call name ...78

5.5 Set of Break Point..80
5.5.1 Set of break point..80
5.5.2 Delete of break point...84
5.5.3 Report of break hit ..85
5.5.4 Get of break information ...86

ITRON Debugging Interface Specification 1.00.00

v Table of Contents

5.5.5 Get of break condition...87
5.6 Execution History (Trace Log) ...89

5.6.1 Set of trace log..89
5.6.2 Delete of trace log...93
5.6.3 Request of trace log function start ..94
5.6.4 Request trace log stop..95
5.6.5 Get of of trace log ...96
5.6.6 Reconfigur of trace log mechanism ..100

5.7 Other RTOS-related Information ..102
5.7.1 Get of kernel configuration..102

6 Target Access Interface.. 107
6.1 Memory Operations..107

6.1.1 Allocate memory (on host)..107
6.1.2 Allocate memory (on target) ...108
6.1.3 Free memory (on host) ...109
6.1.4 Free memory (on target)...110
6.1.5 Read memory (memory block) ...111
6.1.6 Read memory (block set)..113
6.1.7 Write memory (memory block)..116
6.1.8 Write memory (block set)..118
6.1.9 Set of change report ...120
6.1.10 Delete of change report setting...122
6.1.11 Change report...123

6.2 Register Operations ..124
6.2.1 Read of register value ..124
6.2.2 Write register ..126

6.3 Target Operations..127
6.3.1 Start of target execution..127
6.3.2 Stop of target execution..129
6.3.3 Break of target execution..130
6.3.4 Resumption of target execution ..131

6.4 Hardware Break Operations ...132
6.4.1 Set of break point..132
6.4.2 Delete of break point...135
6.4.3 Break report ..136

6.5 Symbol Table Operations ...138
6.5.1 Reference of symbol table value ..138
6.5.2 Reference of symbol in symbol table..139

6.6 Function Execution ...141
6.6.1 Function call..141
6.6.2 Report of function execution end ..144

6.7 Trace Log Operations ...145
6.7.1 Set of trace log..145
6.7.2 Delete of trace log setting ...149

ITRON Debugging Interface Specification 1.00.00

vi Table of Contents

6.7.3 Start of trace log ...150
6.7.4 Stop of trace log..151
6.7.5 Trace logs callback ...152
6.7.6 Get of trace log ...153

7 Other Interfaces... 155
7.1 Debugging Tool Operations ...155

7.1.1 Get of debugging tool information...155
7.2 RIM Operations..157

7.2.1 RIM initialization..157
7.2.2 RIM finalization process..158
7.2.3 Get of RIM-related information ...159

7.3 Interface Operations..160
7.3.1 Interface initialization ..160

8 Recommended Guidelines ... 163
8.1 RIM Guideline...163

8.1.1 RIM operation guideline..163
8.1.2 RIM data format for supplying...163
8.1.3 Speed enhancement and debugging agent....................................164

8.2 Windows-DLL Creation Guideline (32-bit RIM)166
8.2.1 Type..166
8.2.2 Structure bits alignment ..167
8.2.3 Function export ...167

8.3 File Format of Standard Execution History...168

9 Reference ... 171
9.1 Structures...171
9.2 Function List ..184
9.3 Option Flags...187

9.3.1 Common flags...187
9.3.2 Unique flags..187

9.4 Constants..189
9.4.1 Object identification constants ..189
9.4.2 Error constants ...190
9.4.3 Break constants ..191
9.4.4 Log constants ...191
9.4.5 Other constants ..193

9.5 Key Code List of Getting Information..194

Appendix ... 205

ITRON Debugging Interface Specification 1.00.00

vii Table of Contents

 II. Table of Contents

Table 1 Symbols and Key Code Types..2
Table 2 Prefixes ...3
Table 3 Supplementary Explanation ..4
Table 4 Explanation ...4
Table 5 Suffixes ...5
Table 6 Unique Names ..5
Table 7 Interface Identification Characters ...6
Table 8 Notation of xxx and yyy ...6
Table 9 List of Terms ...8
Table 10 Abbreviations ..8
Table 11 OSes Used for Recently Developed Embedded Device9
Table 12 Shortcomings of ITRON Specification-compliant OSes10
Table 13 Unique Types ..23
Table 14 The most Significant Bit of the Last Key and Got Information Type..........25
Table 15 Functions of Flags...34
Table 16 Typical Register Set Description Table ...36
Table 17 Register Storage ...37
Table 18 Level Indication Example ...41
Table 19 Operation Performed in Relation to a Semaphore Having 10 Tasks in a

Waiting List..54
Table 20 Relationship between T_ROMPF Members and Bit Mask Bit Positions ...55
Table 21 Special Parameter Values Available for Break Setup81
Table 22 Relation Between Block Set and Data Arrangement113
Table 23 32-bit RIM DLL Host Types...166
Table 24 32-bit RIM DLL Target Types..166
Table 25 Windows DLL Creation Guideline Bits Alignment167
Table 26 Member List ..205

 III. Fig of Contents

Fig. 1 ITRON Debugging Interface Specification Concept Diagram........................15
Fig. 2 Getting ID1 Task Status ..16
Fig. 3 Two Break Methods and Difference in Operations Flow19
Fig. 4 Flow of Operations when a Special Break Routine is Implemented..............20
Fig. 5 Separate-space Variable-length Region (Task ID)..30
Fig. 6 Same-space variable-length Region ...31
Fig. 7 Setting of Break Point..44
Fig. 8 Break Hit..45
Fig. 9 tif_rep_brk Call ..45
Fig. 10 Information Collection..45
Fig. 11 Operation of rif_rep_brk when Conditions Satisfied45
Fig. 12 Continuation of Break Operation ...46
Fig. 13 Operation of rif_rep_brk when Conditions Not Satisfied................................46
Fig. 14 Abortion of Break Operation and Resumption of Target Program Execution 46
Fig. 15 Break of Condition-getting Type..46
Fig. 16 Set of Trace Log..48

ITRON Debugging Interface Specification 1.00.00

viii Table of Contents

Fig. 17 Start of Trace Log..49
Fig. 18 Execution of Trace Log..50
Fig. 19 Trace Log Getting..51
Fig. 20 End of Trace Log...52
Fig. 21 Delete of Trace Log...52
Fig. 22 Special RIM Supply Method ..164

 IV. Function of Contents

Name
rif_ref_obj

Get object status ..54
rif_get_rdt

Get of description table ..66
rif_get_ctx

Get of task context ...68
rif_set_ctx

Set of task context ...70
rif_cal_svc

Issue of service call ...72
rif_can_svc

Cancel of an issued service call...75
rif_rep_svc

Report of service call end ..76
rif_ref_svc

Get of function code...77
rif_rrf_svc

Get of service call name ..78
rif_set_brk

Set of break point...80
rif_del_brk

Delete of break point..84
rif_rep_brk

Report of break hit ..85
rif_ref_brk

Get of break information ..86
rif_ref_cnd

Get of break condition..87
rif_set_log

Set of trace log...89
rif_del_log

Delete of trace log ...93
rif_sta_log

Request of trace log function start ..94

ITRON Debugging Interface Specification 1.00.00

ix Table of Contents

rif_stp_log
Request of trace log stop ...95

rif_get_log
Get of trace log ..96

rif_cfg_log
Reconfigur of trace log mechanism ..100

rif_ref_cfg
Get of kernel configuration...102

tif_alc_mbh
Allocate memory (on host) ..107

tif_alc_mbt
Allocate memory (on target)...108

tif_fre_mbh
Free memory (on host) ..109

tif_fre_mbt
Free memory (on target) ..110

tif_get_mem
Read memory ...111

tif_get_bls
Read memory by block set ...113

tif_set_mem
Write memory by memory block ..116

tif_set_bls
Write memory by block set ..118

tif_set_pol
Set of memory data change report ..120

tif_del_pol
Delete of change report setting..122

tif_rep_pol
Report of memory data change ...123

tif_get_reg
Read of register value..124

tif_set_reg
Write of register value ..126

tif_sta_tgt
Start of target execution...127

tif_stp_tgt
Stop target execution ...129

tif_brk_tgt
Break of target execution ...130

tif_cnt_tgt
Resumption of target execution ..131

tif_set_brk
Set of break point...132

ITRON Debugging Interface Specification 1.00.00

x Table of Contents

tif_del_brk
Delete of break point..135

tif_rep_brk
Break report ...136

tif_ref_sym
Reference of symbol table value..138

tif_rrf_sym
Reference of symbol in symbol table ...139

tif_cal_fnc
Function call ...141

tif_rep_fnc
Report of function execution end ...144

tif_set_log
Set of trace log...145

tif_del_log
Delete of trace log setting ..149

tif_sta_log
Start of trace log...150

tif_stp_log
Stop of trace log...151

tif_rep_log
Trace logs callback ..152

tif_get_log
Get of trace log ..153

dbg_ref_dbg
Get of debugging tool information..155

dbg_ini_rim
RIM initialization...157

dbg_fin_rim
RIM finalization process...158

dbg_ref_rim
Get of RIM information...159

dbg_ini_inf
Interface initialization ...160

ITRON Debugging Interface Specification Ver. 1.00.00

1 Formats in This Document - Notation Name

1. Formats in This Document

1.1 Notation

In this document, entries that must be written as shown are indicated as follows (bold, italic,
Gothic). Command names, structure names, and constant names are indicated in this manner.

% command, T_RSBRK, rif_xxx_yyy, etc.

In this document, program codes are described as follows:
Program source

Program source
Program code

Service calls are described as follows:

Name Overview of Functions [Category] mark

Prototype
Argument type Argument name

Meaning of argument

(Return value) Return value type Name representing meaning of return value if not ER
Meaning of return value

Explanation
Explanation of functions

Supplementary explanation
Supplementary explanation of parameters and service call

Flag
Flag name Explanation of flag
Flag name Explanation of default flag (default)

Extension
The explanations of extended functions are provided with these upper and lower banners. For
more details of ’TIF’, see Section 2.4. In the explanation of an essential function [R] that is a
component of TIF, these banners indicate the portion that is handled as an extended function.

Extension

ITRON Debugging Interface Specification Ver. 1.00.00

2 Formats in This Document - Notation Name

Key
Key name Meaning (See “format description of information acquisition

 key codes” described later.)

Error
Error constant name Error description

Arrays and array members are described as follows:
Array type name {

Type name Name : Explanation
Type name Name : Explanation (variable whose value may be rewritten at execu-

tion)
}

RIFs are classified into [OBJ], [CTX], [SVC], [BRK], [CND], and [LOG] on an individual
function basis. TIFs are classified into [R] and [E] depending on the required level. A call-
back for each interface is also described within a category entry in [xxx:callback] form. For
details of categories, see Section 4.2.

The O mark indicates that the function must be implemented on the RIM side. The mark
indicates that the function must be implemented on the debugging tool side.

Key codes of getting information are entered as follows. For details of key codes, see Section
3.6.

First key Value [type]
Explanation of information that key can get

.Second key Value [type]
Explanation of information that key can get

.Third key Value [type]
Explanation of information that key can get

.Fourth key Value [type]
Explanation of information that key can get

The key codes are entered with the following symbols:

Table 1: Symbols and Key Code Types

Symbol Type

W 32-bit signed integer

S Character string

T Structure or other special type

1 Boolean value (FALSE → 0, TRUE → other than 0)
(32-bit signed integer [W] in reality)

ITRON Debugging Interface Specification Ver. 1.00.00

3 Formats in This Document - Naming Rules Name

1.2 Naming Rules

1.2.1 Variable name/Argument name
Structure internal variable names and function argument names used within functions included
in the debugging interface are named according to the following rules:

Variables are named as shown below. Their names consist of lowercase letters only.
Variable name := [*prefix "_"] ((supplementary explanation *explanation [*suf-
fix]) | (unique name))

Constants are named as shown below. Their names consist of uppercase letters only.
Constant name := *(type "_") <character string representing meaning>

The following types are used:
ACS Flag for access method setup
FLG Flag in common use to plural functions
OPT Option constant for giving hint to Function
OBJ Flag to specify object type
BRK Break-related constant
E Error code
ET Error code on target
DSP Dispatcher-related constant
EV Event code
LOG Log

The structure is named as shown below. Their names constant of uppercase letters only.
Name of the structure = “T_” ([interface]<the first character of the function name
xxx-yyy> explanation) | <recognizable character string>

The structure used as a member of another structure (nested structure) is written as follows:
Name of the structure=<name of structure that contains structure indicated at left>
<uppercase name assigned to member>

Further, the structure is named in lowercase letters as structure tag name. Specifically, the tag
name for the structure T_ROSEM is t-rosem .

1.2.2 Prefixes
When the following prefixes are followed by a variable, it indicates the variable structure or
usage.

Table 2: Prefixes

Character(s) Meaning

p The variable with this prefix is altered when storing a
value.

pk Entity of structure

str Null-terminated character string

ITRON Debugging Interface Specification Ver. 1.00.00

4 Formats in This Document - Naming Rules Name

1.2.3 Supplementary explanation

Supplementary explanation characters prefixing a name supplement the meaning of the target
variable.

1.2.4 Explanation

The following characters are used to indicate the meaning of a variable. The abbreviations in
Table 8, Notation of xxx and yyy, may also be used.

Table 3: Supplementary Explanation

Character(s) Meaning

w Wait state

s Send

r Receive

f Free

c Call (rendezvous port)

a Acceptance (rendezvous port)

run Running

Table 4: Explanation

Characters Meaning
id ID number
blk Block
stat Status
pri Priority
obj µITRON object
sem Semaphore
tsk Task

type Type information flag
opt Optional item
ptn Bit pattern
dtq Data queue
msg Message
mbf Message buffer
sz Size
fn Functional code

prm Parameter
ptr Pointer

ITRON Debugging Interface Specification Ver. 1.00.00

5 Formats in This Document - Naming Rules Name

len and sz indicate the length. They have different units. The len unit is the size of an item
element. sz is indicated in bytes.

1.2.4.1 Suffix

The following suffixes of variables have usage and data in itself.

The difference between the suffix adr and suffix ptr lies in the meaning of the target variable.
When a variable has the suffix adr, it is attached to an item whose address is meaningful. A
typical example is a break point (brkadr). On the other hand, the suffix ptr is attached to the
name of a variable that is attached to an item when the information indicated by its address is
meaningful. A typical example is the buffer pointer (bufptr).

The suffixes cnt and lst have a special function for the function rif_ref_obj. For details, see
Section 5.2.

1.2.4.2 Unique name
The following unique names indicate that the variable has a unique meaning.

Table 5: Suffixes

Characters Meaning

adr Address

cnt Stores count

lst Stores list

ptr Pointer storing information

ofs Offset

len Length

Table 6: Unique Names

Characters Meaning

result Stores result

storage Data storage area, etc. (mainly for write)

param Parameter

flags Flag variable/argument

name Name

length Length (when structure contains only one variable)

ITRON Debugging Interface Specification Ver. 1.00.00

6 Formats in This Document - Naming Rules Name

The following interface identification characters are used to identify the interface with the
structure.

However, the interface identification characters are omitted only in the following situations:
• Common structure for both interfaces
• Independent structure from both interfaces

1.2.5 Function names
All the functions included in the debugging interface take of the form www_xxx_yyy (soft-
ware conponents naming standard). A www is specified according to each interface ("rif" for
a function on the RTOS access interface or "tif" for a function on the target access interface).
dbg is used for functions that do not come under the RIF or TIF category.
For the xxx and yyy portions, see the table below:

Table 7: Interface Identification Characters

Character Meaning

R RTOS access interface

T Target access interface

Table 8: Notation of xxx and yyy

Abbreviation Complete form Meaning

alc allocate Allocation

brk break Break

cal call Call

can cancel Cancel

cfg configure Configuration

fin finalize Finalization

fre free Freeing

get get Getting

hok hook Hook function registration

ini initialize Initialization

pol poll Polling

ref refer (forward) Reference

req request Request

rep report Report (callback included)

rrf refer (backward) Backward reference

rst reset Reset

ITRON Debugging Interface Specification Ver. 1.00.00

7 Formats in This Document - Naming Rules Name

www_rep_yyy has a special meaning. It is handled as a callback function for the interface
www.
When functions added uniquely by an implementer or undefined in this specification are used
with this specification, the prefix "v" should be attached to xxx to indicate its uniqueness (as
with µITRON 4.0) (e.g., tif_vcal_svc).

set set Setup

sta start Start

stp stop Stop

bls block set A set of memory blocks

brk break point Break point

cfg configuration Configuration information

cnd condition Condition

ctx context Context

dgb debug tool Debugging tool

fnc function Function

log trace log Trace log

mbh memory block on host Memory block on the host side

mbt memory block on target Memory block on the target side

mem memory on target Memory on the target

rdt register set description table Register set description table

reg register Register

rim RTOS interface module RTOS interface module

stp stop by break point Stop by break point

svc service call Service call

sym symbol Symbol

tgt target Target

Table 8: Notation of xxx and yyy

Abbreviation Complete form Meaning

ITRON Debugging Interface Specification Ver. 1.00.00

8 Formats in This Document - Terms and Definitions Name

1.3 Terms and Definitions
The following terms are used in this specifications.

1.4 Abbreviated Names
In this document, the following abbreviations are used to represent long names or frequently
used names:

Table 9: List of Terms

Term Meaning

Target Program to be debugged or hardware to store such target program

Debugging
tool

Hardware/software used for debugging (e.g., host computer, probe,
and debugging applications)

Guideline Non-mandatory standards that should be complied with

Agent Support program introduced for specific purpose

Implement
dependant

An unique specification that is determined by an implementer at
adoption

Implement
definition

An implement dependant which should be declared to TRON
association

Table 10: Abbreviations

Abbreviation Meaning

RIF RTOS access interface

TIF Target access interface

RIM RTOS interface module

Register table Register set description table

ITRON Debugging Interface Specification Ver. 1.00.00

9 Overview - Background

2. Overview

2.1 Background
Computers are now being used for various purposes. In embedded applications, which account
for the majority of applications, the number of associated products is increasing and the soft-
ware scale is growing gradually to implement more advanced functions. Meanwhile, the time
to market (interval between product development and coming on the market) is falling and
large-scale applications need to be created quickly.
To complete development of large-scale software quickly, it is necessary to improve the devel-
opment environment. Improvement of the debugging environment is particularly important. It
is not easy to accurately determine the time required for software testing/debugging, which
accounts for the greater part of the overall development process. The time spent on debugging
depends largely on the performance of tools and debugging personnel’s experience.
When an application uses an OS, the OS support provided by debugging tools is an important
factor. If the displayed OS internal code for stepping-in or task status are irrelevant to the cur-
rently targeted codes which debugging personnel uses, productivity may be decreased.
In the field of embedded applications, the Real-Time Operating System (RTOS), which
focuses on real-time capabilities, is widely used in addition to the common OS function. The
results of a 1999 survey of RTOS market share are shown in Table 11. In Japan, the share of
ITRON Specification compliant OSes accounts for more than 30% of the total.

It is not so difficult to create debugging tools that support only one ITRON specification-com-
pliant OS. Such debugging tools already exist. However, it is not easy to provide support for
all ITRON specification-compliant OSes. The reason is that the internal structure varies with
the respective OS installation method as the ITRON Specification states the API specifica-
tions. Regarding debugging tools dependent on the internal structure, RTOS-related modules
might have to be rewritten whenever a new ITRON specification-compliant OS is released.
The development environment of ITRON specification-compliant OS has another problem.
That is, ITRON specification-compliant OS is provided by the manufacturer of the chip to be
embedded while OS debugging tools are provided by the tool vender dedicated to creating
tools.
It causes difficulty in keeping adjustability of tool and OS.

Table 11: OSes Used for Recently Developed Embedded Device

Category Share

Commercially-available ITRON Specification compliant OSes 18.8%

In-house ITRON Specification compliant OSes 12.0%

CTRON Specification complaint OSes 1.0%

Other commercially-available unique specification compliant OSes 40.4%

Not used because of OS problems 3.5%

Not used because no OS needed 24.3%

ITRON Debugging Interface Specification Ver. 1.00.00

10 Overview - Background

There would be no problem if everything from the OS to debugging tools is supplied by one
company. However, it would be difficult for two divisions of different companies to cooperate
with development. Therefore, it is difficult to maintain consistency between tools and OSes.
Under these circumstances, the user may be afraid of possible debugging environment changes and
reluctant to use the latest ITRON specification-compliant OS even when programs running on
ITRON specification-compliant OSes with a high degree of portability. It has been difficult to
continue supplying a standard debugging method for ITRON-compliant OSs due to the above-
mentioned problem.
It was therefore pointed out that the development environment is inadequate for ITRON speci-
fication-compliant OSes. Although ITRON specification-compliant OSes have nearly 30%
domestic share, the survey in 1999 revealed that more than 20% of engineers pointed out this
problem (Table 12).

To solve the above-mentioned problem, it is necessary to standardize the interface between the
RTOS and debugging tools. When the interface is standardized, it is possible to use any com-
bination of debugging tools and ITRON specification-compliant OSs. As a result, it is possible
to offer an RTOS level debugging environment with an increased degree of freedom.
The ITRON Debugging Interface Specification in this document was developed by the ITRON
Debugging Interface Specification Working Group, which started in February 1999.

Table 12: Shortcomings of ITRON Specification-compliant OSes

Description Percentage

Inadequate development environment and tools 22.9%

High dependency and poor portability 12.9%

Insufficient software components 11.5%

Insufficient number of engineers 7.8%

Insufficient functionality 4.4%

Excessive resource requirements of OS 4.4%

Other 18.9%

No significant deficiencies 17.2%

ITRON Debugging Interface Specification Ver. 1.00.00

11 Overview - Standardization Objective

2.2 Standardization Objective
The main objective of the ITRON Debugging Interface Specification Working Group is to
establish an interface for adding RTOS support functions to debuggers.
The significant items were defined by the Working Group to achieve the above objective as
follows:

• Furnish high degree of scalability
To handle processors ranging from 8-bit low-speed processors to 32-bit high-speed
processors

• Develop specifications for variety of debugging environments
To offer an interface that is commonly applicable to software Debuggers, ICE, JTAG
Emulators, software Emulators, etc.

• Create interface without limiting functionality to ITRON specification-compliant
OSes
To offer an interface that is available for of debugging the other RTOS and software
modules as well

ITRON Debugging Interface Specification Ver. 1.00.00

12 Overview - Approaches to Standardization

2.3 Approaches to Standardization
To develop the interface specification, we conducted interface specification studies from vari-
ous viewpoints. This section states the approach plans for interface specification studies,
including their merits and demerits, as well as the adopted plan and reasons for adoption.

2.3.1 Approach plans

Approach 1: Fixing object information
This method uses a stronger binary level standard instead of the current name-only standard-
ization level to bind a control block that retains the status of objects defined by the µITRON
specification. It provides compatibility between OSes by uniquely determining the block stor-
age site, alignment, etc.

• Merits
Realizes ITRON debugging interface implementation without any modifications to
debugging tools.

• Demerits
Current commercial OSes mostly unsupported
Dependent on CPU architecture
Originality of each company lost

Approach 2: Implementing support function on target side
This method standardizes the differing information among RTOSes when it is acquired from
the target. It can be classified into the following two types depending on the function imple-
mentation location.

Implementing support function as task
The support mechanism is introduced as a task. If, for example, there is a
memory management unit (MMU) within the target, the OS internal infor-
mation cannot be read because the support function is implemented by the
task. However, other tasks are unlikely to be affected.

Implementing inside RTOS
The support mechanism is directly introduced into the RTOS. Detailed
information can be obtained. The effect of the MMU is averted. However,
other tasks are likely to be affected.

Expanding debug monitor
This method expands a debug monitor that is used for target debugging. The
RTOS operations are likely to be affected.

• Merits
Wide range of OSes, including existing ones, covered

• Demerits
Burden on target (both CPU and memory resource)
If the MMU or protective mechanism is located in the target, it is necessary to furnish
the kernel with support functions, etc. As a result, the structure will be complicated.

ITRON Debugging Interface Specification Ver. 1.00.00

13 Overview - Approaches to Standardization

Approach 3: Introducing support module within debugging tool
This method incorporates a module with the function for RTOS to get information into a
debugging tool, and standardizes a series of associated functions.

• Merits
Various OSes, including existing ones, covered
Load on target minimized

• Demerits
Flexibility of the module is required to be incorporated in debugging tool.

ITRON Debugging Interface Specification Ver. 1.00.00

14 Overview - Approaches to Standardization

2.3.2 Approach selection and its reasons
The ITRON Debugging Interface Specification Working Group examined the above three
approaches and adopted Approach 3 (Introducing support module within debugging tool). The
prime reason is that it was easy to switch from the former debugger design to the design based
on the ITRON Debugging Interface Specification.

In most previously created debugging environments, many RTOS level debugging support
mechanisms are incorporated in the target (Approach 2) to permit RTOS level debugging.
Under these circumstances, support modules should be newly incorporated in debugging tools
when Approach 3 is used. However, regarding debugging tools, it is just that the target func-
tions are transferred to the host. For RTOS manufacturers, it is just that the write destination
merely changes from the RTOS kernel interior or debugging support task to a support module.
Therefore, debugging tool vendors and RTOS vendors can both switch to a new environment
without wasting previous assets.

This approach does not conflict with the previously employed approach. Therefore, RTOS
manufacturers can implement the above-mentioned mechanism as needed. If, for example, all
functions cannot be provided by support modules alone or a high degree of scalability can be
attained by introduction, the support mechanism will be provided within the target.
Even in this situation, Approach 3 is instrumental in reducing the amount of information trans-
fer between the host and target. If Approach 2 is used, a problem arises because the informa-
tion between the target and debugging tools needs to be standardized. However, when
Approach 3 is used, it is just necessary that the information be standardized before and after
support modules existing in the host. Therefore, the debugging support mechanism within the
target merely exchanges the required minimum information with the debugging tools. Eventu-
ally, when the support module expands internal information and reshapes it to a standard type,
the previous functions can be realized with minimum information transfer to the target com-
puter and minimum load.

For these reasons, the ITRON Debugging Interface Specification Working Group selected
Approach 3.

ITRON Debugging Interface Specification Ver. 1.00.00

15 Overview - Concept

2.4 Concept
The ITRON Debugging Interface Specification is developed to improve the debugging envi-
ronment for applications that use a µITRON specification-compliant OS.
The figure below shows the debugging interface concept diagram:

To enable the host to get the RTOS-dependent information on the target, the ITRON Debug-
ging Interface Specification has the concept of one module and the definitions of two associ-
ated interfaces and one guideline.

• Support function guideline
This guideline determines the functions related to the RTOS support functions that are
to be implemented in the debugging tools and their details. These guidelines make it
enables standardization of the terms and similar functions among the debugging tools
that support the ITRON Debugging Interface Specification, and assure the minimum
functions for the user. These guidelines are also used to define the two interfaces (RIF
and TIF) described later.

• RTOS interface module (RIM)
This module notifies a debugging tool of the RTOS internal information and translates
RTOS-dependent instructions that are not understandable to the debugging tool into
understandable instructions. It is provided and incorporated into a debugging tool by
an RTOS manufacturer. (Typical providing means are C language source program and
Windows DLL.) This module is the core of this specification.

• RTOS access interface (RIF)
When a debugging tool performs an RTOS-dependent debugging operation with the
RIM function, it uses the RIF as the interface. It provides a debugging tool with a
means of knowing the RTOS current status. It consists of a total of 21 functions (call-
back functions included) that are defined in C language API format. It offers funcitons,
including getting RTOS object details and context.

• Target access interface (TIF)
To answer a request issued by a debugging tool via the RIF, the RIM needs to access
the target and RTOS with the debugging tool function. The target access interface,
which consists of 31 functions and callback functions that define the basic debugging
tool functions, provides the RIM with debugging tool functions to cope with such a sit-
uation. This interface offers memory read/write, run/break, and other functions.

Figure 1: ITRON Debugging Interface Specification Concept Diagram

ITRON Debugging Interface Specification Ver. 1.00.00

16 Overview - Concept

The other modules are described below:
• Previous history storage region

This region is used to temporarily store log information while getting a trace log.
• Standard information storage region

This region is used to store a trace log, etc., in the standard format for the ITRON
Debugging Interface Specification. The stored information can be viewed with a stan-
dard format compliant viewer instead of support of debuging tool.

• RIM-dependent input/output
When the RTOS has advanced debugging options or handles unique implement-depen-
dent information, the standard information input with a debugging tool may be insuffi-
cient. In such a situation, the RIM-dependent input/output is used. This RIM-
independent input/output standardizes a part of a debugging tool user interface and per-
mits the RIM to be interactive with the user. (This function is not supported by the cur-
rent specification.)

In the ITRON Debugging Interface, a debugging tool and the RTOS interface module (RIM)
incorporated in the debugging tool transfer data with each other to realize debugging tools
RTOS-compliance even when they do not support RTOS. The next section provides an exam-
ple to explain the operation principles.

2.4.1 Operation
This section explains getting ID1 task status as an example.

1. The user issues a request for getting the ID1 task status.
2. To refer the RTOS internal status, the debugging tool sends a request for an ID1 task

status to the RIM.
3. The RIM refers to the symbol table, etc. for the address of task control block (TCB)

that corresponds to the task ID1, and requests the debugging tool to read the associ-
ated memory on the target.

4. The debugging tool uses an existing function to read the specified memory on the tar-
get.

5. The read memory data is notified to the debugging tool.
6. The debugging tool sends the data read in step 3 to the RIM.
7. The RIM decodes the received data in accordance with the TCB data and then for-

wards it to the debugging tool in the standardized form.
8. The display screen shows the ID1 task status in accordance with the result.

When the RTOS and RIM are offered as a set, the debugging tool can access the RTOS-depen-
dent information without knowing the details of the RTOS internal structure.

Figure 2: Getting ID1 Task Status

ITRON Debugging Interface Specification Ver. 1.00.00

17 Overview - Characteristics

2.5 Characteristics
This section details the distinctive characteristics of the ITRON Debugging Interface Specifi-
cation.

2.5.1 Two break methods with task ID
For the RTOS support function of a debugging tool, the break function is important as it breaks
task at a specific operation performed by a task with a specific task ID. If this function is not
provided for situations where two or more tasks share the same module, number of nonessen-
tial operations increases with an increase in the number of tasks. For example, execution
resumption must be repeated manually until a break occurs at the task to be focused.
The ITRON Debugging Interface Specification implements two break functionalities for spe-
cific tasks in order to achieving one of the goals of covering plural debugging tool. Another
objective of this break function is to utilize a highly functional debugging tool which fails its
full expected performance due to use of function that is standardized in consideration of low-
grade debugging tools.

Method 1: Break by callback routine based on RIM
Debugging tools that are incapable of getting a task ID and other RTOS-dependent
information will be turned into an RTOS support debugging tool with RIM, as
described earlier. This method performs a task ID dependent break with a break gener-
ation callback of RIM, which is the core of the interface.

It is assumed that the following types of debugging tools will use this function:
• Having execution break function with respect to specific address
• Having no conditional break mechanism
• Having no RTOS-dependent mechanism

This function is detailed below with reference to an example. In the example, it is assumed
that a break occurs when a task with the task ID number 1 executes address 0x12345678.

1. The debugging tool requests the RIM to set an address 0x12345678 execution break
for task ID1.

2. The RIM sets the address 0x12345678 execution break for the debugging tool.
3. The user executes a program.
4. The program executes address 0x12345678. The debugging tool performs a break.
5. The debugging tool uses the callback function to notify the RIM of the occurrence of

a break.
6. The RIM checks the region for storage of the currently executed task ID to determine

whether or not to perform a halt, and then notifies the debugging tool of the result.
7. When the RIM notifies the debugging tool that the conditions are satisfied, the debug-

ging tool completes a break operation and notifies it to the user. If the debugging tool
is notified that the conditions are not satisfied, it aborts the break operation and
resumes program execution.

This break method has two characteristics. One is a task ID based break can be operated even
when the debugging tool is not highly functional. The other characteristic is that nearly all
RTOSes can be covered, because the RIM determines whether or not to operate a break.

ITRON Debugging Interface Specification Ver. 1.00.00

18 Overview - Characteristics

However, this break method has a disadvantage in that the number of callbacks and the load on
the host increases if a large number of breaks are set. When remote debugging is conducted
via a serial port in particular, the task ID is checked at each break, considerably increasing the
overhead.
Even if the RIM does not decide on performing a halt in the break notification sequence, the
target remains stopped during the decision-making period. For a program with severe time
limitations, such an unnecessary break could cause a malfunction or an inability to detect
errors to be debugged.

Method 2: Conditional break by debugging tool after getting break
condition

This method is used in case that a conditional break mechanism is already implemented in a
debugging tool. In response to a request, the RIM notifies equivalent conditions to a debug-
ging tool.

It is assumed that the following types of debugging tools will use this function:
• Having execution break function with respect to specific address
• Having conditional break mechanism
• Having no RTOS-dependent mechanism

When this method is used, the RIM does not set a break point itself. In the method 1, the RIM
would merely generate a conditional expression for a conditional break equivalent to a condi-
tional judgment formed by the RIM, and return the generated conditional expression to the
debugging tool. The debugging tool adds a conditional expression as needed to the obtained
condition, and then sets a conditional break directly.
In marked contrast from the description in the method 1, this method does not perform a call-
back even at a break hit. Therefore, when the debugging tool has an extremely advanced con-
ditional break mechanism, a break mechanism dependent on RTOS information can be
established without generating unnecessary overhead.

The following conditions are now applicable to this function.
• Memory address
• Data length (in bytes)
• Value
• Condition (equal to, greater than, less than, or not equal to)

Figure 3 shows two types of breaks and their difference in program flow. Parts indicated by
solid lines represent the paths between different programs (between the RIM and debugging
tool or between the target and debugging tool). Clearly an increase in the number of solid lines
increases the program overhead. Parts indicated by dotted lines represent regions within the
same program. Numbered arrow marks respectively represent a flow for setting a break point,
a flow for a program for determining whether or not to stop the operation, and a flow for noti-
fying a break hit to the user after the decision of a break hit.

ITRON Debugging Interface Specification Ver. 1.00.00

19 Overview - Characteristics

2.5.2 Scalable debugging environment
The field of embedded applications is characterized by the fact that many bugs that should be
detected are not encountered depending on the situation. For example, a bug may occur only
in situations where a time-critical task is executed at a specific timing. A typical problem
would be I/O read wait negligence after an I/O write. When a break point is set immediately
before an I/O read that is performed stepwise, no error occurs in debugging operation because
an adequate wait is taken by a break before the start of the I/O read. However, if execution is
performed in the same manner as in an actual environment, an error occurs.
Regarding bugs that are timing-dependent, the full function of a debugging tool may cause unfa-
vorable results as stated below. When simplified RIM implementation is completed for the
aforementioned break support function of the ITRON Debugging Interface, timing-dependent
bugs may not always occur depending on the time of the round trip between the RIM and target
for making a decision.
For the architecture of the ITRON Debugging Interface, on the other hand, the RIM and RTOS
are both supplied by an RTOS manufacturer. It is therefore possible to supply two or more sets
of the RIM and RTOS depending on the situation to enable the user to select the best combina-
tion for the user environment.
Depending on whether RIM or RTOS has a larger number of debugging support functions, the
following characteristics can be provided even if the same function is offered.

• Implementation with greater importance to RIM side
When a larger number of functions are implemented in the RIM, applications can be
debugged in an environment that is very close to the one for the release time. As a
result, the load on the target can be reduced.

• Implementation with greater importance to RTOS side
When a larger number of functions are implemented in the RTOS, the time required for
communication between a debugging tool and target can be minimized. This results in
increased response speed.

Figure 3: Two Break Methods and Difference in Operations Flow

ITRON Debugging Interface Specification Ver. 1.00.00

20 Overview - Characteristics

When the RIM and RTOS are supplied with source code, the RIM itself can be reconfigured
with respect to the RTOS that is freely reconfigurable as needed for applications. To avoid
allocating memory space for unused function in the RIM or unnecessary debugging support
within the RTOS, the RTOS can be reconfigured to support only the required abilities. Fur-
thermore, a best suited RIM for debugging the RTOS and that without unnecessary functions,
can be generated to minimize useless overhead while debugging.

As an example, examine a situation where a high-speed break must be supported. To excuse a
high-speed break, it is necessary to minimize the amount of communication between the target
and debugging tool, which is a bottleneck in the current debugging environment. When all
functions provided by the ITRON Debugging Interface Specification are implemented with
greater importance placed on the RIM side, the modules within a debugging tool determine the
conditions that are dependent on the RTOS. Therefore, the target-to-debugging tool communi-
cation forms a bottleneck. When a high-speed break must be provided, the objective will not
be achieved by normal means because of the above-mentioned problem.
To solve this problem, the break hit decision routine implemented in the RIM should be incor-
porated in the RTOS. When this method is used, the task ID decision routine is embedded in
the RTOS so that a break point is set inside the RTOS (this is not a place where a break is nor-
mally positioned). An instruction for calling the routine is positioned at a place where a break
point should normally exist. This ensures that the debugging speed increases because the
amount of communication between the host and target dramatically decreases. However, the
routine placed within the RTOS causes a larger amount of overheads to the target than that in
normal situations. The debugging personnel should exercise judgment to select one of the var-
ious methods.

Figure 4: Flow of Operations when a Special Break Routine is Implemented

ITRON Debugging Interface Specification Ver. 1.00.00

21 Common Regulations - Interface Function Registration/Unregistration

3. Common Regulations

This chapter explains the common concepts in the ITRON Debugging Interface Specification.

3.1 Interface Function Registration/Unregistration
The ITRON Debugging Interface Specification ensures that all functions are available for a
debugging tool or RIM when the pointers to them are registered in the structure
T_INTERFACE that stores interface function pointers.
All functions offered by the ITRON Debugging Interface must be called by acquiring the
pointers to the functions from the above-mentioned interface structure, except for
dbg_ini_inf. Except when functions are bound statically, the function pointer values regis-
tered in the interface structure may change. Therefore, use of a local copy or similar process-
ing operation must not be performed, because the changes will not be reflected.

The structure T_INTERFACE stores the pointers to all the interface functions. Structure
members are arrayed in the order of entries in the specifications. Consequently, the pointers to
functions that are outside the scope of the specifications are arrayed in random order. Structure
members for all the pointers to nonexisting or unsupported functions must store NULL (= 0).
Therefore, before calling interface initialization related functions (dbg_ini_inf,
dbg_ini_rim), the debugging tool must put NULL into all pointers to the unsupported func-
tions included in the interface and functions possessed by the RIM.
The following example shows a debugging interface initialization routine for the debugging
tool side:

Program source
 /* Interface structure initialization */
ZeroMemory(&interface, sizeof(T_INTERFACE));
 /* TIF function registration */
interface.tif_xxx_yyy = xxx_yyy;
 /* Interface initialization */
dbg_ini_inf(...);
 /* RIM initialization */
if(interface->dbg_ini_rim != (void *)0l)

Program source
 (*interface->dbg_ini_rim)(...);

ITRON Debugging Interface Specification Ver. 1.00.00

22 Common Regulations - Consistency

3.2 Consistency
The term consistency means that data is retained throughout a single operation. The term con-
sistency assurance means assuring that data agrees with the information on the target through-
out a single operation.
The operation is judged to be inconsistent if the system is unstable (e.g., operation in a critical
section of an OS) when, for example, an RTOS-dependent information read process is executed.

When the debugging tool performs a process after stopping the user target, you may conclude
that all functions assure consistency. However, if the user target is operated in a critical section
of an OS while it is halted, consistency is not assured.

Conditions for function and consistency assurance are listed below:
• Single memory block read (tif_get_mem)

When a procedure is performed to read a specified memory block, the targeted memory
block must not be written to.

• Plural memory block read (tif_get_bls)
When a procedure is performed to read a specified memory block, no targeted memory
blocks must be written to. (If a single memory block is called more than once, the con-
sistency among the blocks is not assured.)

• Task status retrieval (rif_ref_obj)
The current execution position must not be a critical section of a current OS. In addi-
tion, the pointer to the TCB and the TCB itself must be read with consistency assur-
ance. Further, there must be no contradiction in the data constructed with the read
information.

3.3 Prohibition on Target Halt
The prohibition on target halt means that the target operation related procedures defined in the
ITRON Debugging Interface Specification must not be used. When the target is requested to
continue running in all operations, these functions must not be called.

Target operation-related functions that are defined in the ITRON Debugging Interface Specifi-
cation are listed as follows:

• Target execution
tif_sta_tgt

• Target stop
tif_stp_tgt

• Target execution break
tif_brk_tgt

• Target execution resumption
tif_cnt_tgt

For some functions, ‘consistency assurance’ and ‘permission for target halt’ may be used
simultaneously. In such an instance, the RIM must return the E_NOSPT error when consis-
tency cannot be assured permanently without halting the target, also the RIM must return
E_FAIL when consistency cannot be assured temporarily without halting the target.

ITRON Debugging Interface Specification Ver. 1.00.00

23 Common Regulations - Types

3.4 Types
This section describes unique types defined in the ITRON Debugging Interface Specification.

Further, a type beginning with the prefix DT_ is defined to store variables of a type defined in
the target ITRON kernel specification within the RIM and debugging tool. This type is ‘a vari-
able that is large enough to store target data’. It may not always coincide with the target type
size. (When the target INT is 16 bits, DT_INT can be 32 bits.)

Even if a defined type name is the same as the type of the ITRON kernel specification, the debug-
ging interface basically concludes that it does not comply with the ITRON kernel specification.
More specifically, ER and ID are defined in the ITRON Kernel Specification. However, they
are uniquely defined in the ITRON Debugging Interface Specification as well.

Table 13: Unique Types

Type name Meaning

BITMASK Bit mask (detailed later)

ER Move than 16-bit integer for storing error code

FLAG 32-bit unsigned integer

ER_ID ID or ER, whichever integer greater
A positive value indicates ID and negative value indicates ER.

DT_xxx Identical type that large enough to store variable defined as
xxx in ITRON Kernel Specification

ID Unsigned integer that large enough to store object number on
debugging interface

INT Signed integer that exists on host with natural length

UINT Unsigned integer that exists on host with natural length

VP Void pointer on host

VP_INT Type that large enough to store VP and INT

LOGTIM Integer that indicates log time (unit defined at implementation)

ITRON Debugging Interface Specification Ver. 1.00.00

24 Common Regulations - Bit Mask

3.5 Bit Mask
The ITRON Debugging Interface uses a bit mask in order to set enabled or disabled. A bit
mask is a set of 1-bit flags.

The first item of the bit mask corresponds to the LSB. Therefore, when expressed in C, the sta-
tus of the n-th flag must be stored so that it can be got as indicated below:

Program source

Program source
((bitmask >> n) & 1)

Bit masks are classified into the following types according to length:
BITMASK With natural length that exceeds maximum count used within specifi-

cation
BITMASK_8 1 byte (8 bits)
BITMASK_16 2 bytes (16 bits)
BITMASK_32 4 bytes (32 bits)
BITMASK_64 8 bytes (64 bits)

When a bit mask with a length not exceeding 64 bits is to be created, the minimum specified
type meeting the requirements must be used.

When the length of a bit mask exceeds 64 bits or cannot be fixed, the bit mask must be defined
as a 1-byte bit mask array (BITMASK_8[]). Therefore, when expressed in C, the n-th item
must be stored so that it can be read with the following syntax:

Program source

Program source
((bitmask [n>>3] >> (n & 7)) & 1)

ITRON Debugging Interface Specification Ver. 1.00.00

25 Common Regulations - Structure and Keys of Getting Information

3.6 Structure and Keys of Getting Information
To get information, the ITRON Debugging Interface Specification uses a special structure and
a key for specifying the information to be got.

The following functions are used to get the information that applies this rule.
• rif_ref_cfg : Get of kernel configuration
• dbg_ref_dbg : Get of tool information related debugging
• dbg_ref_rim : Get of information related RIM

To specify the information to be got, the ITRON Debugging Interface Specification uses key
code consisting of four 8-bit integers. In this document, the key codes are described as fol-
lows. Within a program, etc., the prefix INF_ may be attached to a key to indicate that the key
is a key for getting information.

Key code := first key ["." second key ["." third key ["."fourth key]]]
(Example: BREAK.CONDITION.MAX, INF_HOST.INF_NAME)

The second and subsequent keys of a key code can be omitted. Omitted keys are handled as
DEFAULT = (0).

The structure of getting information T_INFO is detailed below:
typedef struct t_info_result_buf
{

UINT sz : Buffer size
VP ptr : Pointer to region where character string or special type be

stored
} T_INFO_RESULT_BUF;

typedef union t_info_result
{

INT value : 32-bit signed integer
T_INFO_RESULT_BUF buf

: Value of special type

typedef struct t_info
{

char key[4] : Key for specifying information
T_INFO_RESULT result:Corresponding value for key

} T_INFO;

Two types of information can be got: 32-bit integer, and character string or special type. The
information type can be presumed from the most significant bit of the last key. In the above
example where "BREAK.CONDITION.MAX" is used, the information type can be derived
from the third key (MAX). The table below shows the relationship between the type and the
most significant bit of the last key.

Table 14: The most Significant Bit of the Last Key and Got Information Type

Most significant bit Got type

0 32-bit integer

1 Character string or special type

ITRON Debugging Interface Specification Ver. 1.00.00

26 Common Regulations - Structure and Keys of Getting Information

T_INFO::result.buf.sz is a variable that retains the length of the buffer for getting the char-
acter string. However, when a character string or special type is read, its length is stored in
T_INFO::result.buf.sz. When an integer value is read, the value is undefined.
A storage region must be furnished separately by the caller for getting of a character string or
special type. The caller gets an adequately large storage region. It stores the pointer to the
acquired region in T_INFO::result.buf.ptr and the acquired size in
T_INFO::result.buf.sz. The callee stores the information about character strings and special
types in a specified region in such a manner that the transfer length does not exceed the got
size. Since a terminal symbol is always attached to a character string, in case that
T_INFO::result.buf.sz is set to 1, no read data is obtained even if the function ends normally.
If T_INFO::result.buf.sz is set to 0, the E_PAR error occurs.
If the buffer size is smaller than the transfer data length in situations where a special type is to
be read, the behavior of the function is stipulated by an ‘implement definition’. However, if
T_INFO::result.buf.sz is 0, the E_PAR error occurs.

If an invalid key code* is contained in one of the T_INFOs, which is specified as an argument,
in situations where two or more items of information are read simultaneously, the function
turns out to an error. In such an instance, the function does not give a report or assurance about
whether information other than the invalid key code is read correctly.

Key code insertion occurs so that the first key is the first item for the array (T_INFO::key).
To clarify operations, the example below shows the implementation of the key code generation
function (in C++).

Program source
static char StringBuffer[MAX_STRBUF_LENGTH];

static inilne void MAKE_KEYCODE
(T_INFO * info, char key1, char key2 = 0, char key3 = 0, char key4 = 0)

{
info->key[0] = key1;
info->key[1] = key2;
info->key[2] = key3;
info->key[3] = key4;
info->result.buf.sz = MAX_STRBUF_LENGTH;
info->result.buf.ptr = StringBuffer;

Program source
}

The key code "0.0.0.0" has a special meaning. When "0.0.0.0" is passed as a key code, the
function of getting information returns a succeeding key code of previously got key code. Fur-
ther, if the first element of a key code array passed as an argument is "0.0.0.0", that element
denotes the first key code, and the information acquisition function gets a key code with the
smallest value.
In other words, when there are five T_INFO arrays with a key code "0.0.0.0", the information cor-
responding to each arraied information from first to fifth is got. However, operations performed at
execution of a subsequent function remain unchanged even after continuous acquisition by
"0.0.0.0". Therefore, note that the same information is got even if a function is executed two
or more times using the T_INFO arrays, all of which consist of "0.0.0.0".

*. The ‘invalid key code’ refers to a key code that is neither defined by the ITRON Debugging Inter-
face Specification nor contained in a unique specification. All key codes defined by the ITRON
Debugging Interface Specification must have a certain value.

ITRON Debugging Interface Specification Ver. 1.00.00

27 Common Regulations - Structure and Keys of Getting Information

Program source
//Checks whether each functional unit of RIF is supported

T_INFO support[6];

MAKE_KEYCODE (&support[0], INF_RIF, INF_UNIT, INF_OBJ, 0);
for(i = 1;i<6;i++)

MAKE_KEYCODE (&support[i], 0, 0, 0, 0);

//Now, everything from RIF.UNIT.OBJ to RIF.UNIT.CTX will be got.

Program source
dbg_ref_rim (support, 6, 0);

Since this structure of getting information structure is supported by more than two function, it
is conceivable that different functions may use different information key codes (e.g., the CFG
key may be used for dbg_ref_dbg). Whether the function returns an error, associated value,
or invalid value in such an instance is determined by an ‘implement definition’. The caller
must not assume that information can be got even if the function does not match a key code, or
must not expect that an error will be reported when such a procedure is performed.

Each vendor can freely create the key for getting information instead of the use of the key
defined in the ITRON Debugging Interface Specification. In such a situation, it is strongly rec-
ommended that the second and third high-order bits of the key* are both 1. The ITRON
Debugging Interface Specification assures that no key definitions formulated in the future will
overlap this range.

*. 64 keys in total (0x60-0x7f and 0xe0-0xff).

ITRON Debugging Interface Specification Ver. 1.00.00

28 Common Regulations - Error Codes

3.7 Error Codes

3.7.1 E_xxx error and ET_xxx error
Error codes defined as E_xxx in the ITRON Kernel Specification are expressed as ET_xxx in
the ITRON Debugging Interface Specification. Error ET_xxx represents an error that may be
caused by target operations. On the other hand, error E_xxx represents an error that may occur
at the host. For example, E_NOMEM means that an insufficient memory error has occurred at
the host, and ET_NOMEM means that an insufficient memory error has occurred at the target.
Error ET_xxx, which denotes an error at the target, has the same value as the error in the
ITRON Kernel Specification. On the other hand, error E_xxx, which denotes an error that
may occur at the host, is defined at a position 128 units away from the position in kernel spec-
ification. For example, when ET_ID is -18, E_ID is -146.

3.7.2 Common errors
Common errors are errors that may occur to all functions defined in the ITRON Debugging
Interface Specification.

E_OK
Processing ended normally.

E_NOMEM
Memory was not allocated to host due to memory insufficiency.

E_NOSPT
Function is not supported. This error occurs when the function specified by a flag is
not implemented or is inoperative.

E_FAIL
Function could not answer the request due to some factor. However, this error is not
serious enough to affect target program execution. If the request is issued again, it may
be executed properly. This is a general error that is not serious.
When a function returns this error, the status internally changed by the function must
be restored to such a level* that the meaning is the same as that prevailing at the func-
tion start. Further, it must not be assumed that a debugging tool calls a function with
the same parameters (retry) immediately after it caused an error.
(Example of E.FAIL error: As the current execution position was in the kernel’s criti-
cal section at rif_ref_obj issuance, queue processing was not properly achieved.
When tif_set_reg was issued, all the registers were not written into.)

*. If an argument is invalidated when a function ends with an error, the argument itself is also invali-
dated. Therefore, the values of the argument need not to be restored because the both meanings are
equivalent in the end. When implementation is performed in such a manner that allocated memory
is freed at a certain time, absolutely unused memory need not to be freed on the spot.

ITRON Debugging Interface Specification Ver. 1.00.00

29 Common Regulations - Error Codes

E_SYS
Function could not answer the request due to some factor. And target computer sus-
pends its execution with an inconsistent state. Even if the request is issued again, nor-
mal processing is not performed. This is a general error that is serious. If a function
for the target access interface used within an RTOS access interface function termi-
nates unexpectedly with E_SYS, it must return E_SYS.
(Example: When rif_ref_obj issued, memory read mechanism of debugging tool did
not normally operate and failed to get information. While writing tif_set_reg to a
register, it failed to complete the write process so some register values were not
updated.)
When the E_SYS error occurs, a debugging tool should notify the user of the fatal
error and state clearly that the operations of the debugging environment (target and
debugging tool) are unstable.

3.7.3 Similar errors
This section explains the differences between similar errors defined in the ITRON Debugging
Interface Specification.

E_ID and E_NOID
• E_ID

The specified ID range was outside the valid range. The error recurs as long as an ID
number within the specified ID range is used.

• E_NOID
ID numbers were not sufficient to assign ID automatically. This error recurs until at
least one ID number for automatic assignment is available by means of object destruc-
tion and so on

ET_OBJ, ET_NOEXS, and ET_OACV
• ET_OBJ

Although the object assigned to the specified ID existed at the target, the operation was
not performed successfully. The error recurs until the cause is removed. (For example,
Function reports ET_OBJ during exclusive kernel’s operation (critical section) of the
object.)

• ET_NOEXS
No object with the specified ID exists at the target. The error recurs until the object
assigned to the specified ID is generated.

• ET_OACV
Although the object assigned to the specified ID exists at the target, the operation was
denied because of an object access violation (e.g. privilege fault). The error recurs
until the privilege level of the caller or callee, etc., is changed.

ITRON Debugging Interface Specification Ver. 1.00.00

30 Common Regulations - Variable-Length Storage Region

3.8 Variable-Length Storage Region
The ITRON Debugging Interface Specification uses the following two methods to obtain a
task ID list and other variable-length information.

• Separate-space variable-length region (suffix -IST)
The region for variable-length information storage will be allocated separately from
the structure of getting information. This method is used when, for example, the same
structure contains plural item of variable-length information.

• Same-space variable-length region (suffix -ary)
The region contiguous to the get information structure will be used as the region for
getting variable-length information.

Details are given in the following subsections.

3.8.1 Separate-space variable-length region
The separate-space variable-length region consists of variables with two unique suffixes and a
region for variable-length data storage.

• Suffix lst
This variable stores the pointer at the beginning of the region that stores variable-
length data.

• Suffix cnt
This variable stores the size of the variable-length data storage region (in item units).

In the specification, the above variables are described as a pointer variable with the suffix lst
and are contiguous to a variable with the suffix cnt.

Figure 5: Separate-space Variable-length Region (Task ID)

ITRON Debugging Interface Specification Ver. 1.00.00

31 Common Regulations - Variable-Length Storage Region

3.8.2 Same-space variable-length region
The same-space variable-length region consists of a variable that indicates the size of the stor-
age region and a region contiguous to the structure that is used as the variable-length data stor
age region.

• Suffix ary
Array that stores variable-length data

• Suffix cnt
Variable that stores size of array that stores variable-length data (in item units)

In the specification, the above is described as an array or pointer variable that has the suffix
ary and is contiguous to a variable with the suffix cnt.

Figure 6: Same-space variable-length Region

ITRON Debugging Interface Specification Ver. 1.00.00

32 Common Regulations - Identification Number (ID)

3.9 Identification Number (ID)
The ITRON Debugging Interface Specification assigns an identification number (ID) to a set-
ting for identification purposes when break point or memory polling (watch point), etc., setting
is performed. However, note that this identification number (ID) differs from the ID defined
by the ITRON Kernel Specification.

IDs can be assigned to the following functions:
• RIF break point
• TIF break point
• Polling (watch point)
• RIF log
• TIF log

The characteristics of the IDs are summarized below:
• The value is 1 or greater positive quantity.

0 or less-numbered cannot basically be handled. When a normal method is used, setup
items with an 0 or less-numbered value cannot be operated.

• ID values are not always consecutive.
Even when IDs are assigned continuously with the automatic number assignment func-
tion, etc., such assigned values are not always consecutive.

• The value may be reused.
Once an ID is freed, it may be reused. However, two or more setup items cannot exist
with the same ID and function.

• The values are independent of each other as far as they have different function.
An ID is assigned to each function. Therefore, setup items for the same functions (e.g.,
TIF break point and RIF break point) may have the same ID. However, the entities of
the setup items differ as far as they have different functions even if they have the same
ID.

The IDs assigned to the above five functions are declared as an ID type. On the other hand, the
IDs defined by the ITRON Kernel Specification are declared as a DT_ID type. For the han-
dling of ID type (DT_ID type) variables defined in the ITRON Specification, refer to the
ITRON Kernel Specification and other relevant documents.

ITRON Debugging Interface Specification Ver. 1.00.00

33 Common Regulations - Register Name

3.10 Register Name
The ITRON Debugging Interface Specification uses a character string to identify the registers
of the target computer. The following rules apply to the register identification character
strings:

• Characters
The character string for a register name must consist of uppercase alphabetical letters
(A to Z) and numbers (0 to 9).

• Character count limitation
No register name may exceed 8 characters (termination included) in length.

• Unique name
Each register name must be a name (abbreviation) in a target chip hardware manual or
used by an assembler created by a target chip manufacturer. If different names are used
to indicate the same register between target and debugger, alias should be given to the
register name in debugger side. However, the name must clearly indicate the charac-
teristics of the register.

The following functions use register names:
• rif_get_rdt : Get of description table

ITRON Debugging Interface Specification Ver. 1.00.00

34 Common Regulations - Flag

3.11 Flag
The ITRON Debugging Interface Specification provides all functions with flags for function
selection (except for callback function and some supported functions). These flags are used as
part of parameters to use functions defined in the ITRON Debugging Interface Specification,
including the consistency assurance and automatic number assignment.

The bits of these flags have the following meanings:

FLG_DEFAULT (= 0) indicates a state with no flag.

For these flags, new items can be added by each vendor. In such a case, use of low-order bits
8 to 15 is strongly recommended. The ITRON Debugging Interface Specification assures that
no new flag will be defined in that region.
Every function defined in the ITRON Debugging Interface Specification returns the
E_NOSPT error when an incoming flag cannot be processed by it.

Table 15: Functions of Flags

Bit mask Meaning

0xFF000000 Flag with prefix FLG_ , defined in this specification

0x00FF0000 Reserved

0x0000FF00 Flag region that can be defined freely by the RIM and debugging tool

0x000000FF Option for each mechanism (Begins with OPT_)

ITRON Debugging Interface Specification Ver. 1.00.00

35 Common Regulations - Register Set Description Table

3.12 Register Set Description Table
The register set description table consists of information of register value storage location and
register name. The RIM and debugging tools operate the registers and context in accordance
with the information written in this register set description table.

The following functions handle the register set description table:
rif_get_rdt Get of description table
rif_get_ctx Get of task context
rif_set_ctx Set of task context
tif_get_reg Read of register value
tif_set_reg Write of register value

The register set description table structure (T_GRDT) is shown below:
typedef struct t_grdt_regary
{

char * strname : Pointer indicating register name
UINT length : Length (in bytes)
UINT offset : Storage offset position

} T_GRDT_REGARY;

typedef struct t_grdt
{

UINT regcnt : Count of registers
UNIT ctxcnt : Count of registers that can be contained in context
T_GRDT_REGARY regary[]

: Register information
} T_GRDT;

The register set description table has the following features:
• Stores register name, size, and storage location

The register information (T_GRDT::regary) in the register set description table stores
the register name, register size (in bytes), and offset which is needed for the kernel to
load and store the register value. The register length and offset position are required
for getting, setup, and similar operations. These values define the offset position and
data length concerning the target register value storage within a region that retains the
register value.

• Retains context and registers operated by RIM
The register set description table stores two types of information: context information,
and register information. The first half of the register set description table lists the reg-
isters that can serve as the context for the target OS, and the latter half lists all registers
that the RIM may operate.
T_GRDT::ctxcnt retains the context count of the target OS. The first ctxcnt regis-
ters of T_GRDT::regary are OS task contexts. On the other hand,
T_GRDT::regcnt, retains the count of all registers that are written in the register set
description table.

ITRON Debugging Interface Specification Ver. 1.00.00

36 Common Regulations - Register Set Description Table

• Applicable to all register operations
Register operation functions provided by the target access interface refer to the register
set description table implicitly. Therefore, in principle, register operation functions
never handle registers which is not in the register set description table.

•Remains invariable throughout program execution period
The register set description table offered by the RIM does not change throughout a pro-
gram execution* period. The RIM must not rewrite the contents of the table during
execution. Further, the debugging tool must not rewrite the contents of the table that is
obtained from the RIM through rif_get_rdt use.

The four functions using the register set description table, except for rif_get_rdt, retain the
enable/disable identification information (BITMASK_8 * valid) as an argument. valid corre-
lates to each element of regary, and the elements are valid when the associated bits are non-
zero. Furthermore, the enable/disable identification information obtained as a result of opera-
tion is stored again in valid.
When valid is NULL, all the registers are targeted for operation, and the operation results are
not stored.

An example is shown in Table 16. In this example, the task context merely has a program
counter (PC) and stack pointer (SP). Further, the RIM may operate a status register (SR) and
general-purpose register (R14) in addition to the PC and SP.:

In accordance with the information contained in the register set description table, the functions
for getting rif_get_ctx and tif_get_reg store the task contexts and register values in a speci-
fied region. The example below shows a typical program execution that is performed using the
register set description table indicated in the preceding example:

Program source
char buffer[16];
BITMASK_8 valid = 0xa:

Program source
tif_get_reg (buffer, &valid, FLG_DEFAULT);

*. The term program execution indicates the range of dbg_ini_rim to dbg_fin_rim.

Table 16: Typical Register Set Description Table

Field Description

regcnt 4

ctxcnt 2

regary [0] {“PC”, 4, 0}

regary [1] {“SP”, 4, 4}

regary [2] {“SR”, 4, 8}

regary [3] {“R14”, 4, 12}

ITRON Debugging Interface Specification Ver. 1.00.00

37 Common Regulations - Register Set Description Table

When the above program is executed and all the operations are ended normally, the function
tif_get_reg” stores a register value in the variable buffer as follows:

Table 17: Register Storage

Offset Contents

0 to 3 Nothing stored

4 to 7 Stuck pointer (SP)

8 to 11 Nothing stored

12 to 15 General register (R14)

ITRON Debugging Interface Specification Ver. 1.00.00

38 Common Regulations - Special Blocking Mode

3.13 Special Blocking Mode
Although, in principle, all of functions execute by the non-blocking mode, ITRON Debugging
Interface permits them to execute by the special blocking mode. It is assumed that the special
blocking mode is used for processes that do not take a considerable execution time. Use of this
special blocking mode facilitates program implementation.

When a function is executed in the special blocking mode, the program is blocked until execu-
tion ends. However, to prevent the program being stopped within the function permanently,
the special blocking mode times out automatically after a certain time specified by the imple-
mentor. If the process is discontinued by a timeout, the function returns E_FAIL.

The special blocking mode prevents certain operations (e.g. update of user interface) being
stopped due to the other related operation blocked. Therefore, the time for blocking should be
reasonable time for which users can keep waiting*. The actual timeout time is implementa-
tion-dependent.

The special blocking mode can be used by specifying the OPT_BLOCKING option flag. The
special block mode is supported by the following functions:

• rif_cal_svc : Issue of service call
• tif_set_pol : Set of memory data change report
• tif_cal_fnc : Issue of function

*. It is usually said that the user can only wait several seconds for processing without being notified.
However, if the user is notified before or during processing that processing will take a considerable
time, the timeout time can be increased as needed. However, note that the user must not be forced
to wait for an unlimited period.

ITRON Debugging Interface Specification Ver. 1.00.00

39 RTOS Support Function Guideline - Standardization of Implemented Functionalities

4. RTOS Support Function Guideline

4.1 Standardization of Implemented Functionalities
This guideline is to standardize RTOS support functionalities that are implemented by
“ITRON Debugging Interface Specification complying debugging tools.” Functionality ele-
ments of RTOS support provided by ITRON Debugging Interface Specification are listed
below:

• Get of ITRON object status
• Handle of task context
• Issue of service call
• OS-dependent break and trace
• OS-dependent execution history (service call, task transition, debugging log, etc.)

The individual functions and their implementation methods are summarized below:

Get of ITRON object status
This functionality retrieves internal RTOS object information that are normally difficult to
inspect, and display them to user.

Examples of information to be got
• Task

Priority, stack, wait factor, waiting object, etc.
• Synchronous object

Control block data, waiting task, etc.
• Ready queue

Running task ID and executable task list
• System-related information

Current context mode and kernel internal status

Handle of task context
This functionality provides the way to handle context information such as register contents,
including stack pointer, and program counter. In case of acquisition, the context information
can be retrieved from an appropriate region regardless of the task status.

Issue of service call
The issue of service call provides a means of issuing an RTOS service call with appropriate
parameter. For example, this can be used to invoke semaphore release operation form debug
tool. This functionality is not limited to RTOS service calls. Service calls of other software
components can also be invoked, resulting in enhanced debugging capability.

ITRON Debugging Interface Specification Ver. 1.00.00

40 RTOS Support Function Guideline - Standardization of Implemented Functionalities

OS-dependent break and trace
The ITRON Debugging Interface Specification supports the following RTOS-dependent break
functions:

• Task-related break
Operates break with specifying task ID.
Operates break for specified task without halting execution of other tasks.
Operates break when service call is invoked by specified task.

• Object-related break
Operates break when specified object is operated.

• System-related break
Operates break upon context switching.
Operates break upon dispatch to specified task.

A method for halting the target at each break can be selected.
• Halts entire system.
• Halts targeted task only and continues execution of system (RTOS support

required).

OS-dependent execution history
This function gets the execution history to monitor the system behavior. The ITRON Debug-
ging Interface Specification supports the following functions.

• Dispatch history
Gets task execution transition history.

• Issue of service call
Gets parameters, error codes, and other historical information about issued service
calls.

• User event history
Gets comments and other historical information which are described by user.

ITRON Debugging Interface Specification Ver. 1.00.00

41 RTOS Support Function Guideline - Level Indications

4.2 Level Indications

Service calls are classified into different levels. Debugging tools clearly compliant with the
ITRON Debugging Interface Specification must clearly indicate the levels they support. The
user is then allowed to determine the available capabilities.
The ITRON Debugging Interface Specification uses dependent level descripion for RIF and
TIF. The subsequent subsections describe the RIF and TIF level indications.

4.2.1 RIF level indication
The RIM (RIF) level is indicated for each functional unit, which is an aggregation of functions
that provide RTOS support functions.

The functional units are listed below (abbreviations in brackets):
• Get of object status [OBJ]
• Get of context manipulation [CTX]
• Issue of service call [SVC]
• Set of break [BRK]
• Get of break condition [CND]
• Execution history [LOG]

The RIM must describe which fuctional units are supported.
The debugging tool must describe the implementation of a connection mechanism (user inter-
face, etc.) for each functional unit as the RIF level.

A level description example is shown below. When the combination shown in Table 18 is
used, the end user can use the minimum functions for get of object status, context manipula-
tion, issue of service call, set of break, and execution history*.

Table 18: Level Indication Example

Functional
unit RIM Debugging tool

OBJ

CTX

SVC (tif_alc_mbt required) (tif_cal_svc unsupported)

BRK

CND × (Conditional break nonsup-
ported)

LOG (RIM applicable indepen-
dently)

× (UI offered)

Other Partly expanded TIF level [R]

*: The debugging tool does not support a function for getting execution history. However, it is avail-
able because it can be executed by the RIM independently. Strictly speaking, it means that the TIF
log mechanism cannot be used.

ITRON Debugging Interface Specification Ver. 1.00.00

42 RTOS Support Function Guideline - Level Indications

4.2.2 TIF level indication
The TIF level description not only notifies the end user of available functions but also provides
an index for a RIM implementer.
The TIF level is provided for each function and is roughly divided into the following two types
(abbreviations in brackets):

• Necessary function [R]
This type of function must be implemented in the form of a debugging tool that com-
plies with the ITRON Debugging Interface Specification. The RIM implementer need
not check whether a necessary function exists. When the extended part of the neces-
sary function is used, the function may return E_NOSPT.

• Extended function [E]
An extended function is mainly defined for convenience (e.g., conditional break). It
may not be implemented depending on the debugging tool. Therefore, the RIM creator
must not issue a call without checking that a Function offering an extended function
exists.

4.2.3 Other interface
For the RIF "rif_ref_cfg (get of kernel configuration)" and some functions with a name
beginning with dbg_, the required [R] and extended [E] description are used as with the TIF.
Since these functions mainly serve as information for RIM and debugging tool creator, they
need not be described even when they are implemented.

ITRON Debugging Interface Specification Ver. 1.00.00

43 RTOS Support Function Guideline - Terms and Definitions

4.3 Terms and Definitions

4.3.1 Debugging tool
In the ITRON Debugging Interface Specification, the monitoring tools for checking whether
the target program and target hardware are normally operating are collectively called debug-
ging tools. The debugging tool does not contain a target or target program. However, it may
contain a debugging agent (described later) needed for debugging and offered by tool manu-
facturers.

Using “debuggers” as a term is avoided intentionally. Debuggers usually indicates programs.
If a tool including peripheral tools are also referred to as debuggers, the difference between the
target and debuggers would be vague. The term debugging tools is therefore used to distin-
guish such a difference.

4.3.2 Debugging agent
In the ITRON Debugging Interface Specification, the software is collectively called a debug-
ging agent as far as it functions as a program on the target hardware to provide support for
debugging when a debugging environment is created. This term is used without regard to the
implementation form no matter whether such software is an internal part of an OS or a task.

ITRON Debugging Interface Specification Ver. 1.00.00

44 RTOS Support Function Guideline - Break Mechanism

4.4 Break Mechanism
The ITRON Debugging Interface Specification furnishes mechanism and functions to support
a break in consideration of RTOS. This section details such a break mechanism.

The break mechanism consists of the following functions:
rif_set_brk Request of break point set
rif_del_brk Delete of break point
rif_rep_brk Report of break hit
rif_ref_brk Get of set break information
rif_ref_cnd Get of break condition
tif_set_brk Set of break point
tif_del_brk Delete of break point
tif_rep_brk Break report

The following subsection details the characteristics of the break mechanism.

4.4.1 Decision of callback
When a debugging tool reaches break point defined by the function tif_set_brk on the target
access interface, a debugging tool calls the callback function tif_rep_brk to let the RIM deter-
mine whether or not to halt the operation.
Meanwhile, when RIM reaches a break point defined by the function rif_set_brk on the
RTOS access interface, the RIM calls the callback function tif_rep_brk to report a halt.
However, rif_rep_brk does not have a return value and cannot decide on a break suspension.
When tif_rep_brk returns E_TRUE, the debugging tool allows a break operation to continue.
However, if tif_rep_brk returns E_FALSE, the debugging tool aborts a break operation and
resumes target execution. However, rif_rep_brk cannot decide on a break abortion.

The break operation is executed with the above-mentioned sequential operation.

An explanation is given below with an example.
1. The debugging tool uses rif_set_brk to inform the RIM of the user break point set-

ting request. The RIM uses the tif_set_brk function to set a break point at a specific
address.

Figure 7: Setting of Break Point
rif_set_brk tif_set_brk

ITRON Debugging Interface Specification Ver. 1.00.00

45 RTOS Support Function Guideline - Break Mechanism

2. When target execution is initiated by the RIM or user and the target program satisfies
the break point setting conditions, the debugging tool function is exercised to break
the target. From this time on, execution of the target program is broken.

3. When the break point that caused a halt was set by tif_set_brk, the debugging tool
calls the callback function tif_rep_brk to report the occurrence of a break. In this
case, the break point ID and break parameters set by tif_set_brk are passed as argu-
ments.

4. The RIM makes full use of TIF functions to collect adequate information for deter-
mining whether or not to halt target execution according to the preset break, and then
makes a judgment. The break process continues with Step 5 when target execution
should be halted or continues with Step 5, when target execution should not be halted.

5. If RIM decides to halt target execution as a result of information collection and if the
break point has been set by rif_set_brk, RIM calls the rif_rep_brk callback func-
tion. If target should halt, E_TRUE is returned by the callback.

Figure 8: Break Hit

Figure 9: tif_rep_brk Call

Figure 10: Information Collection

Figure 11: Operation of rif_rep_brk when Conditions Satisfied

tif_rep_brk

tif_xxx_yyy

rif_rep_brk

E_TRUE

ITRON Debugging Interface Specification Ver. 1.00.00

46 RTOS Support Function Guideline - Break Mechanism

6. The debugging tool allows continuing the break operation, and then notifies the user
that target execution halted at the break point.

5’. If, as a result of information collection, the RIM concludes that target execution
should not be halted, RIF function immediately returns E_FALSE.

6’. The debugging tool resumes the target program execution that was halted in step 2.

4.4.2 Break of condition-getting type
The ITRON Debugging Interface Specification provides another break support mechanism
that acquires break conditions only (see Section 2.5.1). In order to use this feature, the debug-
ging tool must provide a conditional break capability.

The condition-getting type break mechanism consists of the following function:
rif_ref_cnd Get of break condition

The operation flow is shown below:

Figure 12: Continuation of Break Operation

Figure 13: Operation of rif_rep_brk when Conditions Not Satisfied

Figure 14: Abortion of Break Operation and Resumption of Target Program Execution

Figure 15: Break of Condition-getting Type

E_FALSE

ITRON Debugging Interface Specification Ver. 1.00.00

47 RTOS Support Function Guideline - Break Mechanism

1. Based on user request, the debugging tool in turn calls rif_ref_cnd to have RIM gen-
erate RTOS-dependent conditions.

2. The RIM generates conditions that satisfies the request, and then returns them to the
debugging tool.

3. With the generated conditions, the debugging tool sets a break point at a user-speci-
fied address.

When the condition-getting type brake mechanism is used, the debugging tool performs break
point setup. Therefore, rif_rep_brk will not be called due to a break point set by this method.

ITRON Debugging Interface Specification Ver. 1.00.00

48 RTOS Support Function Guideline - Trace Log Mechanism

4.5 Trace Log Mechanism
To support acquisition of OS-dependent execution history, the ITRON Debugging Interface
Specification furnishes a trace log mechanism, which consists of a series of functions and a
group of functions. This section details the trace log mechanism.

The trace log mechanism consists of the following functions:
rif_set_log Set of trace log
rif_del_log Delete of trace log set
rif_sta_log Request of trace log function start
rif_stp_log Request of trace log acquisition stop
rif_get_log Get of trace log

Trace log mechanism operations can be roughly divided into six types: set, start, execution,
get, end, and delete. During a single use of the trace log mechanism, the trace log mechanism
process performs one setup operation, two or more series of ‘start, execution, and end’ opera-
tions, two or more getting, and one deletion.

Each of these operations is detailed in the following subsections.

4.5.1 Set
For trace log setting, the function rif_set_log is used to set trace logs as required times.

At this stage, no operations are performed to affect on target systems*. The debugging tool
gives trace settings to the RIM. The RIM performs necessary operations to prepare for subse-
quent log triggering (may occasionally optimize setup, for example, by merging the given set-
tings with previously defined settings).
If, for example, the debugging tool can get a memory access log, the RIM uses the
tif_set_log function to perform relevant setting at the same time.

Figure 16: Set of Trace Log

*: This statement is made from the user viewpoint. The target may be more or less manipulated
depending on the implementation. However, such a manipulation must not be perceivable by the
user.

ITRON Debugging Interface Specification Ver. 1.00.00

49 RTOS Support Function Guideline - Trace Log Mechanism

4.5.2 Start
For trace log starting, a process is performed for getting preselected trace logs.

Tracing is prepared according to the preset configuration. If the debugging tool itself has a
trace log mechanism, tif_sta_log is called by RIM to pass settings and to enable the trace.
Otherwise, break points and watch points are set to satisfy the settings, and necessary logging
information is gathered by using memory read and other TIF APIs through various callbacks
invoked upon subsequent target execution.

Figure 17: Start of Trace Log

ITRON Debugging Interface Specification Ver. 1.00.00

50 RTOS Support Function Guideline - Trace Log Mechanism

4.5.3 Execution
For execution, the program is run to get log information.

If the debugging tool has a hardware log mechanism, all mechanisms related to get log depend
on hardware. The RIM executes callbacks that are generated only when the hardware log
mechanism log buffer (called the previous history storage region in the ITRON Debugging
Interface Specification) becomes full and when trace log retrieval ends.
On the other hand, if there is no apropriate hardware log mechanism, the RIM uses watch point
and break point callback functions to collect the necessary information required for logging.

Figure 18: Execution of Trace Log

ITRON Debugging Interface Specification Ver. 1.00.00

51 RTOS Support Function Guideline - Trace Log Mechanism

4.5.4 Get
After the end of program execution for getting log, the debugging tool gets the log.

The debugging tool calls rif_get_log to get one record of log. Each record is obtained in the
order they gatherd, and then stored in the historical information storage region.
Since the historical information storage region stores trace log in a standard format defined by
the ITRON Debugging Interface Specification, the log may be viewed by some standard
viewer, apart from debugging tool used to collect them.
Log acquisition can be performed at any time while the log mechanism is operating.*
Possible log acquisition timings are shown below:

• When log spool becomes full
• When program ends

Figure 19: Trace Log Getting

*: The getting order denotes the storage order. It does not precisely represent the chronology of get-
ting log.

ITRON Debugging Interface Specification Ver. 1.00.00

52 RTOS Support Function Guideline - Trace Log Mechanism

4.5.5 End
After getting of trace log is completed, the debugging tool terminates the log mechanism.

The RIM frees prepared resources for trace log retrieval such as a TIF break.
When the debugging tool has a log mechanism, the hardware log mechanism enabled by the
tif_sta_log function is disabled by the tif_stp_log function. Under other circumstances, the
break points and watch points set for getting information are deleted. In both cases the mem-
ory acquired by the RIM as the log storage region is also released at the same time.

4.5.6 Delete
When the log setup is no longer needed after completion of the entire get log, the debugging
tool deletes the log setting.

Upon deletion of settings, the RIM frees the corresponding settings of trace log retrieval, and
hardware trace log settings if the RIM uses them.

Figure 20: End of Trace Log

Figure 21: Delete of Trace Log

ITRON Debugging Interface Specification Ver. 1.00.00

53 RTOS Access Interface - Functional Unit

5. RTOS Access Interface

5.1 Functional Unit
All the functions on the RTOS access interface are grouped into two or more functional units.
Function availability is determined on an individual functional unit basis.
When each functional unit is available, it means that all the functions composing the functional
unit are implemented and that the key code for identifying that functional unit exists (however,
the E_NOSPT error may be returned if some functions of Functions are not implemented).

The functional units are given below (Abbreviations is in parenthesis):
• Get of object status [OBJ]
• Get of context [CTX]
• Issue of service call [SVC]
• Set of break [BRK]
• Get of break condition [CND]
• Execution history [LOG]

Keys
RIF 4H

.UNIT 20H
.OBJ 1H [1]

Supports the "get of object status" functional unit.
.LOG 2H [1]

Supports the "get of execution history" functional unit.
.SVC 3H [1]

Supports the "issue of service call" functional unit.
.BRK 4H [1]

Supports the "set of break" functional unit.
.CND 5H [1]

Supports the "get of break condition" functional unit.
.CTX 6H [1]

Supports the "get of context" functional unit.

ITRON Debugging Interface Specification Ver. 1.00.00

54 RTOS Access Interface - Get of object Status rif_ref_obj

5.2 Get of object Status

rif_ref_obj Get of object status [OBJ]

ER rif_ref_obj
(VP p_result, UINT objtype, DT_ID objid, FLAG flags)

VP p_result
Result storage location

UINT objtype
Object type

DT_ID objid
The object ID of the target to be got

FLAG flags
Various flags

This function gets the status of an object that currently exists on the RTOS.

For getting object status, a flag for specifying the object type (ObjType) and a result packet for
status storage are used. The read upper limit for the "waiting task ID list" and other variable-
length data described as "type *identifier-lst" is determined when this function is called with
the upper-limit value set for the "count parameter" described as "UINT identifier-cnt", which
is corresond with "type *identifier-AIB". In this case, the smaller data berween the "read
upper-limit value" substituted before operation and the "actual variable-length data count" is
substituted into the "count parameter" after operation. If the "actual variable-length data
count" exceeds the "read upper-limit value", variable-length data transfer does not take place
beyond the upper-limit value.

Table 19 shows the relationship between the R_ROSEM.wtskcnt data and the data stored in
the wtsklst-specified region when rif_ref_obj is issued to a semaphore having 10 tasks in a
waiting list.

Table 19: Operation Performed in Relation to a Semaphore Having 10 Tasks in a Waiting List

T_ROSEM.wtskcnt Data Stored in wtsklst-specified Region

Before
Execution

After
Execution

0 0 Nothing is stored.

1 1 ID of the task positioned at the beginning of the waiting queue.

2 2 The first waiting task ID and the second waiting task ID.

10 10 IDs of the waiting tasks from the first one to the last one.

11 10 Same as above.

ITRON Debugging Interface Specification Ver. 1.00.00

55 RTOS Access Interface - Get of object Status

At the beginning of the packet returned by rif_ref_obj, a bit mask is positioned to indicate
whether the subsequent field is valid or not. The first candidate for the bit mask is a structure
member that follows "valid". If a structure member is a pointer to another structure, the
enable/disable identification information about the structure member indicated by the pointer
is stored, but the enable/disable identification information about the pointer to another struc-
ture is not stored. If the pointer is invalid, all members of the structure indicated by the pointer
are invalidated. For detailed bit mask descriptions, see Section 3.5.
As an example, the table below shows the fields of the structure T_ROMPF that stores the
information about a fixed-length memory pool (OBJ_FMEMPOOL) and the corresponding
bit mask bit positions:

Object identification flags (ObjType) and result packets are shown below. If NC is attached
to the end of an object name, it means that the associated items and arguments are invalid.

• OBJ_SEMAPHORE (0x80): Semaphore
typedef struct t_rosem
{

BITMASK valid : Valid field flag
DT_ATR sematr : Semaphore attribute
DT_UINT isemcnt : Initial semaphore count
DT_UINT maxsem : Semaphore maximum value
DT_UINT semcnt : Semaphore count value
DT_UINT wtskcnt : Waiting task count (also used as the wtsklst upper limit)
DT_ID * wtsklst : Pointer to the region for storing the waiting task ID list
T_ROSEM;

}
Gets semaphore-related information. Before execution, wtsklst and wtskcnt must be initial-
ized.

Table 20: Relationship between T_ROMPF Members and Bit Mask Bit Positions

Bit Position Structure Member

0 T_ROMPF::mpfatr

1 T_ROMPF::blksz

2 T_ROMPF::fblkcnt

3 T_ROMPF::blkcnt

4 T_ROMPF::ablkcnt

5 T_ROMPF_BLKLST::htskid

6 T_ROMPF_BLKLST::blkadr

7 T_ROMPF::wtskcnt

8 T_ROMPF::wtsklst

ITRON Debugging Interface Specification Ver. 1.00.00

56 RTOS Access Interface - Get of object Status

• OBJ_EVENTFLAG (0x81): Event flag
typedef struct t_roflg_wflglst
{

DT_ID wtskid : Waiting task ID
DT_FLGPTN wflgptn : Wait flag pattern for each task
DT_UINT wflgmode : Wait mode for each task

} T_ROFLG_WFLGLST;
typedef struct t_roflg
{

BITMASK valid : Valid field flag
DT_ATR flgatr : Flag attribute
DT_FLGPTN iflgptn : Initial flag pattern
DT_FLGPTN flgptn : Flag pattern
DT_UINT wtskcnt : Waiting task count (also used as the upper limit for the wflglst)
T_ROFLG_WFLGLST * wflglst

: Pointer to information about task with this flag
} T_ROFLG;

Gets the information about an event flag. Before execution, wtskcnt, wtsklst, wflgptn, and
wflgmode must be initialized.

• OBJ_DATAQUEUE (0x82): Data queue
typedef struct t_rodtq
{

BITMASK valid : Valid field flag
DT_ATR dtqatr : Data queue attribute
DT_UINT dtqcnt : Data queue capacity
DT_UINT stskcnt : Count of tasks waiting for sending (also used as the upper limit

for wstsklst)
DT_UINT * stsklst : Pointer to region storing ID list of tasks waiting for transmission
DT_UINT rtskcnt : Count of tasks waiting for reception (also used as the upper

limit for wrtsklst)
DT_ID * rtsklst : Pointer to the region for storing the ID list of tasks waiting for

reception
DT_UINT itemcnt : Count of queue data (also used as the upper limit for itemlst)
DT_VP_INT * itemlst: Pointer to the region for storing the list of all items

} T_RODTQ;
Gets the information about a data queue. Before execution, stskcnt, wstsklst, rtskcnt,
wrtsklst, itemcnt, and itemlst must be initialized.

• OBJ_MAILBOX (0x83): Mailbox
typedef struct t_rombx
{

BITMASK valid : Valid field flag
DT_ATR mbxatr : Mailbox attribute
DT_PRI maxmpri : Maximum priority
DT_UINT wtskcnt : Count of waiting tasks (also used as the upper limit for wtsklst)
DT_ID * wtsklst : Pointer to the region for storing the ID list of waiting tasks
DT_UINT msgcnt : Count of message headers (also used as the upper limit for msglst)
DT_T_MSG ** msglst: Pointer to the region for storing the list of all messages

} T_ROMBX;

ITRON Debugging Interface Specification Ver. 1.00.00

57 RTOS Access Interface - Get of object Status

Gets the information about a mailbox. Before execution, wtskcnt, wtsklst, msgcnt, and
msglst must be initialized.

• OBJ_MUTEX (0x84): Mutex
typedef struct t_romtx
{

BITMASK valid : Valid field flag
DT_ATR mtxatr : Mutex attribute
DT_PRI ceilpri : Upper-limit priority
DT_ID htskid : ID of the task that locks a mutex
DT_UINT wtskcnt : Count of waiting tasks (also used as the upper limit for wtsklst)
DT_ID * wtsklst : Pointer to the region for storing the ID list of waiting tasks

} T_ROMTX;
Gets the information about a mutex. Before execution, wtskcnt and wtsklst must be initialized.

• OBJ_MESSAGEBUFFER (0x85): Message buffer
typedef struct t_rombf_msglst
 {

DT_VP msgadr : Message addresses
DT_UINT msgsz : Message length

} T_ROMBF_MSGLST;

typedef struct t_rombf
 {

BITMASK valid : Valid field flag
DT_ATR mbfatr : Message buffer attribute
DT_UINT maxmsz : Message maximum size
DT_SIZE mbfsz : Buffer region size
DT_UINT stskcnt : Count of tasks waiting for sending (also used as the upper limit

for stsklst)
DT_ID * stsklst : Pointer to region storing ID list of waiting tasks
DT_UINT rtskcnt : Count of tasks waiting for reception (doubles as rtsklst upper limit)
DT_ID * rtsklst : Pointer to the region for storing the ID list of waiting tasks
DT_SIZE fmbfsz : Free region size
DT_UINT msgcnt : Count of messages (also used as the upper limit for msgls)
T_ROMBF_MSGLST * msglst

: Pointer to information about messages
} T_ROMBF;

Gets the information about a message buffer. Before execution, stskcnt, wtsklst, msgcnt,
msglst, and msgszlst must be initialized.

• OBJ_RENDEZVOUSPORT (0x86): Rendezvous port
typedef struct t_ropor
 {

BITMASK valid : Valid field flag
DT_ATR poratr : Rendezvous port attribute
DT_UINT maxcmsz : Call message maximum size
DT_UINT maxrmsz : Response message maximum size
DT_UINT ctskcnt : Count of tasks waiting for a call (also used as the upper limit for

ctsklst)
DT_ID * ctsklst : Pointer to the region for storing the IDs of all the tasks waiting
DT_UINT atskcnt : Count of tasks waiting for acceptance (doubles as atsklst upper

limit)

ITRON Debugging Interface Specification Ver. 1.00.00

58 RTOS Access Interface - Get of object Status

DT_ID * atsklst : Pointer to the region for storing the IDs of all the tasks waiting
for acceptance

} T_ROPOR;

Gets the information about a rendezvous port. Before execution, ctskcnt, atskcnt, ctsklst,
and atsklst must be initialized.

• OBJ_RENDEZVOUS (0x87): Rendezvous
typedef struct t_rordv
 {

BITMASK valid : Valid field flag
DT_ID tskid : ID of a task waiting for a rendezvous

} T_RORDV;
Gets the information about a rendezvous.

• OBJ_FMEMPOOL (0x88): Fixed-length memory pool
typedef struct t_rompf_blklst
{

DT_ID htskid : ID number of task that acquired block
DT_VP blkadr : Block starting address

} T_ROMPF_BLKLST;

typedef struct t_rompf
{

BITMASK valid : Valid field flag
DT_ATR mpfatr : Fixed-length memory pool attribute
DT_SIZE blksz : Block size
DT_UINT fblkcnt : Count of remaining fixed-length memory blocks
DT_UINT blkcnt : Count of all memory blocks
DT_UINT ablkcnt : Count of allocated block (blklst upper limit)
T_ROMPF_BLKLST *ablklst : Pointer to detailed information about blocks

DT_UINT wtskcnt : Count of tasks waiting for getting (wtsklst upper limit)
DT_UINT * wtsklst : Pointer to region storing IDs of tasks waiting for get

} T_ROMPF;

Gets the information about a fixed-length memory pool. Before execution, ablkcnt, ablklst,
wtskcnt, and wtsklst must be initialized.

• OBJ_VMEMPOOL (0x89): Variable-length memory pool
typedef struct t_rompl_blklst
 {

DT_SIZE blksz : Block size
DT_ID htskid : ID number of task that got block
DT_VP blkadr : Block starting address

} T_ROMPL_BLKLST;

typedef struct t_rompl
 {

BITMASK valid : Valid field flag
DT_ATR mplatr : Variable-length memory pool attribute
DT_SIZE mplsz : Variable-length memory pool region size
DT_UINT fblksz : Maximum gettable size

ITRON Debugging Interface Specification Ver. 1.00.00

59 RTOS Access Interface - Get of object Status

DT_UINT ablkcnt : Count of allocated block (upper limit for blklst)
T_TOMPL_BLKLST * ablklst

: Pointer to detailed information about blocks
DT_UNIT wtskcnt : Count of tasks waiting for getting (wtsklst upper limit)
DT_ID * wtsklst : Pointer to region storing IDs of tasks waiting for getting

} T_ROMPL;

Gets the information about a variable-length memory pool. Before execution, ablkcnt,
ablklst, wtskcnt, and wtsklst must be initialized.

• OBJ_TASK (0x8a): Task
typedef struct t_rotsk
{

BITMASK valid : Valid field flag
DT_ATR tskatr : Task attribute
DT_VP_INT exinf : Extension information
DT_FP task : Startup address
DT_PRI itskpri : Initial priority
DT_VP stk : Starting address of initial stack
DT_SIZE stksz : Stack size
DT_STAT tskstat : Task status
DT_PRI tskpri : Current task priority
DT_PRI tskbpri : Task base priority
DT_STAT tskwait : Factor of a task’s wait
DT_ID wobjid : ID of an object to wait for
DT_TMO lefttmo : The remaining time before timeout
DT_UINT actcnt : Activation requests queuing count
DT_UINT wupcnt : Wake-up requests queuing count
DT_UINT suscnt : Suspension requests count

} T_ROTSK;
Gets the information about a task.

• OBJ_READYQUEUE (0x8b): Ready queue (NC: objid)
typedef struct t_rordq
{

BITMASK valid : Valid field flag
DT_ID runtskid : ID of the currently executed task
DT_UINT tskcnt : Count of ready (and running) tasks (upper limit for tsklst)
DT_ID * tsklst : Pointer to the region for storing the IDs of all the executable

tasks
} T_RORDQ;

Gets the information about a ready queue. If no executable task exists, the value 0 returns to
runtskid and tskcnt. In this case, the tsklst data has no change.
Before execution, tskcnt and tsklst must be initialized.

• OBJ_TIMERQUEUE (0x8c): Timer queue (NC: objid)
typedef struct t_rotmq_quelst
{

UINT objtype : Pointer to the region for storing the types of waiting objects
DT_ID wobjid : Pointer to the region for storing the IDs of waiting objects
DT_TMO lefttmo : Pointer to the region for storing the remaining wait time

} T_ROTMQ_QUELST;

ITRON Debugging Interface Specification Ver. 1.00.00

60 RTOS Access Interface - Get of object Status

typedef struct t_rotmq
BITMASK valid : Valid field flag
DT_SYSTIM systim : System time at the time of getting information
DT_UINT quecnt : Count of waiting objects in a timer queue (upper limit for quelst)
T_TORMQ_QUELST * quelst

: Pointer to information about objects in timer queue
} T_ROTMQ;

Gets the information about a timer queue.
The timer queue information contains the types of all events (cyclic handler, alarm handler,
overrun handler, and task) to be activated by a time event and the scheduled times for the gen-
eration of such events. As regards a cyclic handler, however, the information will not be got
not from all activating positions but from the next activating position.
The type of a waiting object is stored with a constant described as OBJ_xxx which use to
specify the object with rif_ref_obj.
Before execution, quecnt, objtyplst, wobjidlst, and lefttmolst must be initialized.

• OBJ_CYCLICHANDLER (0x8d): Cyclic handler
typedef struct t_rocyc
{

BITMASK valid : Valid field flag
DT_ATR cycatr : Attribute
DT_VP_INT exinf : Extension information
DT_FP cychdr : Start address
DT_RELTIM cyctim : Cycle
DT_RELTIM cycphs : Initial phase
DT_STAT cycstat : Cyclic handler start status
DT_RELTIM lefttim : Remaining time

} T_ROCYC;

Gets the information about a cyclic handler.
• OBJ_ALARMHANDLER (0x8e): Alarm handler

typedef struct t_roalm
{

BITMASK valid : Valid field flag
DT_ATR almatr : Attribute
DT_VP_INT exinf : Extension information
DT_FP almhdr : Startup address
DT_STAT almstat : Alarm handler start status
DT_RELTIM lefttim : Remaining time

} T_ROALM;

Gets the information about an alarm handler.
• OBJ_OVERRUNHANDLER (0x8f): Overrun handler

typedef struct t_roovr
{

BITMASK valid : Valid field flag
DT_ATR ovratr : Attribute
DT_FP ovrhdr : Start address
DT_STAT ovrstat : Handler start status

ITRON Debugging Interface Specification Ver. 1.00.00

61 RTOS Access Interface - Get of object Status

DT_OVRTIM lefttmo: Remaining processor time
} T_ROOVR;

Gets the information about an overrun handler.
• OBJ_ISR (0x90): Interrupt service routine

typedef struct t_roisr
{

BITMASK valid : Valid field flag
DT_ATR isratr : Attribute
DT_VP_INT exinf : Extension information
DT_FP isrfnclst : Registered routine start address
DT_INTNO inhno : Applied interrupt handler number

} T_ROISR;
Gets the information about an interrupt service routine.

• OBJ_KERNELSTATUS (0x91): Kernel information (NC: objid)
typedef struct t_roker
{

BITMASK valid : Valid field flag
BOOL actker : Kernel start status (TRUE = activated)
BOOL inker : Kernel code execution (TRUE = execution in progress)
BOOL ctxstat : Context status (sns_ctx)
BOOL loccpu : CPU locked status (sns_cpu)
BOOL disdsp : Dispatch disabled status (sns_dsp)
BOOL dsppnd : Dispatch suspended status (sns_dpn)
DT_SYSTIM systim : System time
DT_VP intstk : Stack for non-task context
DT_SIZE intstksz : Stack size for non-task context

} T_ROKER;
Gets the information about kernel status.
actker is a variable that indicates the kernel start status. It is FALSE in the target start
sequence. It is TRUE when a system call become available after completion of kernel initial-
ization.
inker is a variable that indicates whether currently executed code is a kernel code or not*.

• OBJ_TASKEXCEPTION (0x92): Task exception handler
typedef struct t_rotex
{

BITMASK valid : Valid field flag
DT_TEXPTN pndptn: Suspended exception factor
DT_FP texrtn : Exception handler start address

} T_ROTEX;

*. The statuses that are judged as a kernel operation are as follows; a sequence between exception
occurrence and handler stertup, a sequence between handler termination and dispatcher termina-
tion, or a sequence between target startup and initial application task starup.

ITRON Debugging Interface Specification Ver. 1.00.00

62 RTOS Access Interface - Get of object Status

Gets the information about a task exception handler.
• OBJ_CPUEXCEPTION (0x93): CPU exception handler (objid corresponds to

an exception factor)
typedef struct t_roexc
{

BITMASK valid : Valid field flag
DT_FP excrtn : Exception handler activating address

} T_ROEXC;
Gets the information about CPU exception.

Supplementary explanation
Implement-dependent information is defined as a structure member that follows each structure.
For definition of a unique object, the employed object identification constant must be outside
the range from 0 to 255. When performing a unique object operation, it is best to set up a flag
to clarify it.

ITRON Debugging Interface Specification Ver. 1.00.00

63 RTOS Access Interface - Get of object Status

Flags
OPT_GETMAXCNT (1)

Even when the variable-lengh data count exceeds the upper limit value, this
flag throughly tracks and gets the data count.

OPT_VENDORDEPEND (2)
Gets implement-dependent information.

FLG_NOCONSISTENCE (10000000H): Nonconsistency flag
When this flag is specified, the data to get need not be consistent (e.g., the
task is not freed from the waiting state although there is no factor of the task
wait).

FLG_NOSYSTEMSTOP (20000000H): An explicit system halt is not permitted.
When this flag is specified, tif_brk_tgt must not be used within a function
to halt the system. If this flag is not supported, the E_NOSPT error occurs.

Keys
RIF 4H

.RIF_REF_OBJ 1H
.FLG_NOCONSISTENCE 1H [1]

The FLG_NOCONSISTENCE flag is available.
.FLG_NOSYSTEMSTOP 2H [1]

The FLG_NOSYSTEMSTOP flag is available.
.OPT_VENDORDEPEND 10H [1]

The OPT_VENDORDEPEND option is available.
.OPT_GETMAXCNT 11H [1]

The OPT_GETMAXCNT option is available.
.STATICPARAMETER 12H

.OBJ_SEMAPHORE 80H [T]
This structure has semaphore information that is statically determinative.

.OBJ_EVENTFLAG 81H [T]
This structure has event flag information that is statically determinative.

.OBJ_DATAQUEUE 82H [T]
This structure has data queue information that is statically determinative.

.OBJ_MAILBOX 83H [T]
This structure has mailbox information that is statically determinative.

.OBJ_MUTEX 84H [T]
This structure has mutex information that is statically determinative.

.OBJ_MESSAGEBUFFER 85H [T]
This structure has message box information that is statically determinative.

.OBJ_RENDEZVOUSPORT 86H [T]
This structure has rendezvous port information that is statically deter-
minative.

.OBJ_RENDEZVOUS 87H [T]
This structure has rendezvous information that is statically determinative.

ITRON Debugging Interface Specification Ver. 1.00.00

64 RTOS Access Interface - Get of object Status

.OBJ_FMEMPOOL 88H [T]
This structure has fixed-length memory pool information that is stati-
cally determinative.

.OBJ_VMEMPOOL 89H [T]
This structure has variable-length memory pool information that is
statically determinative.

.OBJ_TASK 8AH [T]
This structure has task information that is statically determinative.

.OBJ_READYQUEUE 8BH [T]
This structure has ready queue information that is statically determinative.

.OBJ_TIMERQUEUE 8CH [T]
This structure has timer queue information that is statically determinative.

.OBJ_CYCLICHANDLER 8DH [T]
This structure has cyclic handler information that is statically determi-
native.

.OBJ_ALARMHANDLER 8EH [T]
This structure has alarm handler information that is statically determi-
native.

.OBJ_OVERRUNHANDLER 8FH [T]
This structure has overrun handler information that is statically deter-
minative.

.OBJ_ISR 90H [T]
This structure has interrupt service routine information that is statically
determinative.

.OBJ_KERNELSTATUS 91H [T]
This structure has kernel information that is statically determinative.

.OBJ_TASKEXCEPTION 92H [T]
This structure has task exception information that is statically determi-
native.

.OBJ_CPUEXCEPTION 93H [T]
This structure has CPU exception information that is statically determi-
native.

Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

ITRON Debugging Interface Specification Ver. 1.00.00

65 RTOS Access Interface - Get of object Status

E_CONSIST (-225)
Consistency was not assured (however, it is not handled as an error if
FLG_NOCONSISTENCE is set).

E_NOEXS (-42)
The targeted object was not found on the target.

E_PAR (-145)
A parameter value was invalid.

ET_OBJ (-41)
The targeted object on the target was inoperative.

ET_ID (-18)
The specified kernel object ID was invalid.

ET_OACV (-27)
An invalid object on an target was accessed (tskid < 0).

ITRON Debugging Interface Specification Ver. 1.00.00

66 RTOS Access Interface - Get of Task Context rif_get_rdt

5.3 Get of Task Context

5.3.1 Get of register set description table

rif_get_rdt Get of description table [CTX]

ER rif_get_rdt (const T_GRDT ** ppk_pgrdt, FLAG flags)
const T_GRDT ** ppk_prgrdt

Pointer to the region that stores the pointer to the register set description table
structure

FLAG flags
Flags

This instruction gets the pointer to the register table that contains the context information about
a targeted task. The body of this table is located in the RIM and its contents are constant. If
the debugging tool is to be used to modify the contents, make a copy of the contents with the
debugging tool and then modify the contents of the copy.

The register table has the details of registers that need to be saved in case of task switching.
The structure "T_GRDT" is detailed below. For the register table, see Section 3.12.

typedef struct t_grdt_regary
{

char * strname : Pointer to register name
UINT length : Length (in bytes)
UINT offset : Storage offset position

} T_GRDT_REGARY;

typedef struct t_grdt
{

UINT regcnt : Count of registers
UINT ctxcnt : Count of registers that can be contained in context
T_GRDT_REGARY regary[]

: Register information
} T_GRDT;

Supplementary explanation
The register set description table contains all the registers that compose the context and all the
registers to be operated by the RIM. The targeted task context consists of T_GRDT::ctxcnt
specified number of elements beginning with the start of T_GRDT::regary.
T_GRDT::regcnt indicates the count of registers to be operated by the RIM.

ITRON Debugging Interface Specification Ver. 1.00.00

67 RTOS Access Interface - Get of Task Context rif_get_rdt

Keys
RIF 04H

.RIF_GET_RDT 02H
.REGISTER 2H

.SIZE 04H [W]
Size (in bytes) of adequate region for register storage.

.CONTEXT 12H
.SIZE 04H [W]

Size (in bytes) of adequate region for context storage.

Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused for some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

E_PAR (-145)
A parameter value was invalid.

ITRON Debugging Interface Specification Ver. 1.00.00

68 RTOS Access Interface - Get of Task Context rif_get_ctx

5.3.2 Get of task context

rif_get_ctx Get of task context [CTX]

ER rif_get_ctx
(VP p_ctxblk, BITMASK_8 * p_valid, DT_ID tskid, FLAG flags)

VP p_ctxblk
Leading pointer that indicates the region for storing got context

BITMASK_8 * p_valid
Pointer to validation flag about register table items
(NULL: Targets entire context)

DT_ID tskid
ID of a targeted task

FLAG flags
Flags

This function gets and stores task context in accordance with the register table that is got by
rif_get_rdt. This function permits the debugging tool to get context from an appropriate
region at all times irrespective of the current task status.

The variable "p_ctxblk" is the pointer to the buffer that stores context obtained upon execu-
tion of this function. Before executing this function, the debugging tool must create a region
that is large in size enough to store the context. The size of this buffer can be got by using the
information acquisition key code RIF.RIF_GET_RDT.CONTEXT.SIZE. It can also be cal-
culated from the register table got by the function rif_get_rdt. When the region size is deter-
mined by calculation, it is necessary to furnish a region that is large enough to store only the
context portion of the register table.

Storage is performed in accordance with the storage offset position and register length written
in the register table got by rif_get_rdt. For the register table, see Section 3.12.

p_valid specifies whether the registers should be enabled or disabled. When given as an argu-
ment for the function, p_valid does not store disabled registers. This function also stores the
result of getting targeted register in p_valid. However, if ungot registers are essential to the
targeted task context, an error such as ET_MACV is returned depending on the situation*. The
information stored in regions related to ungot registers is implement-dependent. Even if the
enable/disable information is given in excess of the number of registers (T_GRDT::ctxcnt)
composing the context, excess registers will not be got.
If NULL is specified for p_valid, the whole context is targeted for getting so that the details of
the result will not be stored.

When the flag OPT_APPCONTEXT is specified, the context is got on the application level.
If the task is stopped inside the kernel, the RIM uses the current stack frame, etc., to generate
and return the context that prevailed before kernel code entry.

*. For example, the floating-point register is not required for tasks that do not perform floating-point
calculations. Even if the floating-point register is contained in the register table in such a situation,
the function may return E_OK without getting the floating-point register.

ITRON Debugging Interface Specification Ver. 1.00.00

69 RTOS Access Interface - Get of Task Context rif_get_ctx

Flags
OPT_APPCONTEXT (1)

Handles context in application level as a target.
FLG_NOCONSISTENCE (10000000H): Nonconsistency flag

When this flag is specified, the got data need not be consistent (e.g., the task is
not cleared from the waiting state although there is no factor of the task’s wait).

FLG_NOSYSTEMSTOP (20000000H): An explicit system halt is not permitted.
When this flag is specified, tif_brk_tgt must not be used within a function
to halt the system. If this flag is not supported, the E_NOSPT error occurs.

Keys
RIF 04H

.RIF_GET_CTX 03H
.FLG_NOCONSISTENCE 01H [1]

The FLG_NOCONSISTENCE flag is available.
.FLG_NOSYSTEMSTOP 02H [1]

The FLG_NOSYSTEMSTOP flag is available.
.OPT_APPCONTEXT 10H [1]

The OPT_APPCONTEXT option is available.

Errors
E_OK (0)

Normally ended.
E_NOSPT (-137)

An unsupported operation was executed.
E_NOMEM (-161)

The request could not be executed due to insufficient host memory.
E_FAIL (-227)

The operation faiure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

E_CONSIST (-225)
Consistency was not assured (however, it is not handled as an error if
FLG_NOCONSISTENCE is set).

ET_OBJ (-41)
The targeted object on the target was inoperative.

ET_OACV (-27)
An invalid object on an target was accessed (tskid < 0).

ET_ID (-18)
The specified kernel object ID was invalid.

E_PAR (-145)
A parameter value was invalid.

ET_NOEXS (-42)
The target object was not found on the target.

ITRON Debugging Interface Specification Ver. 1.00.00

70 RTOS Access Interface - Get of Task Context rif_set_ctx

5.3.3 Set of task context

rif_set_ctx Set of task context [CTX]

ER rif_set_ctx
(VP p_ctxblk, BITMASK_8 * valid, FLAG flags)

VP p_ctxblk
Pointer to the region that stores the context to be set

BITMASK_ * p_valid
Pointer to validation flag about register table items
(NULL: Targets entire context)

FLAG flags
Flags

This function sets task context in accordance with the register table that is obtained by
rif_get_rdt. The use of this function permits the debugging tool to set appropriate context at
all times irrespective of the current task status.

Setup is performed in accordance with the information in the register table obtained by
rif_get_rdt. The variable "p_ctxblk" is the pointer to the buffer that stores the context to be
set upon execution of this function. Before executing this function, the debugging tool must
store the context data to be set in a specified region in accordance with the register table
obtained by rif_get_rdt. For the register table, see Section 3.12.

p_valid specifies whether the registers should be enabled or disabled. When given as an argu-
ment for the function, p_valid does not set disabled registers. This function also stores the
result of targeted register acquisition in p_valid. However, if registers that cannot be set are
essential to the targeted task context, an error such as ET_MACV is returned depending on the
situation*. Even if enable/disable information is given in excess of the number of registers
(T_GRDT::ctxcnt) composing the context, excess registers will not be set.
If NULL is specified for p_valid, the whole context is targeted for setup so that the result
details will not be stored.

When the flag "OPT_APPCONTEXT" is specified, the context in application level will be
set.

Flags
OPT_APPCONTEXT (1)

Handles context in application level as a target.

FLG_NOSYSTEMSTOP (20000000H): An explicit system halt is not permitted.
When this flag is specified, tif_brk_tgt must not be used within a function
to halt the system. If this flag is not supported, the E_NOSPT error occurs.

*. For example, the floating-point register is not required for tasks that do not perform floating-point
calculations even if it is contained in the register table. In such a situation, the function may return
E_OK without setting the floating-point register even when it is targeted for setup.

ITRON Debugging Interface Specification Ver. 1.00.00

71 RTOS Access Interface - Get of Task Context rif_set_ctx

Keys
RIF 01H

.RIF_SET_CTX 13H
.FLG_NOSYSTEMSTOP 02H [1]

The FLG_NOSYSTEMSTOP flag is available.
.OPT_APPCONTEXT 10H [1]

The OPT_APPCONTEXT option is available.

Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

E_CONSIST (-225)
Consistency was not assured (however, it is not handled as an error if
FLG_NOCONSISTENCE is set).

ET_OBJ (-41)
The targeted object on the target was inoperative.

ET_OACV (-27)
An invalid object on a target was accessed (tskid < 0).

ET_ID (-18)
The specified kernel object ID was invalid.

E_PAR (-145)
A parameter value was invalid.

ET_NOEXS (-42)
The target object was not found on the target.

ITRON Debugging Interface Specification Ver. 1.00.00

72 RTOS Access Interface - Issue of Service Call rif_cal_svc

5.4 Issue of Service Call
5.4.1 Issue of service call

rif_cal_svc Issue of service call [SVC]

ER rif_cal_svc (T_RCSVC * pk_psvc , FLAG flags)
T_RCSVC * pk_psvc

Information of call issuance

FLAG flags
Flags

This function issues a service call. Since issuance is executed in non-blocking mode, the end
of this function does not mean the end of a service call. However, note that issuance is exe-
cuted in the special blocking mode only when OPT_BLOCKING is set explicitly. The execu-
tion process performed in the special blocking mode times out at the pre-selected timeout time.

Contents of T_RCSVC
typedef struct t_rcsvc
{

DT_FN svcfn : Function code to be issued
BOOL tskctx : Execution with task context (= TRUE)
DT_ID tskid : ID of a targeted task (when tskctx = TRUE)
UINT prmcnt : Parameter count
VP_INT paramry[] : Array that stores list of all parameters

} T_RCSVC;

Supplementary explanation
Since this function is executed in non-blocking mode, the end of this function is not identical
with the end of the issued service call. However, if the use of non-blocking mode is prohibited
due to the employed RIM implementation method and blocking mode is implemented, the end
of this function can be regarded as the end of service call. So, the termination of this function
can be regarded as the service call end. RIF.RIF_CAL_SVC.NON-BLOCKING should be
implement as FALSE to let the dbg_ref_rim function inform the debugging tool that the end
of this function is regarded as the end of the service call.
When T_RCSVC::tskctx is set to FALSE, the service call for which this function is set will
be executed with nontask context.
Even when OPT_BLOCKING is specified, the callback function "rif_rep_svc" is called
unless FLG_NOREPORT is specified.
When rif_cal_svc is executed in the special blocking mode, the function may not return con-
trol until the service call terminates in the strict sense. In the strict sense, the service call termi-
nates when the stack frame prevailing at function termination is equivalent to the stack frame
prevailing when a function call is made by rif_cal_svc. More specifically, if the service call
is executed in such a manner as to invoke dispatching, such as a wait within the function, the
dispatch to the same task recurs and this function does not return control until the target service
call is completed. Furthermore, if the same function is executed recursively within the target
function, this function does not return control until termination occurs for the same number of
times as the calls. However, when execution is performed in the special blocking mode, a pre-
defined timeout occurs even if the termination does not occur in the strict sense. For details,
see Section 3.13, Special Blocking Mode.

ITRON Debugging Interface Specification Ver. 1.00.00

73 RTOS Access Interface - Issue of Service Call rif_cal_svc

T_RCSVC::prmary stores the value to be delivered as a parameter. The method of parame-
ter delivery conforms to the method for the µµµµITRON 4.0-compliant service call cal_svc (For
structures, etc., the pointers to structures are stored).

Flags
FLG_NOREPORT (80000000H): Report function invalidation

The paired callback function will not be called.

OPT_BLOCKING (1)
Executed in a blocking mode.

Keys
RIF 04H

.RIF_CAL_SVC 04H
.FLG_NOREPORT 03H [1]

The FLG_NOREPORT flag is available.
.OPT_BLOCKING 10H [1]

The OPT_BLOCKING flag is available.
.OPT_APPCONTEXT 11H [1]

The OPT_APPCONTEXT option is available.
.NON-BLOCKING 12H [1]

A non-blocking SVC issue is supported.

Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

E_PAR (-145)
A parameter value was invalid.

E_EXCLUSIVE (-226)
Another request was already issued. The function could not receive a new
request until execution of the previous request ends.

ET_OBJ (-41)
The targeted object on the target was inoperative.

ITRON Debugging Interface Specification Ver. 1.00.00

74 RTOS Access Interface - Issue of Service Call rif_cal_svc

ET_OACV (-27)
An invalid object on an target was accessed (tskid < 0).

ET_ID (-18)
The specified kernel object ID was invalid.

ET_NOEXS (-42)
The target object was not found on the target.

ITRON Debugging Interface Specification Ver. 1.00.00

75 RTOS Access Interface - Issue of Service Call rif_can_svc

5.4.2 Cancel of an issued service call

rif_can_svc Cancel of an issued service call [SVC]

ER rif_can_svc (FLAG flags)
FLAG flags

Flags

This function cancels the service call that is issued immediately before the operation. How-
ever, this function aims at getting focus that was lost by issuance. It cannot completely elimi-
nate the influence of the service call.

Flags
OPT_CANCEL (0)

Does not consider the influence of the issued service call (default).
OPT_UNDO (1)

Completely restore the state to the status before the issuance.

Keys
RIF 04H

.RIF_CAN_SVC 05H [1]
rif_can_svc is implemented.

.OPT_CANCEL 10H [1]
The OPT_CANCEL option is available.

.OPT_UNDO 11H [1]
The OPT_UNDO option is available.

Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

E_OBJ (-169)
The targeted object on the target was inoperative.

ITRON Debugging Interface Specification Ver. 1.00.00

76 RTOS Access Interface - Issue of Service Call rif_rep_svc

5.4.3 Report of service call end

rif_rep_svc Report of service call end [SVC:callback]

void rif_rep_svc (DT_ER result)
DT_ER result

Error code for the last-issued service call

When a service call invocated by rif_cal_svc ends, the debugging tool calls the callback
function rif_rep_svc to report the service call end to the RIM. rif_rep_svc is a callback
function to receive the error code for the last-issued service call. However, if the
FLG_NOREPORT flag is specified when rif_cal_svc is used to issue a service call, this
function does not report the end.

Supplementary explanation
The argument "result" stores an error code (ET_xxx) that complies with the kernel specifica-
tion.

This function is called at the same time as the end of a service call. Therefore, an end report
might be made before escape from rif_cal_svc. To avoid such a problem, you should not
write the following code:

Program source
volatile int flag;
rif_rep_svc(err)
{ flag = 1; }

foo()
{

rif_cal_svc(....);
//Clears the flag (reporting may be completed at this time).

flag = 0;
//Blocking continues until the service call ends.

while(flag == 0);

Program source
}

Keys
RIF 04H

.RIF_CAL_SVC 06H

Error
This function does not return a value.

ITRON Debugging Interface Specification Ver. 1.00.00

77 RTOS Access Interface - Issue of Service Call rif_ref_svc

5.4.4 Get of function code

rif_ref_svc Get of function code [SVC]

ER rif_ref_svc (DT_FN * p_svcfn, char * strsvc, FLAG flags)
DT_FN * p_svcfn

Pointer to the region for storing a function code that corresponds to the name of
a service call

char * strsvc
Name of a targeted service call

rif_ref_svc gets a function code from a service call function name. Function codes got by
this function can be used for functions that have rif_cal_svc, rif_set_brk, rif_set_log, and
other function codes as parameters.

Supplementary explanation
The "str_svc" argument (name of the targeted service call) for this function corresponds to
an API name that defined by the µITRON Standard. When the prefix "_" for C or a suffix
(parameter type, byte count, etc.) for C++ is added to the service call name, the normal opera-
tions of the function are not guaranteed. Normal operations will not be guaranteed either if a
parameter section is specified in the parenthesis following an API name.

Keys
RIF 04H

.RIF_REF_SVC 07H

Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

E_OBJ (-169)
The targeted object on the target was inoperative.

E_PAR (-145)
A parameter value was invalid.

ITRON Debugging Interface Specification Ver. 1.00.00

78 RTOS Access Interface - Issue of Service Call rif_rrf_svc

5.4.5 Get of service call name

rif_rrf_svc Get of service call name [SVC]

ER rif_rrf_svc
(char * pstr_svc, UINT bufsz, DT_FN svcfn, FLAG flags)

char * pstr_svc
Pointer to the beginning of the region that stores the name of a service call

UINT bufsz
Size of the buffer that stores the name (termination symbol included)

DT_FN svcfn
Function code of a targeted service call

FLAG flags
Flags

rif_rrf_svc gets a service call name in accordance with a function code.

Supplementary explanation
pstr_svc (service call name) is a return value of this function. This return value is an API
name defined by the µITRON Standard. The prefix "_" for C language or a suffix (parameter
type, byte count, etc.) for C++ language is not added to the function name. Similarly, the
parameter section in a parenthesis following an API name is not added.
For the argument "bufsz" the size of the buffer region specified by p_strsvc must be set in
bytes. In this instance, buflsz contains a terminal symbol. To thoroughly get a service call
name, therefore, it is necessary that the specified size be not smaller than "service call name
length + 1". If this condition is not satisfied, the service call name, including terminal symbol,
will be stored without exceeding the above-mentioned length limit. When bufsz is 1, a nor-
mal end occurs with only the terminal symbol stored. However, if bufsz is 0, the E_PAR
error occurs.

Keys
RIF 04H

.RIF_RRF_SVC 08H

Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

ITRON Debugging Interface Specification Ver. 1.00.00

79 RTOS Access Interface - Issue of Service Call rif_rrf_svc

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

E_OBJ (-169)
The targeted object on the target was inoperative.

E_PAR (-145)
A parameter value was invalid.

ITRON Debugging Interface Specification Ver. 1.00.00

80 RTOS Access Interface - Set of Break Point rif_set_brk

5.5 Set of Break Point

5.5.1 Set of break point

rif_set_brk Set of break point [BRK]

ER_ID rif_set_brk (ID brkid, T_RSBRK * pk_rsbrk , FLAG flags)
ID brkid

Break point ID

T_RSBRK * pk_rsbrk
Pointer to the structure that has the information about the break to be set

FLAG flags
Flags

(Return value) ID brkid
Assigned break point ID

This function offers function for setting an RTOS-dependent break. A break point ID is
assigned to a break point. A positive number other than 0 is used to indicate a break point ID.
It is used for cancellation and hit notification.

The structure of T_RSBRK is as shown below:
typedef struct t_rsbrk
{

UINT brktype : Break type
UINT brkcnt : Count before break
DT_ID tskid : Task ID
DT_ID objid : Object ID
UINT objtype : Object type
VP_INT brkprm : Parameter for callback function
DT_VP brkadr : Address for break setting
DT_FN svcfn : Function code

} T_RSBRK;
brktype consists of one "stop condition", a desired number of "additional conditions", and
one "stop procedure" detailed below. The parameters to be used are parenthesized. Note, how-
ever, that brkcnt is valid for all combinations.

Stop conditions
• BRK_EXECUTE (1)

Sets an execution break (brkadr, tskid)
• BRK_ACCESS (2)

Sets an access break (brkadr, tskid)
• BRK_DISPATCH (3)

Sets a break for a task dispatcher (after execution) (tskid)
• BRK_SVC (4)

Performs a break upon an SVC (tskid, objid, svcfn)

ITRON Debugging Interface Specification Ver. 1.00.00

81 RTOS Access Interface - Set of Break Point rif_set_brk

Additional conditions
• BRK_ENTER (00H)

Places a break at the start position (BRK_DISPATCH, BRK_SVC)
• BRK_LEAVE (80H)

Places a break at the escape position (BRK_DISPATCH, BRK_SVC)

Stop procedures
• BRK_SYSTEM (0H)

Stops all system when a break occurs.
• BRK_TASK (40H)

Stops task unit when a break occurs.
• BRK_REPORT (20H)

Makes a report only (but does not break).

Special values are set to the paramenters, as detailed below:

The above values are variously combined for break setup purposes.
Example: Breaks upon the tenth switch to task 2.

Program source
T_RSBRK {

brktype : BRK_DISPATCH
brkcnt : : 10
tskid : 2

Program source
}

Example: Breaks when task 5 attempts to get semaphore 2.
Program source

T_RSBRK {
brktype : BRK_SVC
brkcnt : BRK_NOCNT
tskid : 5
objtype : OBJ_SEMAPHORE
objid : 2
ext.svcfn : -0x25 (wai_sem)

Program source
}

Table 21: Special Parameter Values Available for Break Setup

Parameter Value Meaning

tskid ID_ALL (-1) Targets all tasks for a break.

objid ID_ALL (-1) Targets all objects for a break.

svcfn ID_ALL (-1) Breaks upon each SVC.

brkcnt BRK_NOCNT (1) Does not use a count.

ITRON Debugging Interface Specification Ver. 1.00.00

82 RTOS Access Interface - Set of Break Point rif_set_brk

The parameters to be ignored depending on the option selection will be basically excluded
from consideration. However, if a vendor furnishes a special break setting function, the use of
an argument section and the addition of parameters are permitted. However, the following flag
must be set for "flags" to indicate above mentioned states.

OPT_EXTPARAM (2)
Specifies an extended parameter.

When a task dispatcher is used for setup, the RIM sets breaks at all locations where task dis-
patch may occur in the kernel.

Supplementary explanation
This function is called by the debugging tool. However, the debugging tool must not set a
break that it does not support. (For example, a debugging tool that does not support an access
break must not use this function to request access break setup.)

When the function is executed successfully in situations where the automatic number assign-
ment flag "FLG_AUTONUMBERING" is specified, the function returns the value of 1 or
greater (ID value), which is assigned to a break point. This is also true even when the auto-
matic assignment flag is not specified.

Flags
OPT_NOCNDBREAK (1)

A conditional break can not be used for break setting.

OPT_EXTPARAM (2)
Specifies an extended parameter.

FLG_NOREPORT (80000000H): Report function invalidation
The corresponding callback function will not be called.

FLG_AUTONUMBERING (40000000H): ID automatic assignment
Automatically assigns an ID. The function ignores an argument which is
specified with ID. When successful, the function returns the automatically
assigned ID.

Keys
RIF 04H

.RIF_SET_BRK 09H
.FLG_NOREPORT 03H [1]

The FLG_NOREPORT flag is available.
.FLG_AUTONUMBERING 04H [1]

The FLG_AUTONUMBERING flag is available.
.OPT_NOCNDBREAK 10H [1]

The OPT_NOCNDBREAK option is available.
.OPT_EXTPARAM 11H [1]

The OPT_EXTPARAM option is available.

ITRON Debugging Interface Specification Ver. 1.00.00

83 RTOS Access Interface - Set of Break Point rif_set_brk

Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the opration
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

E_PAR (-145)
A parameter value was invalid.

E_ID (-146)
The specified object ID was invalid.

E_NOID (-162)
Count of IDs for automatic assignment was insufficient.

ET_OBJ (-41)
The targeted object on the target was inoperative.

ET_OACV (-27)
An invalid object on an target was accessed (tskid < 0).

ET_ID (-18)
The specified kernel object ID was invalid.

ET_NOEXS (-42)
The targeted object was not found on the target.

ITRON Debugging Interface Specification Ver. 1.00.00

84 RTOS Access Interface - Set of Break Point rif_del_brk

5.5.2 Delete of break point

rif_del_brk Delete of break point [BRK]

ER rif_del_brk (ID brkid, FLAG flags)
ID brkid

ID of the break point to be deleted

FLAG flags
Flags

This function requests the RIM to delete an RTOS-dependent break.
When brkid is set to ID_ALL (= 0), the function deletes all break points.

Keys
RIF 04H

.RIF_DEL_BRK 0AH

Flags
None in particular

Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

E_OBJ (-169)
The targeted object on the target was inoperative.

E_ID (-146)
The specified object ID was invalid.

ITRON Debugging Interface Specification Ver. 1.00.00

85 RTOS Access Interface - Set of Break Point rif_rep_brk

5.5.3 Report of break hit

rif_rep_brk Report of break hit [BRK:callback]

void rif_rep_brk (ID brkid, VP_INT exinf)
ID brkid

ID of the break hit

VP_INT exinf
Extended parameter

When a break set by rif_set_brk is reached and broken, the RIM uses this callback to report
the break. Normally, the Debugging tool requires the "tif_rep_brk" callback function to the
RIM for calling this function.
An extended parameter can be passed to the function. This parameter uses the value of
T_RSBRK::brkprm when break point is set with rif_set_brk.

Keys
RIF 04H

.RIF_REP_BRK 0BH

Errors
This function does not have any return value.

ITRON Debugging Interface Specification Ver. 1.00.00

86 RTOS Access Interface - Set of Break Point rif_ref_brk

5.5.4 Get of break information

rif_ref_brk Get of break information [BRK]

ER rif_ref_brk (ID brkid, T_RSBRK * ppk_rsbrk, FLAG flags)
ID brkid

Break point ID

T_RSBRK * ppk_rsbrk
Pointer to the region that stores break information

FLAG flags
Flags

This function gets the break point information that corresponds to the specified break point ID.
When the function turns out to be successful, it stores the information about the specified break
point ID in the region specified by ppk_sbrk.

Keys
RIF 04H

.RIF_REF_BRK 0CH

Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

E_OBJ (-169)
The targeted object on the target was inoperative.

E_ID (-146)
The specified object ID was invalid.

E_PAR (-145)
A parameter value was invalid.

ITRON Debugging Interface Specification Ver. 1.00.00

87 RTOS Access Interface - Set of Break Point rif_ref_cnd

5.5.5 Get of break condition

rif_ref_cnd Get of break condition [CND]

ER rif_ref_cnd
(T_RRCND_DBG * ppk_dbg, T_RRCND_RTOS * pk_rtos,

FLAG flags)
T_RRCND_DBG * ppk_dbg

Pointer to the region that stores the information to check conditions that was set

T_RRCND_RTOS * pk_rtos
Pointer to the region that stores the conditions to be got

 FLAG flags
Flags

This function is used to view the RTOS-dependent conditions that should be examined when a
debugging tool merely uses its own functions to perform an RTOS-dependent break.

The following RTOS-aware conditions are entered for T_RRCND_RTOS:
typedef struct t_rrcnd_rtos
{

FLAG flags : Contents to be examined
DT_ID objid : ID as a condition

} T_RRCND_RTOS;
The following value can be set for "T_RRCND_RTOS::objid":

• CND_CURTSKID (0)
Conditions under which the ID of the currently executed task is equal to id

This function returns the method of checking the conditions that is set to T_RRCND_DBG.
The following items of information to be checked is returned:

typedef struct t_rrcnd_dbg
{

DT_VP execadr : Execution address (NULL: NC)
DT_VP valadr : Address for comparison (NULL: NC)
UINT vallen : Data length (1, 2, or 4 bytes)
VP_INT value : Data or pointer value

} T_RRCND_DBG;
The conditions generated by T_RRCND_DBG is stated as “when program counter reachs
execadr and vallen bytes data from the memory address valadr is value”. When NULL is
stored at execadr, this expression becomes a conditional expression that is independent of the
program counter. If valadr is omitted, this expression turns out to be a conditional expression
that is independent of memory data. However, if this function generates conditions under
which execadr and valadr are both NULL, the debugging tool that has executed this func-
tion concludes that all the conditions are invalid.
T_RRCND_DBG::value stores the value that is compared. If the value is greater than
VP_INT, value must also store the pointer to the region that stores this value.

ITRON Debugging Interface Specification Ver. 1.00.00

88 RTOS Access Interface - Set of Break Point rif_ref_cnd

Supplementary explanation
This function checks whether the range of specified IDs is valid. However, it does not check
whether tasks exist.

Keys
RIF 04H

.RIF_REF_CND 0DH

Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

E_PAR (-145)
A parameter value was invalid.

E_CND (-228)
The conditions can not be set.

ET_ID (-18)
The specified kernel object ID was invalid.

ITRON Debugging Interface Specification Ver. 1.00.00

89 RTOS Access Interface - Execution History (Trace Log) rif_set_log

5.6 Execution History (Trace Log)

5.6.1 Set of trace log

rif_set_log Set of trace log [LOG]

ER_ID rif_set_log
(ID logid, UINT logtype, VP pk_rslog, FLAG flags)

ID logid
ID number to be assigned to the log to be set

UINT logtype
Type of the log to be set

VP pk_rslog
Pointer to the region that stores the trace log setup information

FLAG flags
Flags

(Return value) ID logid
Unique value for identifying the log that is set

This function passes the setup information for get trace log to the RIM and make a request to
get it.

The following values can be used as logtype:
• LOG_TYP_INTERRUPT (1)

Interrupt
• LOG_TYP_ISR (2)

Interrupt service routine
• LOG_TYP_TIMERHDR (3)

Timer handler
• LOG_TYP_CPUEXC (4)

CPU exception
• LOG_TYP_TSKEXC (5)

Task exception
• LOG_TYP_TSKSTAT (6)

Task state
• LOG_TYP_DISPATCH (7)

Task dispatch
• LOG_TYP_SVC (8)

Service call
• LOG_TYP_COMMENT (9)

Comment (It is a log which consists of a character string only; mainly written by the
user)

ITRON Debugging Interface Specification Ver. 1.00.00

90 RTOS Access Interface - Execution History (Trace Log) rif_set_log

LOG_ENTER (0H) and LOG_LEAVE (80H) exist. The former is used as an additional flag
to activator or start. The latter is used to terminate an operation. If these desired position spec-
ifers are omitted, it is concluded that LOG_ENTER is specified (e.g., LOG_TYP_TSK |
LOG_ENTER: gets a log in relation to a task startup).

The following structures are assigned to the above-mentioned various types. These structures
are used for pk_rslog. When "ID_ALL (= -1)" is specufued, parameters marked "ID_ALL
available", all IDs will be targeted. Substitution must be conducted by casting into the respec-
tive type as necessary.

LOG_TYP_INTERRUPT (1): Interrupt (start, end)
typedef struct t_rslog_interrupt
{

DT_INTNO intno : Interrupt number (ID_ALL available)
} T_RSLOG_INTERRUPT;

LOG_TYP_ISR (2): Interrupt service routine (start, end)
typedef struct t_rslog_isr
{

DT_ID isrid : Interrupt service routine ID (ID_ALL available)
DT_INTNO intno : Interrupt number (ID_ALL available)

} T_RSLOG_ISR;

Note: If intno isID_ALL, isrid is automatically set toID_ALL.

LOG_TYP_TIMERHDR (3): Timer event handler (start, end)
typedef struct t_rslog_timerhdr
{

UINT type : Handler type (OBJ_ALL available)
(stores the "OBJ_xxx" constant that is used for rif_ref_obj::objtype.)
(all types will be targeted when OBJ_ALL(= ID_ALL) is specified.)

DT_ID hdrid : Handler ID (ID_ALL available)
} T_RSLOG_TIMERHDR;

LOG_TYP_CPUEXC (4): CPU exception (start, end)
typedef struct t_rslog_cpuexc
{

DT_EXCNO excno : CPU exception code (ID_ALL available)
} T_RSLOG_CPUEXC;

LOG_TYP_TSKEXC (5): Task exception (start, end)
typedef struct t_rslog_tskexc
{

DT_ID tskid : Task ID (ID_ALL available)
} T_RSLOG_TSKEXC;

LOG_TYP_TSKSTAT (6): Task state
typedef struct t_rslog_tskstat
{

DT_ID tskid : Task ID (ID_ALL available)
} T_RSLOG_TSKSTAT;

Note: The tasks state is regarded as the execution-ready state without distinction between exe-
cuting state and execution-ready state.

ITRON Debugging Interface Specification Ver. 1.00.00

91 RTOS Access Interface - Execution History (Trace Log) rif_set_log

LOG_TYP_DISPATCH (7): Task dispatch start
typedef struct t_rslog_dispatch
{

DT_ID tskid : Task ID (ID_ALL available)
} T_RSLOG_DISPATCH;

LOG_TYP_SVC (8): System call (start, end)
typedef struct t_rslog_svc
{

DT_FN svcfn : Function code
DT_ID objid : Targeted object ID (ignored when the SVC does not have a tar-

get; ID_ALL available)
DT_ID tskid : Task ID (ID_ALL available)
BITMASK param : Parameter to be targeted (ID_ALL available)

} T_RSLOG_SVC;

Note: When ID_NONTSKCTX(=0) is specified for tskid, the nontask context will be tar-
geted. ID_ALL means both the task context and nontask context. param specifies the
parameters to be logged and logs the parameters that correspond to the bit positions at
which the value is 1. When LOG_ENTER is specified, the leftmost argument corre-
sponds to the first parameter. When LOG_LEAVE is specified, the return value is the
first parameter, and the second and subsequent parameters are the arguments.

LOG_TYP_COMMENT (9): Comment
typedef struct t_rslog_comment
{

UINT length : Comment character string length
} T_RSLOG_COMMENT;

Supplementary explanation
Some logs are output in a specified order. The following logs are output in a predetermined
order. The logs on the left-hand side are displayed first.

• LOG_TYP_DISPATCH|LOG_LEAVE, LOG_TYP_TSKEXC

• LOG_TYP_DISPATCH|LOG_ENTER, LOG_TYP_TSKSTAT

LOG_TYP_SVC|LOG_LEAVE does not detect the end of the following service calls:
• ext_tsk

• exd_tsk

LOG_TYP_TSKEXC|LOG_LEAVE will not be detected in the following situation:

• Non-local jump (longjmp) from task exception handler*

LOG_TYP_TSKSTAT does not distinguish between the executable state (READY) and exe-
cuting state (RUNNING). It recognizes both states as a READY state. The READY state and
RUNNING state are acquired by LOG_TYP_DISPATCH.

*. Refers to process that uses longjmp, setjmp, etc., to forcibly pass process to specific function irre-
spective of function execution order

ITRON Debugging Interface Specification Ver. 1.00.00

92 RTOS Access Interface - Execution History (Trace Log) rif_set_log

When the function is successfully executed in situations where the automatic number assign-
ment flag FLG_AUTONUMBERING is specified, the function returns a value of 1 or greater
(ID value), which is assigned to a log item. This is also true even when the automatic assign-
ment flag is not specified.

Flag
FLG_AUTONUMBERING (40000000H): ID automatic assignment

Automatically assigns an ID. If an argument is specified as the ID, it is
ignored by the function. When the function is successfully executed, it
returns the automatically assigned ID.

Keys
RIF 04H

.RIF_SET_LOG 0EH
.FLG_AUTONUMBERING 04H [1]

The FLG_AUTONUMBERING flag is available.
.OPT_BUFFUL_STOP 10H [1]

The OPT_BUFFUL_STOP option is available.
.OPT_BUFFUL_FORCEEXEC 11H [1]

The OPT_BUFFUL_FORCEEXEC option is available.

Errors
E_NOSPT (-137)

An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

E_ID (-146)
The specified object ID was invalid.

E_NOID (-162)
Count of IDs for automatic assignment was insufficient.

E_OBJ (-169)
The targeted object on the target was inoperative.

ET_ID (-18)
The specified kernel object ID was invalid.

E_PAR (-145)
A parameter value was invalid.

ITRON Debugging Interface Specification Ver. 1.00.00

93 RTOS Access Interface - Execution History (Trace Log) rif_del_log

5.6.2 Delete of trace log

rif_del_log Delete of trace log [LOG]

ER rif_del_log (ID logid, FLAG flags)
ID logid

ID of the trace log to be deleted

FLAG flags
Flags

This function deletes the trace log setting specified by rif_set_log. It deletes all the log set-
ting when logid is set to ID_ALL (=-1).

Supplementary explanation
Trace logs validated by rif_sta_log cannot be deleted.

Keys
RIF 04H

.RIF_DEL_LOG 0FH

Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

E_ID (-146)
The specified object ID was invalid.

E_OBJ (-169)
The targeted object on the target was inoperative.

E_EXCLUSIVE (-226)
Another request has already been issued. The function could not receive a
new request until execution of the previous request ends.

ITRON Debugging Interface Specification Ver. 1.00.00

94 RTOS Access Interface - Execution History (Trace Log) rif_sta_log

5.6.3 Request of trace log function start

rif_sta_log Request of trace log function start [LOG]

ER rif_sta_log (ID logid, FLAG flags)
ID logid

ID number assigned to the trace log function to be started

FLAG flags
Flags

This function starts executing the trace log function in accordance with the setting defined by
rif_set_log. When ID_ALL (=-1) is specified, all the specified logs are validated.

Supplementary explanation
Getting trace log takes place in non-blocking mode. You should therefore note that the end of
this function does not mean the end of getting trace log. In reality, getting log operation is per-
formed during a program run resumption after the call of this function.

Supplementary explanation
Even when the trace log function is exercised two or more times for the log setting for the sigle
ID, the function returns E_OK. The all specified log settings are stopped by a single stop pro-
cedure even if the trace log function is exercised two or more times.

Keys
RIF 04H

.RIF_STA_LOG 10H

Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

E_ID (-146)
The specified object ID was invalid.

E_OBJ (-169)
The targeted object on the target was inoperative.

ITRON Debugging Interface Specification Ver. 1.00.00

95 RTOS Access Interface - Execution History (Trace Log) rif_stp_log

5.6.4 Request of trace log stop

rif_stp_log Request of trace log stop [LOG]

ER rif_stp_log (ID logid, FLAG flags)
ID logid

ID of the trace log to be stopped

FLAG flags
Flags

This function stops the specified trace logging operation. All logs are targeted when logid is
set to ID_ALL (=-1).

Supplementary explanation
This function aims at clearing the break points or other settings for get trace log. It does not
cancel the trace log settings.
Storage of the data specified by rif_set_log must be assured before and after this function.

Supplementary explanation
Even when this function is executed for an already terminated log setting, it returns E_OK.

Keys
RIF 04H

.RIF_STP_LOG 11H

Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

E_ID (-146)
The specified object ID was invalid.

E_OBJ (-169)
The targeted object on the target was inoperative.

ITRON Debugging Interface Specification Ver. 1.00.00

96 RTOS Access Interface - Execution History (Trace Log) rif_get_log

5.6.5 Get of trace log

rif_get_log Get of trace log [LOG]

ER rif_get_log (T_RGLOG * ppk_rglog, FLAG flags)
T_RGLOG * ppk_rglog

Pointer to the region that stores the standard trace log information

FLAG flags
Flags

rif_get_log requires to get logs stored in the RIM. The RIM issues tif_get_log as needed to
get primitive log information and remakes this information into a return value. When a highly
functional debugging tool is used, the RIM may use the data got by tif_get_log as the return
value without remaking.
When rif_get_log gets one log, it moves the read position to the next log. To get all logs, the
debugging tool calls this function two or more times. When no log remains, rif_get_log
returns the E_OBJ error.

The contents of T_RGLOG are indicated below:
typedef struct t_rglog
{

UINT logtype : Log type
LOGTIM logtim : Time stamp
BITMASK valid : Validation flag
UINT bufsz : Buffer region (buf) size (in bytes)
char buf[] : Buffer region to store information (detailed later)

} T_RGLOG;

T_RGLOG is required to have a sufficient region for storing "the type and the data to be
stored in a buffer" (mentioned later) in addition to essential items, "logtype", "logtim", and
"valid".

The generated log type enters the T_RGLOG::type position. T_RSLOG::buf stores the
information that corresponds to the specified type. For a log type that permits the designation
of startup and end, the specifiers "LOG_ENTER" and "LOG_LEAVE" are set to
"T_RGLOG::type". The log types and the information to be stored are detailed below. Note
that the information logged at startup is different from information logged at termination only
when LOG_TYP_DISPATCH is used.

LOG_TYP_INTERRUPT (1): Interrupt handler
typedef struct t_rglog_interrupt
{

DT_INHNO inhno : Interrupt handler number
} T_RGLOG_INTERRUPT;

ITRON Debugging Interface Specification Ver. 1.00.00

97 RTOS Access Interface - Execution History (Trace Log) rif_get_log

LOG_TYP_ISR (2): Interrupt service routine
typedef struct t_rglog_isr
{

DT_ID isrid : Interrupt service routine ID
DT_INTNO inhno : Interrupt handler number

} T_RGLOG_ISR;

LOG_TYP_TIMERHDR (3): Timer event handler
typedef struct t_rglog_timerhdr
{

UINT type : Timer type
(stores the constant "OBJ_xxx" that is used for rif_ref_obj::objtype).

DT_ID hdrid : Timer event handler ID
DT_VP_INT exinf : Extension information

} T_RGLOG_TIMERHDR;

LOG_TYP_CPUEXC (4): CPU exception
typedef struct t_rglog_cpuexc
{

DT_ID tskid : ID of a targeted task
} T_RGLOG_CPUEXC;

If the cause of an CPU exception is outside the task, tskid is 0.

LOG_TYP_TSKEXC (5): Task exception
typedef struct t_rglog_tskexc
{

DT_ID tskid : ID of a targeted task
} T_RGLOG_TSKEXC;

LOG_TYP_TSKSTAT (6): Task state
typedef struct t_rglog_tskstat
{

DT_ID tskid : Task ID
DT_STAT tskstat : Status of task at transition destination
DT_STAT tskwait : Wait state
DT_ID wobjid : ID of waiting object

} T_RGLOG_TSKSTAT;

LOG_TYP_DISPATCH|LOG_ENTER (7): Task dispatch start
typedef struct t_rglog_dispatch_enter
{

DT_ID tskid : ID of executed task
UINT disptype : Dispatch type

} T_RGLOG_DISPATCH_ENTER;

The dispatch types are as follows:

DSP_NORMAL (0)
Dispatch from task context

DSP_NONTSKCTX (1)
Dispatch from interrupt process or CPU exception

ITRON Debugging Interface Specification Ver. 1.00.00

98 RTOS Access Interface - Execution History (Trace Log) rif_get_log

LOG_TYP_DISPATCH|LOG_LEAVE (135): Task dispatch end
typedef struct t_rglog_dispatch_leane
{

DT_ID tskid : ID of task about to be executed
} T_RGLOG_DISPATCH_LEAVE;

LOG_TYP_SVC (8): Service call
typedef struct t_rglog_svc
{

DT_FN fncno : Function code
UINT prmcnt : Parameter count
DT_VP_INT prmary []:Parameters

} T_RGLOG_SVC;
LOG_TYP_COMMENT (9): Comment (log consisting of a character string only)

typedef structt_rglog_comment B
{

UINT length : Character string length
char strtext [] : Character string (NULL-terminated string) - May be broken

} T_RGLOG_COMMENT;
Before the call of this function, the debugging tool must store the size (in bytes) of the buffer
region specified by T_RGLOG::buf in the T_RGLOG structure member bufsz.

Supplementary explanation
As regards a log (LOG_TYP_COMMENT::strtext) that is marked "May be broken", a trans-
fer is made to the extent possible even if the buffer region is insufficient. However, the mini-
mum required meaningful unit must be assured even if the transfer has to be broken before
completion due to buffer region insufficiency.* The enable/disable bit map (explained later)
for such a broken parameter remains enabled and the return value is E_NOMEM error.

T_RSLOG::valid indicates a valid field of items to be stored in T_RSLOG::buf. The items
are sequentially mapped into bit map in order. As regards LOG_TYP_SVC_ENT, for
instance, fncno, prmcnt, and Prmary [n] are assigned to the least significant bit, the second
least bit, and the third+n least bit, respectively. | is stored in the enabled item, while 0 is stored
in the disabled item. However, T_RGLOG_COMMENT::strtext is handled in the unit of the
entire character string and not in the character unit. Bits irrelevant to items are all 0.

T_RGLOG_SVC::prmcnt, got by a log type-service call start (LOG_TYP_SVC|LOG_
ENTER) stores the maximum number of obtained parameters. As regards the normally got
portion of T_RGLOG_SVC::prmary, the leftmost argument is handled as the first one and
the bit corresponding to T_RGLOG::valid is 1. If, for example, parameter is got partially,
note that the number of function arguments does not match T_RGLOG_ SVC::prmcnt.
T_RGLOG_SVC::prmcnt, got by a log type-service call end (LOG_TYP_SVC|LOG_
LEAVE) stores the maximum number of got parameters, including the return value. For the
normally got portion of T_RGLOG_SVC::prmary, the return value and function leftmost
argument are handled as the first and second ones, respectively, and the bit corresponding to
T_RGLOG::valid is 1.

*. Strtext is a NULL-terminated character string. To assure that a NULL-terminated character string
is meaningful, it is necessary to add a terminal symbol to break when the remaining buffer size is 1
byte.

ITRON Debugging Interface Specification Ver. 1.00.00

99 RTOS Access Interface - Execution History (Trace Log) rif_get_log

Some logs are output in a specified order. The following logs are output in a predetermined
order. The logs on the left side are displayed first.

• LOG_TYP_DISPATCH|LOG_LEAVE, LOG_TYP_TSKEXC

• LOG_TYP_DISPATCH|LOG_ENTER, LOG_TYP_TSKSTAT

LOG_TYP_SVC|LOG_LEAVE does not detect termination of the following functions:
• ext_tsk

• exd_tsk

LOG_TYP_TSKEXC|LOG_LEAVE will not be detected in the following situation:
• Non-local jump (longjmp) from task exception handler

LOG_TYP_TSKSTAT does not distinguish between the execution-ready state (READY) and
executing state (RUNNING). It recognizes both states as a READY state. The READY state
and RUNNING state are got by LOG_TYP_DISPATCH.

Option
OPT_PEEK (1)

Gets a trace log without deleting it from the spool.

Keys
RIF 04H

.RIF_GET_LOG 12H
.OPT_PEEK 10H [1]

The OPT_PEEK option is available.
.STRUCT_SVC 11H [1]

Uses a dedicated structure for the start/end of LOG_TYP_SVC.

Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

E_OBJ (-169)
The targeted object on the target was inoperative.

E_PAR (-145)
A parameter value was invalid.

ITRON Debugging Interface Specification Ver. 1.00.00

100 RTOS Access Interface - Execution History (Trace Log) rif_cfg_log

5.6.6 Reconfigur of trace log mechanism

rif_cfg_log Reconfigur of trace log mechanism [LOG]

ER rif_cfg_log (T_RCLOG * pk_rclog, FLAG flags)
T_RCLOG * pk_rclog

Pointer to the packet that stores trace log configuration information

FLAG flags
Flags

This function changes the trace log mechanism configuration.

The structure "T_RCLOG" which stores trace log configuration information is detailed below:
typedef struct t_rclog
{

UINT type : Trace log configuration type
DT_VP bufptr : Pointer to the trace log buffer
DT_SIZE bufsz : Trace log buffer size

} T_RCLOG;

T_RCLOG::type stores the trace log mechanism setup information. The buffer getting
method and log buffer full state operation can be specified as the setup information. The fol-
lowing values can be used as setup information (The E_NOSPT error occurs if an unsup-
ported method is selected).

Buffer getting method
• LOG_HARDWARE (0)

Gets buffer with TIF-based hardware log mechanism
• LOG_SOFTWARE (1)

Gets buffer with software-based log mechanism executed by RIM alone

Operation when buffer full
• LOG_BUFFUL_STOP (0)

Stops getting trace when buffer full
• LOG_BUFFUL_FORCEEXEC (4)

Continues getting buffer by discarding oldest information when buffer full

T_RCLOG::bufptr and T_RCLOG::bufsz set the guide for RTOS history storage region
creation by the RIM and debugging tool. When getting log is intended, the specified region is
used as the log buffer.

Supplementary explanation
If a log mechanism is used without these setting mentioned above, the operation follows
implement definition.

ITRON Debugging Interface Specification Ver. 1.00.00

101 RTOS Access Interface - Execution History (Trace Log) rif_cfg_log

If LOG_HARDWARE is specified and the RIM checks the key code DEBUG-
GER.LOG.NUM and concludes that it has no hardware log mechanism, the function must
return E_NOSPT.
If the log buffer region overlaps with a program region (data or code region) or a nonexistent
memory space is specified, the RIM returns the ET_MACV error.

Keys
RIF 04H

.RIF_CFG_LOG 13H

Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

E_PAR (-145)
A parameter value was invalid.

ET_MACV (-26)
An invalid memory region on the target was accessed.

ITRON Debugging Interface Specification Ver. 1.00.00

102 RTOS Access Interface - Other RTOS-related Information rif_ref_cfg

5.7 Other RTOS-related Information

5.7.1 Get of kernel configuration

rif_ref_cfg Get of kernel configuration [R]

ER rif_ref_cfg
(T_INFO * p_information, UINT packets, FLAG flags)

T_INFO * p_information
Pointer to the beginning of a get information structure array

UINT packets
Length of the get information structure array indicated by p_information

FLAG flags
Flags

This function gets a kernel configuration.*

To get information, this function uses the function for getting information T_INFO and key
code. For details, see Section 3.6. rif_ref_cfg can get key codes under the INF_CFG key.

Keys
CFG 7H

.CPUEXCEPTION 17H
.MIN 1H [W]

Minimum value of the internal exception causes that the kernel uses
.MAX 2H [W]

Maximum value of the internal exception causes that the kernel uses
.NUM 3H [W]

Count of internal exception causes that the kernel uses
.SYSTIM 20H

.TICK_D 1H [W]
Denominator when the timer resolution is expressed in milliseconds
(ms)

.TICK_N 2H [W]
Numerator when the timer resolution is expressed in milliseconds (ms)

.UNIT_D 3H [W]
Denominator when the timer unit is expressed in milliseconds (ms)

.UNIT_N 4H [W]
Numerator when the timer unit is expressed in milliseconds (ms)

*. In the ITRON Debugging Interface Specification, the information changed by kernel reconfigura-
tion is defined as the kernel configuration. You should remember this definition if you have diffi-
culty selecting dbg_ref_rim (explained later) or rif_ref_cfg function as a new information item
to add in.

ITRON Debugging Interface Specification Ver. 1.00.00

103 RTOS Access Interface - Other RTOS-related Information rif_ref_cfg

.LOGTIM 21H
.TICK_D 1H [W]

Denominator when the log time resolution is expressed in milliseconds
(ms)

.TICK_N 2H [W]
Numerator when the log time resolution is expressed in milliseconds
(ms)

.UNIT_D 3H [W]
Denominator when the log time unit is expressed in milliseconds (ms)

.UNIT_N 4H [W]
Numerator when the log time unit is expressed in milliseconds (ms)

.INTERRUPT 22H
.MIN 1H [W]

Minimum value of the external interrupt factors that the kernel uses
.MAX 2H [W]

Maximum value of the external interrupt factors that the kernel uses
.NUM 3H [W]

Count of external interrupt factors that the kernel uses
.ISR 25H

.MIN 1H [W]
Minimum ISR number offered by kernel

.MAX 2H [W]
Maximum ISR number offered by kernel

.NUM 3H [W]
Number of ISRs offered by kernel

.MAKER 23H [W]
Manufacturer code

.PRIORITY 24H
.MIN 1H [W]

Minimum value of the priority levels available to the kernel
.MAX 2H [W]

Maximum value of the priority levels available to the kernel
.OBJ_SEMAPHORE 80H

.MIN 1H [W]
Minimum value of assignable IDs

.MAX 2H [W]
Maximum value of assignable IDs

.OBJ_EVENTFLAG 81H
.MIN 1H [W]

Minimum value of assignable IDs
.MAX 2H [W]

Maximum value of assignable IDs
.OBJ_DATAQUEUE 82H

.MIN 1H [W]
Minimum value of assignable IDs

ITRON Debugging Interface Specification Ver. 1.00.00

104 RTOS Access Interface - Other RTOS-related Information rif_ref_cfg

.MAX 2H [W]
Maximum value of assignable IDs

.OBJ_MAILBOX 83H
.MIN 1H [W]

Minimum value of assignable IDs
.MAX 2H [W]

Maximum value of assignable IDs
.OBJ_MUTEX 84H

.MIN 1H [W]
Minimum value of assignable IDs

.MAX 2H [W]
Maximum value of assignable IDs

.OBJ_MESSAGEBUFFER 85H
.MIN 1H [W]

Minimum value of assignable IDs
.MAX 2H [W]

Maximum value of assignable IDs
.OBJ_RENDEZVOUSPORT 86H

.MIN 1H [W]
Minimum value of assignable IDs

.MAX 2H [W]
Maximum value of assignable IDs

.OBJ_RENDEZVOUS 87H
.MIN 1H [W]

Minimum value of assignable IDs
.MAX 2H [W]

Maximum value of assignable IDs
.OBJ_FMEMPOOL 88H

.MIN 1H [W]
Minimum value of assignable IDs

.MAX 2H [W]
Maximum value of assignable IDs

.OBJ_VMEMPOOL 89H
.MIN 1H [W]

Minimum value of assignable IDs
.MAX 2H [W]

Maximum value of assignable IDs
.OBJ_TASK 8AH

.MIN 1H [W]
Minimum value of assignable IDs

.MAX 2H [W]
Maximum value of assignable IDs

.OBJ_CYCLICHANDLER 8DH
.MIN 1H [W]

Minimum value of assignable IDs

ITRON Debugging Interface Specification Ver. 1.00.00

105 RTOS Access Interface - Other RTOS-related Information rif_ref_cfg

.MAX 2H [W]
Maximum value of assignable IDs

.OBJ_ALARMHANDLER 8EH
.MIN 1H [W]

Minimum value of assignable IDs
.MAX 2H [W]

Maximum value of assignable IDs
.PRVER A0H [S]

Version number of the kernel
.SPVER A1H [S]

ITRON Specification version number

If the above .MAX key code is 0 and .MIN key code is 0, it means that the associated function
is not supported.
.MIN is a key code of getting information to indicate the lower limit for an object ID or other
item used by the system. If the employed debugging tool does not display such system objects,
their values can be replaced by the object ID minimum value (1) available to the user.*

Supplementary explanation

If a nonexistent key code of getting information is specified or if this function is called
together with a buffer having a size of "0", the function returns E_PAR (parameter error).

Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

E_PAR (-145)
A parameter value was invalid.

E_OBJ (-169)
The targeted objuect on the target was inoperative.

*. According to the ITRON Specification, system objects customarily have a negative object ID.
Meanwhile, user tasks can only use a positive object ID. Therefore, if system objects are not dis-
played, the INF_MIN value is not so important.

ITRON Debugging Interface Specification Ver. 1.00.00

106 RTOS Access Interface - Other RTOS-related Information rif_ref_cfg

This page is intentional blank.

ITRON Debugging Interface Specification Ver. 1.00.00

107 Target Access Interface - Memory Operations tif_alc_mbh

6.Target Access Interface

6.1 Memory Operations

6.1.1 Allocate memory (on host)

tif_alc_mbh Allocate memory (on host) [R]

ER tif_alc_mbh (VP * p_blk, UINT blksz, FLAG flags)
VP * p_blk

Pointer to the region that stores the pointer to the beginning of an allocated
block

UINT blksz
Block size

FLAG flags
Flags

To create a work region for a memory read, the debugging tool provides the RIM with a means
of memory allocation. When the C library is available to the host, the debugging tool only call
the malloc function. However, the RIM must not assume that the C library is implemented in
the host on which the debugging tool runs. Therefore, the RIM must not internally call the
malloc function.

Keys
TIF 05H

.TIF_ALC_MBH 01H

Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

E_PAR (-145)
A parameter value was invalid.

ITRON Debugging Interface Specification Ver. 1.00.00

108 Target Access Interface - Memory Operations tif_alc_mbt

6.1.2 Allocate memory (on target)

tif_alc_mbt Allocate memory (on target) [E]

ER tif_alc_mbt (DT_VP * p_blk, DT_SIZE blksz, FLAG flags)
DT_VP * p_blk

Region for storing the pointer to the beginning of an allocated memory region

DT_SIZE blksz
Size (in bytes) of the memory region to be allocated

FLAG flags
Flags

When the debugging tool can manage the memory on the target,* this function is executed to
allocate the memory on the target for the purpose of performing an operation, for instance, "to
let the RIM write a glue routine** on the target".

If dynamic memory allocation is unable, there is no need to support this function. In such an
instance, the RIM must allocate a region itself.

Keys
TIF 05H

.TIF_ALC_MBT 02H [1]
Supports this function.

Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_PAR (-145)
A parameter value was invalid.

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

ET_NOMEM (-33)
The request could not be executed due to insufficient memory on the target.

*: The assumed situation is such that a function for emulating a memory within a space where no
physical memory exists, which some general-purpose debuggers have, is implemented.

**: For an SVC issue, the RIM may generate a temporary program for calling a targeted SVC. Such a
program is called a glue routine.

ITRON Debugging Interface Specification Ver. 1.00.00

109 Target Access Interface - Memory Operations tif_fre_mbh

6.1.3 Free memory (on host)

tif_fre_mbh Free memory (on host) [R]

ER tif_fre_mbh (VP blk, FLAG flags)
VP blk

Pointer to the beginning of the memory block to be freed

FLAG flags
Flags

This function frees a memory that is allocated on a host. On most of the hosts, it is assumed
that this function corresponds to the C library’s "free" function.

Supplementary explanation
When "blk" is contained in a closed section between the block start position and the "block
length - 1" position, this function normally frees memory.

Keys
TIF 05H

.TIF_FRE_MBH 03H

Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

E_PAR (-145)
A parameter value was invalid.

E_OBJ (-169)
The targeted object on the target was inoperative.

ITRON Debugging Interface Specification Ver. 1.00.00

110 Target Access Interface - Memory Operations tif_fre_mbt

6.1.4 Free memory (on target)

tif_fre_mbt Free memory (on target) [E]

ER tif_fre_mbt (DT_VP blk, FLAG flags)
DT_VP blk

Pointer to the beginning of the memory block to be freed

FLAG flags
Flags

This function frees a memory that is allocated to the target.

Supplementary explanation
When blk is contained in a closed section between the block start position and the "block
length - 1" position, this function normally frees memory.

Keys
TIF 05H

.TIF_FRE_MBT 04H [1]
Supports this function.

Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

E_PAR (-145)
A parameter value was invalid.

ET_NOMEM (-33)
The request could not be executed due to insufficient memory on the target.

ET_OBJ (-41)
The targeted object on the target was inoperative.

ITRON Debugging Interface Specification Ver. 1.00.00

111 Target Access Interface - Memory Operations tif_get_mem

6.1.5 Read memory (memory block)

tif_get_mem Read memory [R]

ER tif_get_mem
(VP p_result, DT_VP memadr, DT_SIZE memsz, FLAG flags)

VP p_result
Pointer to the beginning of the storage region

DT_VP memadr
Read starting address

DT_SIZE memsz
Length of the data to be read (in bytes)

FLAG flags
Flags

tif_get_mem reads the data in the target memory that has a length of memsz and begins with
memadr. Before a function call, the RIM creates a buffer with a length greater than memsz,
and sets it in p_result. The debugging tool stores the read memory data in p_result-speci-
fied region as a byte string.

Extension
The following extended functionalities are defined:

Flags
FLG_NOCONSISTENCE (10000000H): Nonconsistency flag

When this flag is specified, the data that is got need not be consistent (e.g.,
the task is still in the waiting state although there is no factor of the task
wait).

FLG_NOSYSTEMSTOP (20000000H): An explicit system halt is not permitted.
When this flag is specified, tif_brk_tgt must not be used within the function
to halt the system. If this flag is not supported, the E_NOSPT error occurs.

Extension

Supplementary explanation
The read access size is determined by the debugging tool.

Keys
TIF 05H

.TIF_GET_MEM 05H
.FLG_NOCONSISTENCE 01H [1]

Supports the FLG_NOCONSISTENCE flag.
.FLG_NOSYSTEMSTOP 02H [1]

Supports the FLG_NOSYSTEMSTOP flag.

ITRON Debugging Interface Specification Ver. 1.00.00

112 Target Access Interface - Memory Operations tif_get_mem

Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

ET_MACV (-26)
An invalid memory region on the target was accessed.

E_PAR (-145)
A parameter value was invalid.

E_CONSIST (-225)
Consistency was not assured (however, it is not handled as an error if
FLG_NOCONSISTENCE is set).

ITRON Debugging Interface Specification Ver. 1.00.00

113 Target Access Interface - Memory Operations tif_get_bls

6.1.6 Read memory (block set)

tif_get_bls Read memory by block set 0[R]

ER tif_get_bls
(VP p_result , T_BLKSET * blkset, FLAG flags)

VP p_result
Pointer to the region that stores the results of a read

T_BLKSET * blkset
Structure specifying the read location

FLAG flags
Flags

This function reads the contents of the target memory by a block set. The block set retains
positions consisting of a memory address and byte length within a target memory space.
tif_get_bls can read the target memory space indicated by the block set in batch processing.

The T_BLKSET structure is an aggregate that stores memory blocks, which are read units.
typedef struct t_blkset
{

UINT blkcnt : Count of blocks
T_MEMBLK blkary []: Block array

} T_BLKSET;

typedef struct t_memblk
{

DT_VP blkptr : Pointer to store the memory block data
DT_SIZE blksz : Byte count of memory block data

} T_MEMBLK;

The read contents of the target memory are stored sequentially in the p_result-defined mem-
ory space in the order specified by the block set. If the memory is read with the following
block set, the read data is stored as indicated in Table 22.

T_BLKSET pk_blkset = { 3, { { 0x1000, 128} , { 0x2000, 1} , { 0x3000, 64} } }

Table 22: Relation Between Block Set and Data Arrangement

Starting offset 0 128 129

Data length 128 bytes 1 byte 64 bytes

Data address 0x1000 to 0x1080 0x2000 0x3000 to 0x3040

ITRON Debugging Interface Specification Ver. 1.00.00

114 Target Access Interface - Memory Operations tif_get_bls

Supplementary explanation
When this function returns E_OK, it assures that the required block set is normally read in
accordance a with required conditions. If any one of requested blocks is unsuccessfully read,
the E_MACV error occurs. Furthermore, if FLG_NONCONSISTENCE (described later) is
not specified and consistency cannot be assured for all regions instead of on an individual
memory block basis, the E_CONSIST error occurs, unlike when tif_get_mem is executed
continuously.

The read access size is determined by the debugging tool.

Before a function call, the RIM must create a buffer that is large enough to store the result, and
store it in p_result.

Extension
The following operation can be executed with extended functions:

Flags
FLG_NOCONSISTENCE (10000000H): Nonconsistency flag

When this flag is specified, the data that is got need not be consistent (e.g.,
the task is still in the wait state although there is no cause of the task’s wait).

FLG_NOSYSTEMSTOP (20000000H): An explicit system halt is not permitted.
When this flag is specified, tif_brk_tgt must not be used within the function
to halt the system. If this flag is not supported, the E_NOSPT error occurs.

Extension

Keys
TIF 05H

.TIF_GET_BLS 06H
.FLG_NOCONSISTENCE 01H [1]

Supports the FLG_NOCONSISTENCE flag.
.FLG_NOSYSTEMSTOP 02H [1]

Supports the FLG_NOSYSTEMSTOP flag.

Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

ITRON Debugging Interface Specification Ver. 1.00.00

115 Target Access Interface - Memory Operations tif_get_bls

ET_MACV (-26)
An invalid memory region on the target was accessed.

E_PAR (-145)
A parameter value was invalid.

E_CONSIST (-225)
Consistency was not assured (however, it is not handled as an error if
FLG_NOCONSISTENCE is set).

ITRON Debugging Interface Specification Ver. 1.00.00

116 Target Access Interface - Memory Operations tif_set_mem

6.1.7 Write memory (memory block)

tif_set_mem Write memory by memory block [R]

ER tif_set_mem
(VP storage , DT_VP memadr, DT_SIZE memsz, FLAG flags)

VP storage
Pointer to the beginning of the region that retains the data to be written

DT_VP memadr
Address on the target where data is written

DT_SIZE memsz
Length of data to be written (in bytes)

FLAG flags
Flags

This function writes to the target memory by memory block in accordance with the stored con-
tents in storage. For details, see Section 6.1.5.

Extension
The following operation can be executed with extended function:

Flags
FLG_NOCONSISTENCE (10000000H): Nonconsistency flag

When this flag is specified, the data that is got need not be consistent (e.g.,
the task is still in the wait state although there is no factor of the task wait).

FLG_NOSYSTEMSTOP (20000000H): An explicit system halt is not permitted.
When this flag is specified, tif_brk_tgt must not be used within the function
to halt the system. If this flag is not supported, the E_NOSPT error occurs.

Extension

Supplementary explanation
The write access size is determined by the debugging tool.

Keys
TIF 05H

.TIF_SET_MEM 07H
.FLG_NOCONSISTENCE 01H [1]

Supports the FLG_NOCONSISTENCE flag.
.FLG_NOSYSTEMSTOP 02H [1]

Supports the FLG_NOSYSTEMSTOP flag.

ITRON Debugging Interface Specification Ver. 1.00.00

117 Target Access Interface - Memory Operations tif_set_mem

Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

ET_MACV (-26)
An invalid memory region on the target was accessed.

E_PAR (-145)
A parameter value was invalid.

E_CONSIST (-225)
Consistency was not assured (however, it is not handled as an error if
FLG_NOCONSISTENCE is set).

ITRON Debugging Interface Specification Ver. 1.00.00

118 Target Access Interface - Memory Operations tif_set_bls

6.1.8 Write memory (block set)

tif_set_bls Write memory by block set [R]

ER tif_set_bls (VP storage, T_BLKSET * blkset, FLAG flags)
VP storage

Pointer to the region that stores the data to be written

T_BLKSET * blkset
Pointer to the structure that indicates the write destination

FLAG flags
Flags

This function writes data into the memory on the target by block set. For details, see Section
6.1.6.
This function and the tif_get_bls function are opposite. If the following operation is per-
formed, it must be assured that the memory data remains unchanged (except for spaces with a
real-time capability or dynamically changing contents).

Program source
{

//Writing the read data as it is
if(get_bls(buffer,blkset,0) == E_OK)

set_bls(buffer,blkset,0);

Program source
}

Supplementary explanation
If any of the specified block sets fails, the function ends with E_MACV. In this instance,
tif_set_bls does not assure or report the extent to which blkset is written.

The write access size is determined by the debugging tool.

Extension
The following operation can be executed as extended functions:

Flags
FLG_NOCONSISTENCE (10000000H): Non consistency flag

When this flag is specified, the data that is got need not be consistent (e.g.,
the task is still in the wait state although there is no factor of the task’s wait).

FLG_NOSYSTEMSTOP (20000000H): An explicit system halt is not permitted.
When this flag is specified, tif_brk_tgt must not be used within the function
to halt the system. If this flag is not supported, the E_NOSPT error occurs.

Extension

ITRON Debugging Interface Specification Ver. 1.00.00

119 Target Access Interface - Memory Operations tif_set_bls

Keys
TIF 05H

.TIF_SET_BLS 08H
.FLG_NOCONSISTENCE 01H [1]

Supports the FLG_NOCONSISTENCE flag.
.FLG_NOSYSTEMSTOP 02H [1]

Supports the FLG_NOSYSTEMSTOP flag.

Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

ET_MACV (-26)
An invalid memory region on the target was accessed.

E_PAR (-145)
A parameter value was invalid.

E_CONSIST (-225)
Consistency was not assured (however, it is not handled as an error if
FLG_NOCONSISTENCE is set).

ITRON Debugging Interface Specification Ver. 1.00.00

120 Target Access Interface - Memory Operations tif_set_pol

6.1.9 Set of change report

tif_set_pol Set of memory data change report [E]

ER_ID tif_set_pol
(ID polid, DT_VP adr, DT_INT value, UINT length, FLAG flags)

ID polid
Polling ID

DT_VP adr
Memory address where a change is detected

DT_INT value
Value to be compared

UINT length
Byte length of a targeted memory block (1, 2, 4, or 8)

FLAG flags
Flags

(Return value) ID polid
Any value identifying this polling setting

This function sets a polling to be performed by a debugging tool. The debugging tool performs
a polling to monitor data at a specific memory address. If there is any change in the data, the
debugging tool uses a callback function to report it. However, this operation may not keep up
with rapid data changes.
If OPT_CMPVALUE is specified, the debugging tool compares value with the memory data.
If they differ, the debugging tool calls the tif_rep_pol. If OPT_CMPVALUE is not speci-
fied, the debugging tool saves the memory data at the time of tif_set_pol setting, and com-
pares it with the current data. If they differ, the debugging tool calls the tif_rep_pol function.

Supplementary explanation
Unlike an access break, tif_set_pol does not report unless the contents change.

A memory data update and a tif_rep_pol function call are not concurrent.

When the function is executed successfully in situations where the automatic number assign-
ment flag FLG_AUTONUMBERING is specified, the function returns a value of 1 or greater
(ID value) that is assigned to a setup item. This is also true even when the automatic assign-
ment flag is not specified.

ITRON Debugging Interface Specification Ver. 1.00.00

121 Target Access Interface - Memory Operations tif_set_pol

Flags
OPT_CMPVALUE (2)

Sets a value to be compared.

FLG_AUTONUMBERING (40000000H): ID automatic assignment
Automatically assigns an ID. If a specified argument is same as the ID
value, it is ignored by the function. When the function is successfully exe-
cuted, it returns the automatically assigned ID.

Keys
TIF 05H

.TIF_SET_POL 09H [1]
Supports this function.

.FLG_AUTONUMBERING 04H [1]
Supports the FLG_AUTONUMBERING flag.

.OPT_CMPVALUE 10H [1]
Supports the OPT_CMPVALUE option.

Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

ET_MACV (-26)
An invalid memory region on the target was accessed.

E_PAR (-145)
A parameter value was invalid.

E_ID (-146)
The specified object ID was invalid.

E_NOID (-162)
Count of IDs for automatic assignment was insufficient.

E_OBJ (-169)
The targeted obuject on the target was inoperative

ITRON Debugging Interface Specification Ver. 1.00.00

122 Target Access Interface - Memory Operations tif_del_pol

6.1.10 Delete of change report setting

tif_del_pol Delete of change report setting [E]

ER tif_del_pol (ID polid, FLAG flags)
ID polid

ID to be deleted

FLAG flags
Flags

This function deletes a change report (polling) that is set by tif_set_pol. When ID_ALL (=-
1) is specified, all the change reports are deleted.

Supplementary explanation
This function can also be called from the report function tif_rep_pol.

Keys
TIF 05H

.TIF_DEL_POL 0AH [1]
Supports this function.

Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

E_ID (-146)
The specified object ID was invalid.

E_OBJ (-169)
The targeted object on the target was inoperative

ITRON Debugging Interface Specification Ver. 1.00.00

123 Target Access Interface - Memory Operations tif_rep_pol

6.1.11 Change report

tif_rep_pol Report of memory data change [E:callback]

void tif_rep_pol (ID polid, DT_INT value, FLAG flags)
ID polid

Polling ID

DT_INT value
Memory data value after a change

FLAG flags
Flags

When a debugging tool detects a memory data change with a polling process that is performed
by tif_set_pol, this function reports the change.

Keys
TIF 05H

.TIF_REP_POL 0BH

Errors
This function does not have a return value.

ITRON Debugging Interface Specification Ver. 1.00.00

124 Target Access Interface - Register Operations tif_get_reg

6.2 Register Operations

6.2.1 Read of register value

tif_get_reg Read of register value [R]

ER tif_get_reg (VP r_result, BITMASK_8 * p_valid, FLAG flags)
VP r_result

Pointer to the beginning of the region that stores a register value

BITMASK_8 * p_valid
Pointer to validation flag about register table items
(NULL: Targets entire context)

FLAG flags
Flags

This function gets the register value of the current target in accordance with the contents of the
register set description table.

The variable p_result is the pointer to the buffer for storing the register value that will be got
by execution of this function. Before execution of this function, the debugging tool must cre-
ate a region that is large enough to store the register value. The key code of getting informa-
tion RIF.RIF_GET_RDT.REGISTER.SIZE should be used for the size of the buffer. The
buffer size can also be calculated from the register table got by the function rif_get_rdt. In
such a case, a region large enough to store all the registers indicated by the register table must
be furnished.

p_valid specifies whether the registers should be enabled or disabled. When it is given as a
function argument, disabled registers will not be got. Furthermore, this function stores the got
results of targeted registers in p_valid. When all the targeted registers are got normally, this
function returns ET_SYS or other errors depending on the situation. The information stored
in regions related to the registers which could not be got is implement-dependent. Even if the
enabled/disabled information is given in excess of the number of registers
(T_GRDT::regcnt), excessive registers will not be got.
If NULL is specified for p_valid, all registers are targeted for getting so the result details will
not be stored.

Extension
The following operation can be executed as extended function:

Flags
FLG_NOCONSISTENCE (10000000H): Nonconsistency flag

When this flag is specified, the data that is get need not be consistent (e.g.,
the task is still in the wait state although there is no factor of the task’s wait).

ITRON Debugging Interface Specification Ver. 1.00.00

125 Target Access Interface - Register Operations tif_get_reg

FLG_NOSYSTEMSTOP (20000000H): An explicit system halt is not permitted.
When this flag is specified, the tif_brk_tgt must not be used in the function
to the function to halt the system. If this flag is not supported, the
E_NOSPT error occurs.

Extension

Supplementary explanation
The read register value is stored in accordance with the endian of the target.

If a non-existent register is selected as the read operation target, the function returns the
E_PAR error.

Keys
TIF 05H

.TIF_GET_REG 0CH
.FLG_NOCONSISTENCE 01H [1]

Supports the FLG_NOCONSISTENCE flag.
.FLG_NOSYSTEMSTOP 02H [1]

Supports the FLG_NOSYSTEMSTOP flag.

Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

E_CONSIST (-225)
Consistency was not assured. (however, it is not handled as error if
FLG_NOCONSISTENCE is set).

E_PAR (-145)
A parameter value was invalid.

ET_MACV (-26)
An invalid memory region on the target was accessed.

ITRON Debugging Interface Specification Ver. 1.00.00

126 Target Access Interface - Register Operations tif_set_reg

6.2.2 Wite register

tif_set_reg Write of register value [R]

ER tif_set_reg (VP storage, BITMASK_8 * p_valid, FLAG flags)
VP storage

Pointer retaining the value to be written

BITMASK_8 * p_valid
Pointer to validation flag about register table items
(NULL: Targets entire context)

FLAG flags
Flags

This function changes the value of a register on the target.

Supplementary explanation
The value to be written in a register must be stored in the endian of the target.

If a nonexisting register is specified as the write destination, the function returns the E_PAR
error.

Keys
TIF 05H

.TIF_SET_REG 0DH

Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

E_CONSIST (-225)
Consistency was not assured (however, it is not handled as an error if
FLG_NOCONSISTENCE is set).

E_PAR (-145)
A parameter value was invalid.

ET_MACV (-26)
An invalid memory region on the target was accessed.

ITRON Debugging Interface Specification Ver. 1.00.00

127 Target Access Interface - Target Operations tif_sta_tgt

6.3 Target Operations

6.3.1 Start of target execution

tif_sta_tgt Start of target execution [R]

ER tif_sta_tgt (DT_VP staaddr, FLAG flags)
DT_VP staaddr

Starting address

FLAG flags
Flags

This function executes the target from a specified address. It starts to execute target from a
specified address while retaining the current register values and target system status.

The write access size is determined by the debugging tool.

Extension

Flag
OPT_RESTART (1)

Restarts target (ignores argument staadr).

Extension

Supplementary explanation
This function can be executed only when the target is stopped or temporarily broken. If the
function cannot be executed in such a state, it returns the E_EXCLUSIVE error.

Keys
TIF 05H

.TIF_STA_TGT 0EH
.OPT_RESTART 10H [B]

OPT_RESTART is available.

Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

ITRON Debugging Interface Specification Ver. 1.00.00

128 Target Access Interface - Target Operations tif_sta_tgt

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

E_PAR (-145)
A parameter value was invalid.

E_EXCLUSIVE (-226)
Another request has already been issued. The function could not receive a
new request until execution of the previous request ends.

ITRON Debugging Interface Specification Ver. 1.00.00

129 Target Access Interface - Target Operations tif_stp_tgt

6.3.2 Stop of target execution

tif_stp_tgt Stop of target execution [E]

ER tif_stp_tgt (FLAG flags)
FLAG flags

Flags

This function stops the target when it is issued.

Supplementary explanation
When this function executes target switches to a stop state even when it has been stopped or
broken. Target execution resumption from the stop state depends on an implement definition.

Keys
TIF 05H

.TIF_STP_TGT 0FH [1]
Supports this function.

Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

ITRON Debugging Interface Specification Ver. 1.00.00

130 Target Access Interface - Target Operations tif_brk_tgt

6.3.3 Break of target execution

tif_brk_tgt Break of target execution [E]

ER tif_brk_tgt (FLAG flags)
FLAG flags

Flags

This function stops the target in such a manner that its execution can be resumed later.

Keys
TIF 05H

.TIF_BRK_TGT 10H [1]
Supports this function.

Supplementary explanation
If this function is executed while the target is stopped, the E_EXCLUSIVE error occurs.
(E_OK occurs in a break state.)

Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

E_EXCLUSIVE (-226)
Another request has already been issued. The function could not receive a
request until the execution of previous request ends.

ITRON Debugging Interface Specification Ver. 1.00.00

131 Target Access Interface - Target Operations tif_cnt_tgt

6.3.4 Resumption of target execution

tif_cnt_tgt Resumption of target execution [R]

ER tif_cnt_tgt (FLAG flags)
FLAG flags

Flags

This function resumes a target execution in break state.

Supplementary explanation
If this function is executed when the target is not in a break state, the E_EXCLUSIVE error
occurs.

Keys
TIF 05H

.TIF_CNT_TGT 11H

Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

E_EXCLUSIVE (-226)
Another request has already been issued. The function could not receive a
new request until execution of the previous request ends.

ITRON Debugging Interface Specification Ver. 1.00.00

132 Target Access Interface - Hardware Break Operations tif_set_brk

6.4 Hardware Break Operations

6.4.1 Set of break point

tif_set_brk Set of break point [R]

ER_ID tif_set_brk (ID brkid, T_TSBRK * pk_tsbrk, FLAG flags)
ID brkid

Break point ID

T_TSBRK * pk_tsbrk
Pointer to the structure having break point information

FLAG flags
Flags

(Return value) ID brkid
Assigned break point ID

This function not only sets a break point on the target but also sets a callback routine for such a
break.

The contents of T_TSBRK are given below:
typedef struct t_tsbrk
{

UINT brktype : Break type
DT_VP brkadr : Address at which a break is set
VP_INT brkprm : Callback routine report flag

} T_TSBRK;

The meaning and the value that the brktype parameter can be set are shown below:
• BRK_EXECUTE (1)

Execution break

Supplementary explanation
When the function is executed successfully in situations where the automatic number assign-
ment flag FLG_AUTONUMBERING is specified, the function returns the value of 1 or
greater (ID value), which is assigned to a setup item. This is also true even when the automatic
assignment flag is not specified.

Flag
FLG_NOREPORT (80000000H): Report function invalidation

The paired callback function will not be called.

ITRON Debugging Interface Specification Ver. 1.00.00

133 Target Access Interface - Hardware Break Operations tif_set_brk

Extension
The following operation can be executed as extended functions:

For the brktype parameter, the following value can also be set:
• BRK_ACCESS (2)

Access break

When an access break is specified, at least one of the following access specifiers must be set.
However, two or more can be specified simultaneously.

• ACS_READ (0x100)
Invokes break when read performed at target address

• ACS_WRITE (0x200)
Invokes break when write performed at target address

• AS_MODIFY (0x400)
Invokes break when modification made at target address

When the employed debugging tool supports a conditional break function recommended by the
ITRON Debugging Interface Specification, setting OPT_CNDBRK to the flags parameter
enables to use the following T_TSBRK_CND instead of T_TSBRK. For use of
T_TSBRK_CND, the RIM must cast a T_TSBRK_CND type variable into the T_TSBRK
type and pass it to tif_set_brk.

typedef struct t_tsbrk_cnd
{

UINT brktype : Break type
DT_VP brkadr : Address at which a break is set
VP_INT brkprm : Callback routine report flag
DT_VP cndadr : Address to be set for a conditional break
VP_INT cndval : Value to be set for a conditional break
UINT cndvallen : Byte lenght (1, 2, or 4) of the value to be set for a conditional

break
} T_TSBRK_CND;

When this structure and OPT_CNDBRK are used, a conditional expression (*cndadr == cnd-
val) is added to regular break conditions. A break is regarded as a provisional break hit only
when these two conditions are satisfied, and tif_rep_brk is called as needed.

Flags
OPT_CNDBREAK (4)

Uses a conditional break mechanism of the debugging tool.

FLG_AUTONUMBERING (40000000H): ID automatic assignment
Automatically assigns an ID. If the ID value is specified as an argument, it is
ignored by the function. When the function is successfully executed, it
returns the automatically assigned ID.

Extension

ITRON Debugging Interface Specification Ver. 1.00.00

134 Target Access Interface - Hardware Break Operations tif_set_brk

Keys
TIF 05H

.TIF_SET_BRK 13H
.FLG_AUTONUMBERING 04H [1]

Supports the FLG_AUTONUMBERING flag.
.OPT_CNDBREAK 10H [1]

Supports the OPT_CNDBREAK option.
.BRK_ACCESS 11H [1]

An access break is available.

Errors
E_NOSPT (-137)

An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

E_NOID (-162)
Count of ID for automatic assignment was insufficient .

E_OBJ (-169)
The targeted object on the target was inoperative.

ET_ID (-18)
The specified kernel object IDs was invalid.

E_PAR (-145)
A parameter value was invalid.

ET_MACV (-26)
An invalid memory region on the target was accessed.

ITRON Debugging Interface Specification Ver. 1.00.00

135 Target Access Interface - Hardware Break Operations tif_del_brk

6.4.2 Delete of break point

tif_del_brk Delete of break point [R]

ER tif_del_brk (ID brkid, FLAG flags)
ID brkid

Break point ID

FLAG flags
Flags

This function deletes a break point that corresponds to a specified ID.

The following special parameter can be set to specify the ID for deletion.
• ID_ALL (-1)

Deletes all break points.

Keys
TIF 05H

.TIF_DEL_BRK 14H

Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

E_ID (-146)
The specified object ID was invalid.

E_OBJ (-169)
The targeted object in the target was inoperative.

ITRON Debugging Interface Specification Ver. 1.00.00

136 Target Access Interface - Hardware Break Operations tif_rep_brk

6.4.3 Break report

tif_rep_brk Break report [R:callback]

ER tif_rep_brk (ID brkid, VP_INT param)
ID brkid

Break point ID

VP_INT param
Report parameter (see Section 6.4.1)

This function reports that the target is stopped at a break point specified by tif_rep_brk. In
this callback function, the RIM checks whether the conditions for this break are satisfied and
determines whether or not to break the system. When this function concludes that the condi-
tions are satisfied, the debugging tool performs a specified operation and escapes the function.
And then, it continues a target stop process. If the function does not conclude that the condi-
tions are satisfied, it cancels a target stop process and resumes target execution.

A series of break operations is show below:
1. A break setting request is delivered by tif_set_brk to the RIM.
2. The RIM uses tif_set_brk to set a break point at a location that satisfies the request.
3. When the debugging tool reaches the break point, it checks whether it has been set by

tif_set_brk.
4. If so, the debugging tool executes tif_rep_brk using the break ID and report flag as

arguments.
5. The callback function check whether the currently stopped conditions satisfiey the

requested break setting on the basis of the report parameter, break ID, and
tif_set_brk argument (when the request is satisfied, proceed to the step 6. If not,
proceed to the step 6').

6. When the request is satisfied, tif_rep_brk calls rif_rep_brk.
7. After a necessary process is performed by rif_rep_brk, tif_rep_brk returns

E_TRUE.
8. The debugging tool reports the user that the target is broken (the target is in a break

state in the steps 3 or later operation).

6'. If the request is not satisfied, E_FALSE is returned.
7'. The debugging tool resumes the target operation.

Supplementary explanation
When this function returns E_TRUE, the debugging tool continues a break operation. On the
other hand, when this function returns E_FALSE, the debugging tool suspends a break opera-
tion to stop the election of target. However, if BRK_REPORT is specified as a stop state
operation for the target break point, the break operation does not continue even if this function
returns E_TRUE.
While this function is making a decision, target execution is in a break state. However, this
does not hold true when BRK_REPORT is specified as the stop state operation for the target
break point.

ITRON Debugging Interface Specification Ver. 1.00.00

137 Target Access Interface - Hardware Break Operations tif_rep_brk

Keys
TIF 05H

.TIF_REP_BRK 12H
Supports this function.

.FLG_AUTONUMBERING 04H [1]
Supports the FLG_AUTONUMBERING flag.

Errors
E_TRUE (0)

Decision routine return parameter (TRUE)
Concludes that a break hit has occurred, and continues a break process.

E_FALSE (-229)
Decision routine return parameter (FALSE)
Concludes that the conditions are false, and continues target execution.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

ITRON Debugging Interface Specification Ver. 1.00.00

138 Target Access Interface - Symbol Table Operations tif_ref_sym

6.5 Symbol Table Operations

6.5.1 Reference of symbol table value

tif_ref_sym Reference of symbol table value [R]

ER tif_ref_sym (INT * p_value , char * strsym , FLAG flags)
INT * p_value

Pointer to the region that stores a value indicated by a symbol

char * strsym
Symbol name (NULL-terminated string)

FLAG flags
Flags

This function gets a value of the symbol table that is specified by strsym.

Supplementary explanation
Only a symbol value (address) can be got by tif_ref_sym. An equation cannot be evaluated
in principle. More specifically, arithmetic operation, logic operation, array (dummy[n]),
indirect operator (*dummy), address operator (&dummy), and member selection equation
(a.b, c->d) cannot be used.

Keys
TIF 05H

.TIF_REF_SYM 15H

Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

E_OBJ (-169)
The targeted object on the target was inoperative.

E_PAR (-145)
A parameter value was invalid.

ITRON Debugging Interface Specification Ver. 1.00.00

139 Target Access Interface - Symbol Table Operations tif_rrf_sym

6.5.2 Reference of symbol in symbol table

tif_rrf_sym Reference of symbol in symbol table [E]

ER tif_rrf_sym
(char * p_sym , UINT maxlen , INT value , FLAG flags)

char * p_sym
Stores the corresponding symbol

UINT maxlen
Maximum size (termination code excluded) of a symbol storage region

INT value
The key value for reverse search

FLAG flags
Flags

This function searches for a symbol that is closest to the key.

For a symbol search, the following flags can be exclusively used:

OPT_SEARCH_COMPLETELY (0)
Searches for only a symbol that perfectly matches the search key (default).

OPT_SEARCH_FORWARD (1)
Search forward (in increasing address direction) for symbol closest to speci-
fied value.

OPT_SEARCH_BACKWARD (2)
Search forward (in decreasing address direction) for symbol closest to speci-
fied value.

Supplementary explanation
When OPT_SEARCH_FORWARD or OPT_SEARCH_BACKWARD is specified, the
search ends when the start or end of the address space is reached.
OPT_SEARCH_FORWARD and OPT_SEARCH_BACKWARD are provided to get the
name of the service call that is currently being executed by the RIM. The operation to be per-
formed when more than one symbol is assigned to the searched value is implementation-
dependent. However, for the above reason, a function name, etc., should be prefered in a code
region, and a global variable name, etc., should be prefered in a data region.

maxlen indicates the size of a symbol name storage buffer. maxlen indicates the prevailing
length when a terminating character is included. Therefore, when maxlen is 1, the character
string is void so that E_OK is returned. When maxlen is 0, the E_PAR error occurs.

ITRON Debugging Interface Specification Ver. 1.00.00

140 Target Access Interface - Symbol Table Operations tif_rrf_sym

Keys
TIF 05H

.TIF_RRF_SYM 16H [1]
Supports this function.

.OPT_SEARCH_FORWARD 10H [1]
The OPT_SEARCH_FORWARD option is available.

.OPT_SEARCH_BACKWARD 11H [1]
The OPT_SEARCH_BACKWARD option is available.

.OPT_SEARCH_COMPLETELY 12H [1]
The OPT_SEARCH_COMPLETELY option is available.

Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

E_OBJ (-169)
The targeted object on the target was inoperative.

E_PAR (-145)
A parameter value was invalid.

ITRON Debugging Interface Specification Ver. 1.00.00

141 Target Access Interface - Function Execution tif_cal_fnc

6.6 Function Execution

6.6.1 Function call

tif_cal_fnc Function call [E]

ER tif_cal_fnc (T_TCFNC * pk_tcfnc, FLAG flags)
T_TCFNC * pk_tcfnc

Pointer to the structure that stores the service call information to be issued

FLAG flags
Flags

This function uses a debugging tool’s function to call a function. Function execution basically
takes place in a non-blocking mode. Upon completion of function execution, the callback
function "tif_rep_fnc" is called.

The contents of the "T_TCFNC" structure are show below:
typedef struct t_tcfnc_prmary
{

UINT prmsz : Parameter size (in bytes)
VP prmptr : Pointer to the parameter storage region

} T_TCFNC_PRMARY;

typedef struct t_tcfnc
{

DT_VP fncadr : Function address
DT_VP stkadr : Stack pointer for a function issue
UINT retsz : Size (in bytes) of the result storage region
VP retptr : Pointer to the region that stores execution results
UINT resultsz : Count of parameter
T_TCFNC_PRMARY prmary[]

: Parameter
} T_TCFNC;

To store the function return value, the RIM creates a buffer and stores the pointer to the buffer
region in T_TCFNC::resultptr and the buffer region size in T_TCFNC::resultsz. After
function execution, tif_cal_fnc stores the function return value in the buffer. If the debugging
tool concludes that the size is inadequate for return value storage, an error occurs before issu-
ing. Whether the debugging tool conducts a return value type check or not is implementation-
dependent.

When the debugging tool passes parameters, it expands the parameters so that
T_TCFNC::param[0] is the leftmost parameter of the function to be executed. The debug-
ging tool may sometimes place the parameters in the target stack area as they are. Therefore, if
the size setting is smaller than the size required by the function to be executed, two parameters
may be combined.

ITRON Debugging Interface Specification Ver. 1.00.00

142 Target Access Interface - Function Execution tif_cal_fnc

If the ITRON Debugging Interface Specification cannot be implemented in non-blocking
mode, the get information key code item "TIF.TIF_CAL_FNC.NON-BLOCKING" must be
set to FALSE (=0). If, in this instance, this function is executed without specifying
OPT_BLOCKING, it returns E_NOSPT. Even when this function is executed in a non-
blocking mode, the callback function tif_rep_fnc is called.

Supplementary explanation
When tif_cal_fnc is executed in blocking mode, this function does not return control until the
called function terminates in the strict sense. In the strict sense, the called function terminates
when the stack frame at function termination is equivalent to the stack frame when a function
is called by tif_cal_fnc. More specifically, if dispatching occurs within the called function
and control is passed to another task, this function does not conclude that the function is termi-
nated. In some cases, this function does not return control until the associated function is
exited, irrespective of the context status. This also holds true for the end report tif_rep_fnc
for tif_cal_fnc.

Flags
FLG_NOREPORT (80000000H): Report function invalidation

The paired callback function will not be called.

OPT_BLOCKING (1)
Performs execution in blocking mode.

Keys
TIF 05H

.TIF_CAL_FNC 17H [1]
Supports this function.

.FLG_NOREPORT 03H [1]
Supports the FLG_AUTONUMBERING flag.

.OPT_BLOCKING 11H [1]
Supports the OPT_NON-BLOCKING option.

.NON-BLOCKING 12H [1]
Supports a non-blocking function call.

Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although operation could
be continued).

ITRON Debugging Interface Specification Ver. 1.00.00

143 Target Access Interface - Function Execution tif_cal_fnc

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

E_EXCLUSIVE (-226)
Another request has already been issued. The function could not receive a
function execution request until the execution of the previous request ends.

E_PAR (-145)
A parameter value was invalid.

ET_MACV (-26)
An invalid memory region on the target was accessed.

ET_NOMEM (-33)
The request could not be executed due to insufficient memory on the target.

ITRON Debugging Interface Specification Ver. 1.00.00

144 Target Access Interface - Function Execution tif_rep_fnc

6.6.2 Report of function execution end

tif_rep_fnc Report of function execution end [E:callback]

void tif_rep_fnc (FLAG flags)
FLAG flags

Flags

This function reports the end of a function that was issued by tif_cal_fnc in a non-blocking
mode. The return value is to be stored in the region specified by tif_cal_fnc.

Keys
TIF 05H

.TIF_REP_FNC 18H [1]
Supports this function.

Error
This function does not have a return value.

ITRON Debugging Interface Specification Ver. 1.00.00

145 Target Access Interface - Trace Log Operations tif_set_log

6.7 Trace Log Operations

6.7.1 Set of trace log

tif_set_log Set of trace log [E]

ER_ID tif_set_log (ID logid, T_TSLOG * pk_tslog, FLAG flags)
ID logid

ID assigned to selected log information

T_TSLOG * pk_tslog
Pointer to the structure that stores trace log setting information

FLAG flags
Flags

(Return value) ID logid
Assigned log ID (independent of rif_set_log)

This function performs trace log setting.

The contents of the structure T_TSLOG are indicated below:
typedef struct t_tslog
{

UINT logtype : Log type flag
DT_VP staadr : Starting address
DT_VP endadr : Ending address (NULL if the range is not specified)
DT_VP valptr : Read start position (NULL: event occurrence position)
DT_SIZE valsz : Data length (in bytes)

} T_TSLOG;

The following values can be set for T_TSLOG::logtype:

The following values can be used exclusively:
• LOG_INSTRUCTION (0)

Instruction (default)
• LOG_DATA (1)

Data

When LOG_DATA is specified for logtype, at least one of the following operation options
must be specified. However, two or more can be specified simultaneously.

• ACS_READ (0x100)
Read

• ACS_WRITE (0x200)
Write

• ACS_MODIFY (0x400)
Modification (Read Modify Write)

ITRON Debugging Interface Specification Ver. 1.00.00

146 Target Access Interface - Trace Log Operations tif_set_log

When the buffer for getting log is full, the following options can be selected exclusively as the
performed operation.

LOG_BUFFUL_STOP (0)
Stops getting a trace when the buffer becomes full (default).

LOG_BUFFUL_CALLBACK (2)
Executes callback function when the buffer becomes full.

LOG_BUFFUL_ FORCEEXEC (1)
Continues with getting log by discarding oldest data when the buffer
becomes full.

The above options are valid for a log that is set by the execution of this function.
Let us assume that three different logs are activated. The first log (ID: 1) is the one for which
no option is set. For the second log (ID: 2), OPT_BUFFUL_CALLBACK is set. For the
third log (ID: 3), FLG_NOREPORT is set. When the buffer later becomes full due to target
program execution and the debugging tool concludes that the currently got log event cannot be
stored, a forced termination is issued to the logs having ID 1 and ID 3 for which
OPT_BUFFUL_STOP is set by default, and tif_rep_log receives an ID1 end event
(EV_STOP). The debugging tool does not report to the ID 3 because FLG_NOREPORT is
set for it. Since OPT_BUFFUL_CALLBACK is set for the ID 2, tif_rep_log is called by
EV_REPORT. If, in this instance, a buffer read or other appropriate process is not performed
in tif_rep_log and the buffer becomes full again, EV_BUFFER_FULL calls tif_rep_log
for all existing logs.

Supplementary explanation
The T_TSLOG::staadr and T_TSLOG::endadr variables define the memory region to be
targeted for log event generation. This region is a closed section [staadr, endadr], and the
address endadr is targeted. If staadr > endadr, the E_PAR error occurs.

The variable T_TSLOG::endadr defines the memory region to be targeted for event genera-
tion. The variable T_TSLOG::valsz defines the length of memory to be read at the time of
event generation. If T_TSLOG::valsz is set to 0, only events will be stored.
The variable T_TSLOG::valptr specifies the address where a read operation begins when an
event occurs. When a log event occurs in a closed section [staadr, endadr] in situations
where a specific address is set, T_TSLOG::valsz bytes are read beginning with
T_TSLOG::valptr and recorded. On the other hand, if T_TSLOG::valptr is set to NULL,
the address where an event is generated becomes the start point. If, in this situation, an event is
generated, to access a certain address (evtadr) in a closed section [staadr, endadr], length
bytes data is read from evtadr and stored.

When the function is executed successfully in situations where the automatic number assign-
ment flag FLG_AUTONUMBERING is specified, the function returns the value of 1 or more
(ID value), which is assigned to a setup item. This is also true even when the automatic assign-
ment flag is not specified.

ITRON Debugging Interface Specification Ver. 1.00.00

147 Target Access Interface - Trace Log Operations tif_set_log

Flags
FLG_NOREPORT (80000000H): Report function invalidation

The paired callback function will not be called.

FLG_AUTONUMBERING (40000000H): ID automatic assignment
Automatically assigns an ID. If an argument is used to specify the ID, it is
ignored by the function. When the function is successfully executed, it
returns the automatically assigned ID.

OPT_BUFFUL_STOP (0)
When the buffer becomes full, this flag stops getting trace operation
(default)

OPT_BUFFUL_FORCEEXEC (1)
When the buffer becomes full, this flag discards the oldest data and continues
to get logs.

OPT_BUFFUL_CALLBACK (2)
When the buffer becomes full, this flag executes tif_rep_log.

Keys
TIF 05H

.TIF_SET_LOG 19H [1]
Supports this function.

.FLG_NOREPORT 03H [1]
The "FLG_NOREPORT" flag is available.

.FLG_AUTONUMBERING 04H [1]
Supports the FLG_AUTONUMBERING flag.

.OPT_BUFFUL_FORCEEXEC 11H [1]
The OPT_BUFFUL_FORCEEXEC option is available.

.OPT_BUFFUL_CALLBACK 12H [1]
The OPT_BUFFUL_CALLBACK option is available.

.LOG_INSTRUCTION 13H [1]
The log type LOG_INSTRUCTION is available.

.LOG_DATA 14H [1]
The log type LOG_DATA is available.

.LOG_READ 15H [1]
LOG_READ is available.

.LOG_WRITE 16H [1]
LOG_WRITE is available.

.LOG_MODIFY 17H [1]
LOG_MODIFY is available.

ITRON Debugging Interface Specification Ver. 1.00.00

148 Target Access Interface - Trace Log Operations tif_set_log

Errors
E_NOSPT (-137)

An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

E_ID (-146)
The specified object ID was invalid.

E_NOID (-162)
Count of IDs for automatic assignment was insufficient.

E_OBJ (-169)
The targeted object on the target was inoperative.

ET_MACV (-26)
An invalid memory region on the target was accessed.

E_PAR (-145)
A parameter value was invalid.

ITRON Debugging Interface Specification Ver. 1.00.00

149 Target Access Interface - Trace Log Operations tif_del_log

6.7.2 Delete of trace log setting

tif_del_log Delete of trace log setting [E]

ER tif_del_log (ID logid, FLAG flags)
ID logid

ID of the log to be deleted

FLAG flags
Flags

This function deletes logs that are set by tif_set_log completely or partially. tif_set_log is
explained earlier.

Supplementary explanation
When logid is set to ID_ALL(=1), all the logs will be targeted. Note that this logid is given
by tif_set_log. It is independent of the ID of lag that is used for rif_set_log.

Keys
TIF 05H

.TIF_DEL_LOG 1AH [1]
Supports this function.

Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

E_ID (-146)
The specified object ID was invalid.

E_OBJ (-169)
The targeted object on the target was inoperative.

E_EXCLUSIVE (-226)
Another request has already been issued. The function could not receive a
new request until the execution of the previous request ends.

ITRON Debugging Interface Specification Ver. 1.00.00

150 Target Access Interface - Trace Log Operations tif_sta_log

6.7.3 Start of trace log

tif_sta_log Start of trace log [E]

ER tif_sta_log (ID logid, FLAG flags)
ID logid

ID of the log to be activated

FLAG flags
Flags

This function starts to get a trace log in accordance with the data set by tif_set_log. When
logid is set to ID_ALL(=1), this function validates all the log settings defined by tif_set_log.

Supplementary explanation
Even when this function is executed for a second time with respect to a log setting that has
already been started, the function ends normally. However, the specified log setting is stopped
by a single stop procedure even if it has plurally been activated.

Keys
TIF 05H

.TIF_STA_LOG 1BH [1]
Supports this function.

Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

E_ID (-146)
The specified object ID was invalid.

E_OBJ (-169)
The targeted object on the target was inoperative.

ITRON Debugging Interface Specification Ver. 1.00.00

151 Target Access Interface - Trace Log Operations tif_stp_log

6.7.4 Stop of trace log

tif_stp_log Stop of trace log [E]

ER tif_stp_log (ID logid, FLAG flags)
FLAG flags

Flags

This function stops a specified trace log which is currently got.

Supplementary explanation
This function does not concern the target execution status.
Even when this function is executed for a second time with respect to an already stopped log
setting, the function ends normally. However, the specified log setting is started by a single
start procedure even if it has plurally been stopped.

Keys
TIF 05H

.TIF_STP_LOG 1CH [1]
Supports this function.

Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

E_ID (-146)
The specified object ID was invalid.

E_OBJ (-169)
The operation targeted was not found or operative.

ITRON Debugging Interface Specification Ver. 1.00.00

152 Target Access Interface - Trace Log Operations tif_rep_log

6.7.5 Trace logs callback

tif_rep_log Trace logs callback [E:callback]

void tif_rep_log (ID logid, UINT event, FLAG flags)
ID logid

ID of the log that is the factor of generation

UINT event
Factor of the call of this function

FLAG flags
Flags

This function is called to perform an appropriate process when a factor is generated by a trace
log operation or when a callback is set by the function for getting trace log tif_set_log. The
function also performs a process when, for instance, a log is deleted due to a buffer-full condi-
tion.

The probable factors of generation are enumerated below:

EV_BUFFER_FULL (1)
The trace buffer is full.

EV_STOP (2)
The trace log function is stopped.

EV_REPORT (4)
The report conditions specified by tif_set_log are satisfied.

Supplementary explanation
When a log is brought to a forced termination due, for instance, to a buffer-full condition, the
RIM needs not to call tif_stp_log for the targeted ID.
If it is necessary to get trace log on the target while this callback is being called, this function
does not assure to get trace log data.
As regards a log for which OPT_BUFFUL_CALLBACK is specified by tif_set_log, the
first buffer-full condition is reported as EV_REPORT. If there are two or more logs for
which OPT_BUFFUL_CALLBACK is specified, EV_REPORT is issued for all such logs.
If no appropriate process is performed later and the buffer-full condition, which was the factor
for the issue of EV_REPORT, is not cleared, EV_BUFFER_FULL is called for all remain-
ing logs as an unrecoverable error. If no appropriate process is performed for this buffer-full
condition, the debugging tool forcibly terminates all the logs and reports an EV_STOP to ter-
minate the process.

Keys
TIF 05H

.TIF_REP_LOG 1DH [1]
Supports this function.

Errors
This function does not have a return value.

ITRON Debugging Interface Specification Ver. 1.00.00

153 Target Access Interface - Trace Log Operations tif_get_log

6.7.6 Get of trace log

tif_get_log Get of trace log [E]

ER tif_get_log (VP p_result, FLAG flags)
VP p_result

Pointer to the region that stores a trace log

FLAG flags
Flags

This function gets a trace log source that is retained by a debugging tool. The trace log source
is memory data on the target that the debugging tool has got as log information. When a log is
directly written into memory or onto a disk not with debugging tool, but with a debugging task
and so on, this function cannot got a log.
After tif_set_log gets one log, it moves the read position to the next log. To get all the logs,
the RIM has to call this function two or more times. When the remaining log count is 0,
tif_get_log returns the E_OBJ error.

The data of structure for getting log T_TGLOG are shown below:
typedef struct t_tglog
{

ID logid : Corresponding log ID
DT_VP staadr : Preselected starting address
DT_VP endadr : Preselected ending address
UINT logtype : Log type information
LOGTIM logtim : Time stamp
DT_SIZE bufsz : Buffer size
char buff[] : The region that stores a value which was got

} T_TGLOG;
Notes:
1. When the tlogid does not exist (tlogid=0), it is necessary to be determined from an

address and so on.

2. The value specified for bufsz indicates the maximum length that can be get by buf. When
the function is executed, bufsz stores the size of the stored data. For details, see Section
5.2.

Option
OPT_PEEK (1)

Gets a trace log without deleting it from the spool.

Keys
TIF 05H

.TIF_GET_LOG 1EH [1]
Supports this function.

.OPT_PEEK 10H [1]
Supports the OPT_PEEK option.

ITRON Debugging Interface Specification Ver. 1.00.00

154 Target Access Interface - Trace Log Operations tif_get_log

Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

E_OBJ (-169)
The targeted object on the target was inoperatve.

E_PAR (-145)
A parameter value was invalid.

ITRON Debugging Interface Specification Ver. 1.00.00

155 Other Interfaces - Debugging Tool Operations dbg_ref_dbg

7. Other Interfaces

7.1 Debugging Tool Operations

7.1.1 Get of debugging tool information

dbg_ref_dbg Get of debugging tool information [R]

ER dgb_ref_dbg
(T_INFO * pk_rdbg, UINT packets, FLAG flags)

T_INFO * pk_rdbg
Pointer to beginning of array of structure that stores information about debug-
ging tool

UINT packets
T_INFO structure array length

FLAG flags
Flags

The RIM uses this function to examine the type of a debugging tool, the operations the debug-
ging tool performs, and other information.
The function for getting information T_INFO and key codes are used for getting information
about this function. For details, see Section 3.6.

The contents of T_INFO are shown below:
typedef struct t_info_result_buf
{

UINT sz : Buffer size
VP ptr : Pointer to region storing character string or special type

} T_INFO_RESULT_BUF;

typedef union t_info_result
{

INT value : 32-bit signed integer
T_INFO_RESULT_BUF buf

: Value of special type
} T_INFO_RESUT;

typedef struct t_info
{

char key [4] : Key for indentifying information
T_INFO_RESULT result

: Value corresponding to key
} T_INFO;

ITRON Debugging Interface Specification Ver. 1.00.00

156 Other Interfaces - Debugging Tool Operations dbg_ref_dbg

Keys
DEBUGGER 1H

.CNDBREAK 1H
.NUM 3H [W]

Count of conditional breaks that can be set (0: not supported)
.LOG 2H

.NUM 3H [W]
Count of hardware logs that can be set (0: not supported)

.NAME 80H [S]
Any character(s) for debugging tool identification

HOST 2H
.ENDIAN 1H [W]

Host computer endian (0: little; 1: big)
.NAME 80H [S]

Any character(s) for host computer identification
TARGET 3H

.ENDIAN 1H [W]
Target computer endian (0: little; 1: big)

.REGISTER 2H
.NUM 3H [W]

Count of target computer registers
.NAME 80H [S]

Any character(s) for target device identification

Supplementary explanation
The information that can be got with this function includes all the key codes with INF_TIF as
the first key as described in Chapter 6.

Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error for some reason

E_OBJ (-169)
The targeted object on the target was inoperative.

E_PAR (-145)
A parameter value was invalid.

ITRON Debugging Interface Specification Ver. 1.00.00

157 Other Interfaces - RIM Operations dbg_ini_rim

7.2 RIM Operations

7.2.1 RIM initialization

dbg_ini_rim RIM initialization [R]

ER dbg_ini_rim (VP param)
VP param

Parameter sent from debugging tool

This function initializes the RIM at a debugging tool activation. Callback functions are regis-
tered at this stage. This function is executed after the dbg_ini_inf function described in Sec-
tion 7.3. Therefore, it is assured that all the functions offered by the debugging tool side are
available on the interface.
The parameter value is not especially stipulated. However, it is possible that parameters will
be standardized in compliance with the guidelines (e.g., Windows-DLL guidelines) within the
debugging interface.

Supplementary explanation
When this function returns an error other than E_OK, debugging tool judges that the function
failed in RIM initialization. In such a case, the debugging tool must not read the other inter-
face functions that belong to the RIM side.

Errors
E_OK (0)

Normally ended.

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason

(No implicit error exists.)

ITRON Debugging Interface Specification Ver. 1.00.00

158 Other Interfaces - RIM Operations dbg_fin_rim

7.2.2 RIM finalization process

dbg_fin_rim RIM finalization process [R]

ER dbg_fin_rim (VP param)
VP param

Parameter sent from debugging tool

This function performs the RIM finalization process. The debugging tool must call this func-
tion before the end of the program, and the RIM must free all got sources within this function.
The parameter value is not especially stipulated. However, it is possible that parameters will
be standardized in compliance with the guidelines (e.g., Windows-DLL guidelines) within the
debugging interface.

Supplementary explanation
When this function ends with other than E_OK, the debugging tool must not call any functions
that are offered subsequently by the RIM.

Errors
E_OK (0)

Normally ended.

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

(No implicit error exists.)

ITRON Debugging Interface Specification Ver. 1.00.00

159 Other Interfaces - RIM Operations dbg_ref_rim

7.2.3 Get RIM-related information

dbg_ref_rim Get RIM-related information [R]

ER dbg_ref_rim
(T_INFO * ppk_rrim, UINT packets, FLAG flags)

T_INFO * ppk_rrim
Pointer to beginning of array of information storage structure

UINT packets
Length of array indicated by ppk_rrim

This function gets the RIM function and other RIM-related information. The information
obtained in this manner enables the debugging tool to acquire information including that of
function that are available on the RTOS access interface.

The function for getting information T_INFO and key codes are used to get information with
this function. For details, see Section 3.6.

Keys
OS 8H

.NAME 80H [S]
Any character(s) for target OS identification ("ITRON")

Supplementary explanation
The information that can be got with this function includes all the key codes with INF_RIF
(described in Chapter 5) as the first key.

Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

E_OBJ (-169)
The targeted object on the target was inoperative.

E_PAR (-145)
A parameter value was invalid.

ITRON Debugging Interface Specification Ver. 1.00.00

160 Other Interfaces - Interface Operations dbg_ini_inf

7.3 Interface Operations

7.3.1 Interface initialization

dbg_ini_inf Interface initialization [E]

ER dbg_ini_inf (T_INTERFACE * ppk_interface, VP param)
T_INTERFACE * ppk_interface

Pointer to the region that stores entry point for each function

VP param
Parameter offered by debugging tool side

This function reports the location of the function pointer table to access interface functions and
initializes the function pointer table. It is executed by the debugging tool side. In this func-
tion, the RIM registers the pointer to a function to be offered by RIM itself on the interface in
ppk_interface.

Before execution of this function, the debugging tool must offer pointers to the following func-
tions:

• dbg_ref_dbg
• Functions on TIF

(Note: No callback on RIF need to be registered at this stage.)

In this function, the RIM must offer pointers to the following functions:
• dbg_ini_rim
• dbg_ref_rim
• dbg_fin_rim
• Functions on RIM

(Note: No callback on the TIF need be registered at this stage.)

T_INTERFACE is a structure that has the pointers to all functions offered in compliance with
the ITRON Debugging Interface Specification.

This function need not to be executed in an environment where all the functions are bound stat-
ically.

Errors
E_OK (0)

Normally ended.

E_NOSPT (-137)
An unsupported operation was executed.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

ITRON Debugging Interface Specification Ver. 1.00.00

161 Other Interfaces - Interface Operations dbg_ini_inf

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued).

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

E_PAR (-145)
A parameter value was invalid.

ITRON Debugging Interface Specification Ver. 1.00.00

162 Other Interfaces - Interface Operations dbg_ini_inf

This page is intentional blank.

ITRON Debugging Interface Specification Ver. 1.00.00

163 Recommended Guidelines - RIM Guideline

8. Recommended Guidelines

This chapter explains the recommended guidelines for the ITRON Debugging Interface Speci-
fication. The recommended guidelines need not to be complied with. However, they contain
items concerning compatibility. It is therefore best if debugging tool or RIM implementation
is in compliance with the guidelines to provide support for a large number of debugging tools
and RIMs.

8.1 RIM Guideline

8.1.1 RIM operation guideline
• Access in undefined state before target initialization

In a situation where the target is not initialized, the debugging tool might not be able to
gain accessing. If any operation is performed in such a state, function returns a system
error "E_SYS". Also, the resulting information is invalid.

8.1.2 RIM data format for supplying
The RIM is implemented in the manufacturer’s debugging tool. Therefore, specific guidelines
apply to its data format for supply.

The following data formats are supported in the current specifications:
• Supplies C source program
• Supplied with library

ITRON Debugging Interface Specification Ver. 1.00.00

164 Recommended Guidelines - RIM Guideline

With the use of any other method of supply is intended, the RIM creation side must introduce a
thunk layer to establish a link between the module main body and C language interface.

8.1.3 Speed enhancement and debugging agent
The current debugging interface uses a callback to check for a break point hit. However, when
actual devices are used instead of simulation, the information transfer between host and target
is mostly via a serial interface. Therefore, frequent callbacks lowers the debugging tool speed.
Under such circumstances, RTOS manufacturers should introduce ‘debugging tasks geared to
increase speed’ to operate debugging tools at high speed (this function is effective for breaks
and trace logs whose speed should be increased).

Function examples of debugging tasks used for such purposes are listed below:
• Break-related function
• Function for satisfying some break conditions in debugging task
• Trace log function
• Function for getting trace log closed only in target without resort to debugging

tool

In addition to the above, we think it is possible to offer more effective functions and higher-
speed operations depending on the RTOS characteristics.

When a debugging agent incorporating the above functions is offered, the user can conduct
debugging operations in an appropriate environment by selecting one of three environments
(or two out of three environments in some situations).

• Debugging environment in which this functions operates with large debugging
agent and small RIM to eliminate bugs that can be detected with relative ease

Figure 22: Special RIM Supply Method

ITRON Debugging Interface Specification Ver. 1.00.00

165 Recommended Guidelines - RIM Guideline

• Debugging environment with small debugging agent and large RIM can minimize
relative load on target with a view to simulating real environment though the
function is limited. The environment is suitable for eliminating bugs that cannot
easily be detected, for example, a bug with time limitations

• Debugging environment in which only RIM is used to impose no load on target

We expect that the user debugging situation will be improved when two or more sets of RIM
and debugging agent are offered to permit selective use depending on the debugging situation
(trade-off between overhead and function).

ITRON Debugging Interface Specification Ver. 1.00.00

166 Recommended Guidelines - Windows-DLL Creation Guideline (32-bit RIM)

8.2 Windows-DLL Creation Guideline (32-bit RIM)

8.2.1 Type
Host-side types offered by a Windows-DLL are fixed as shown below:

Table 23: 32-bit RIM DLL Host Types

Type
Name Meaning Bit

Length

BOOL Boolean value 32 bits

ER_ID Greater integer between ID and ER. ID represents a
positive value. ER represents a negative value.

32 bits

ID Unsigned integer with sufficiently large size to store
object number on debugging interface

32 bits

INT Signed integer that exists on host and has natural length 32 bits

UINT Unsigned integer that exists on host and has natural
length

32 bits

VP Void pointer on host 32 bits

VP_INT Type with sufficiently large size to store VP and INT 32 bits

LOGTIM Log time (accuracy stipulated by ‘implement defini-
tion’)

64 bits

Table 24: 32-bit RIM DLL Target Types

Type Name Meaning Bit
Length

DT_B, DT_UB, DT_VB 8-bit data type 8 bits

DT_H, DT_UH, DT_VH 16-bit data type 16 bits

DT_W, DT_UW, DT_VW 32-bit data type 32 bits

DT_D, DT_UD, DT_VD 64-bit data type 64 bits

DT_SYSTIM,
DT_RELTIM,

DT_OVRTIM, DT_TMO

Time-related type (type of
the absolute time, the rela-
tive time, or the period of

relative time)

64 bits

Other All other types 32 bits*

*. For a 64-bit RIM DLL, this is handled as 64-bit data.

ITRON Debugging Interface Specification Ver. 1.00.00

167 Recommended Guidelines - Windows-DLL Creation Guideline (32-bit RIM)

In some cases, these types might be duplicates of those that are stipulated by Windows. Such
duplication can be avoided by the following method:

Program source
#define TYPE WINDOWS_TYPE
#include <windows.h>
#undef TYPE

Program source
//Subsequently, TYPE can be used as WINDOWS_TYPE.

8.2.2 Structure bits alignment
As with Windows, a RIM created as a Windows-DLL and a debugging tool to accept such a
RIM-DLL must comply with the following alignment rules when they declare their respective
structures defined by the debugging interface.

8.2.3 Function export
A RIM-DLL must export the symbol of the following function:

• dbg_ini_inf: Interface initialization

Table 25: Windows DLL Creation Guideline Bits Alignment

Data Type Alignment

DT_B, DT_UB Aligned at byte boundary

DT_H, DT_UH Aligned at even-numbered
byte boundary

32-bit data type Aligned at 32-bit boundary

LOGTIM,
DT_SYSTIM

Aligned at 64-bit boundary

Structure Adjusting to alignment require-
ments of the member which has
maximum size in the same
structure

Union Adjusting to alignment require-
ments of first member

ITRON Debugging Interface Specification Ver. 1.00.00

168 Recommended Guidelines - File Format of Standard Execution History

8.3 File Format of Standard Execution History
The ITRON Debugging Interface Specification stipulates a standard format for storing an got
execution history in a file.
The file is stored in ASCII format with tokens separated by one or more blank characters.*

Also, note that the symbols ‘.’, ‘|’, ‘:’, and ‘;’ are treated as delimiters.**

The syntax is shown below:

Syntax format
Non-termination symbol Italic

Termination symbol Bold Gothic

Comment Character string following symbol ‘#’
Character string Expressed by character string (xxx) and comment

Standard history file
Configuration data group Execution history data group

Configuration data group
Configuration data Configuration data group
Configuration data

Configuration data
Key code: Value list;

Key code
Key Subsequent key Subsequent key Subsequent key
Key Subsequent key Subsequent key
Key Subsequent key
Key

Subsequent key
. Key

Key
xxx #Key name

Value list
Value Value list
Value

Value
- #When value setting skipped, hyphen must be used.
Integer value #Value notation conforms to C language (decimal and hexa-

decimal only).
Character string # Value notation conforms to C.

*. Space, carriage return, line feed, and tab
**. Blank characters before and after a delimiter can be omitted.

ITRON Debugging Interface Specification Ver. 1.00.00

169 Recommended Guidelines - File Format of Standard Execution History

Execution history data group
Execution history data Execution history data group
Execution history data

Execution history data
Execution history header Type-dependent history data;

Execution history header
History type: History time

History type
xxx #Name of all log types indicated by LOG_TYP_xxx
xxx | ENTER #LOG_TYP_xxx|LOG_ENTER
xxx | LEAVE #LOG_TYP_xxx|LOG_LEAVE

History time
- #When value setup skipped, hyphen must be used.
Integer value

Type-dependent history data
Value list #As many as parameter members of each log needed type.

Language examples generated from above syntax
Program source

CFG.LOGTIM.TICK_N: 1;
CFG.LOGTIM.TICK_D: 1000;
INTERRUPT|ENTER: 0 4;
TASK|ENTER: 180 1;

Program source
COMMENT: 200 25 "The program is started.";

ITRON Debugging Interface Specification Ver. 1.00.00

170 Recommended Guidelines - File Format of Standard Execution History

This page is intentionuly blank.

ITRON Debugging Interface Specification Ver. 1.00.00

171 Reference - Structures

9. Reference

9.1 Structures
• T_MEMBLK [tif_get_bls, tif_set_bls]

typedef struct t_memblk
{

DT_VP blkptr : Pointer to store memory block data
DT_SIZE blksz : Byte count of memory block data

} T_MEMBLK;

• T_BLKSET [tif_get_bls, tif_set_bls]
typedef struct t_blkset
{

UINT blkcnt : Count of blocks
T_MEMBLK blkary []:Block array

} T_BLKSET;

• T_RCSVC [rif_cal_svc]
typedef struct t_rcsvc
{

DT_FN svcfn : Functional code to be issued
BOOL tskctx : Execution with task context (= TRUE)
DT_ID tskid : ID of targeted task (when tskctx = TRUE)
UINT prmcnt : Parameter count
VP_INT prmary[] : Array that stores list of all parameters

} T_RCSVC;

• T_GRDT [rif_get_rdt, tif_get_reg, tif_set_reg]
typedef struct t_grdt_regary
{

char * strname : Pointer to register name
UINT length : Length (in bytes)
UINT offset : Storage offset position

} T_GRDT_REGARY;

typedef struct t_grdt
{

UINT regcnt : Count of registers
UNIT ctxcnt : Count of registers that can be contained in context
 T_GRDT_REGARY regary[]

: Register information
} T_GRDT;

ITRON Debugging Interface Specification Ver. 1.00.00

172 Reference - Structures

• T_INFO [rif_ref_cfg, dbg_ref_dbg, dbg_ref_rim]
typedef struct t_info_result_buf
{

UINT sz : Buffer size
VP ptr : Pointer to region storing caracter string or special type

} T_INFO_RESULT_BUF;

typedef struct t_info_result
{

INT value : 32-bit signed integer
T_INFO_RESULT_BUF buf

: Value of special type
} T_INFO_RESULT;

typedef struct t_info
{

char key[4] : Key for information identification
T_INFO_RESULT result

: Value corresponding to key
} T_INFO;

• T_RCLOG [rif_cfg_log]
typedef struct t_rclog
{

UINT type : Trace log configuration information
DT_BP bufptr : Pointer to trace log buffer
DT_SIZE bufsz : Size of trace log buffer

} T_RCLOG;

• T_RGLOG_COMMENT [rif_get_log]
typedef struct t_rglog_commnet
{

UINT length : Character string length
char strtext [] : Character string (NULL-terminated) - May be broken

} T_RGLOG_COMMENT;

• T_RGLOG_CPUEXC [rif_get_log]
typedef struct t_rglog_cpuexc
{

DT_ID tskid : Targeted task ID
} T_RGLOG_CPUEXC;

• T_RGLOG_DISPATCH_ENTER [rif_get_log]
typedef struct t_rglog_dispatch_enter
{

DT_ID tskid : ID of task in executing state
UINT disptype : Dispatch type

} T_RGLOG_DISPATCH_ENTER;

ITRON Debugging Interface Specification Ver. 1.00.00

173 Reference - Structures

• T_RGLOG_DISPATCH_LEAVE [rif_get_log]
typedef struct t_rglog_dispatch_leave
{

DT_ID tskid : ID of task going to be in executing state
} T_RGLOG_DISPATCH_LEAVE;

• T_RGLOG_INTERRUPT [rif_get_log]
typedef struct t_rglog_interrupt
{

DT_INHNO inhno : Interrupt handler number
} T_RGLOG_INTERRUPT;

• T_RGLOG_ISR [rif_get_log]
typedef struct t_rglog_isr
{

DT_ID isrid : Interrupt service routine ID
DT_INHNO inhno : Interrupt handler number

} T_RGLOG_ISR;

• T_RGLOG_SVC [rif_get_log]
typedef struct t_rglog_svc
{

DT_FN fncno : Functional code
UINT prmcnt : Parameter count
DT_VP_INT prmary[]: Parameter

} T_RGLOG_SVC;

• T_RGLOG_TIMERHDR [rif_get_log]
typedef struct t_rglog_timerhdr
{

UINT type : Timer type
(stores constant OBJ_xxx used for rif_ref_obj::objtype)

DT_ID hdrid : Time event handler ID
DT_VP_INT exinf : Extension information

} T_RGLOG_TIMERHDR;

• T_RGLOG_TSKEXC [rif_get_log]
typedef struct t_rglog_tskexc
{

DT_ID tskid : Targeted task ID
} T_RGLOG_TSKEXC;

• T_RGLOG_TSKSTAT [rif_get_log]
typedef struct t_rglog_tskstat
{

DT_ID tskid : Task ID
DT_STAT tskstat : Status of task at transition destination
DT_STAT tskwait : Wait state
DT_ID wobjid : ID of waiting object

} T_RGLOG_TSKSTAT;

ITRON Debugging Interface Specification Ver. 1.00.00

174 Reference - Structures

• T_ROALM [rif_ref_obj]
typedef struct t_roalm
{

BITMASK valid : Valid field flag
DT_ART almatr : Attribute
DT_VP_INT exinf : Extension information
DT_FP almhdr : Startup address
DT_STAT almstat : Alarm handler start status
DT_RELTIM lefttim : Remaining time

} T_ROALM;

• T_ROCYC [rif_ref_obj]
typedef struct t_rocyc
{

BITMASK valid : Valid field flag
DT_ART cycatr : Attribute
DT_VP_INT exinf : Extension information
DT_FP cychdr : Startup address
DT_RELTIM cyctim : Cycle
DT_RELTIM cycphs : Initial phase
DT_STAT cycstat : Cyclic handler start status
DT_RELTIM lefttim : Remaining time

} T_ROCYC;

• T_RODTQ [rif_ref_obj]
typedef struct t_rodtq
{

BITMASK valid : Valid field flag
DT_ATR dtqatr : Data queue attribute
DT_UINT dtqcnt : Data queue capacity
DT_UINT stskcnt : Count of tasks waiting for sending (also used as upper limit for

wstsklst)
DT_ID * stsklst : Pointer to region storing ID list of tasks waiting for transmis-

sion
DT_UINT rtskcnt : Count of tasks waiting for reception (also used as upper limit

for wrtsklst)
DT_ID * rtsklst : Pointer to region storing ID list of tasks waiting for reception
DT_UINT itemcnt : Count of queued data (also used as upper limit for dtqlst)
DT_VP_INT * itemlst : Pointer to region storing list of all items

} T_RODTQ;

• T_ROEXC [rif_ref_obj]
typedef struct t_roexc
{

BITMASK valid : Valid field flag
DT_FP excrtn : Exception handler start address

} T_ROEXC;

ITRON Debugging Interface Specification Ver. 1.00.00

175 Reference - Structures

• T_ROFLG[rif_ref_obj]
typedef struct t_roflg_wflglst
{

DT_ID wtskid : ID of waiting task
DT_FLGPTN wflgptn: Task wait flag pattern
DT_UINT wflgmode : Task wait mode

} T_ROFLG_WFLGLST;

typedef struct t_roflg
{

BITMASK valid : Valid field flag
DT_ATR flgatr : Flag attribute
DT_FLGPTN iflgptn : Initial flag pattern
DT_FLGPTN flgptn : Flag pattern
DT_UINT wflagcnt : Waiting task count (also used as upper limit for wflglst)
T_ROFLG_WFLGLST * wflglst

: Pointer to information about task with this flag
} T_ROFLG;

• T_ROISR [rif_ref_obj]
typedef struct t_roisr
{

BITMASK valid : Valid field flag
DT_ATR isratr : Attribute
DT_VP_INT exinf : Extension information
DT_FP isrfnclst : Starting address of registered routine
DT_INHNO inhno : Corresponded interrupt handler number

} T_ROISR;

• T_ROKER [rif_ref_obj]
typedef struct t_roker
{

BITMASK valid : Valid field flag
BOOL actker : Kernel start status (TRUE = activated)
BOOL inker : Kernel code execution (TRUE = executing)
BOOL ctxstat : Context status (sns_ctx)
BOOL loccpu : CPU locked (sns_cpu)
BOOL disdsp : Dispatch disabled (sns_dsp)
BOOL dsppnd : Dispatch suspended (sns_dpn)
DT_SYSTIM systim : System time
DT_VP intstk : Stack for nontask context
DT_SIZE intstksz : Stack size for nontask context

} T_ROKER;

ITRON Debugging Interface Specification Ver. 1.00.00

176 Reference - Structures

• T_ROMBX [rif_ref_obj]
typedef struct t_rombx
{

BITMASK valid : Valid field flag
DT_ATR mbxatr : Mailbox attribute
DT_PRI maxmpri : Maximum priority
DT_UINT wtskcnt : Count of waiting tasks (also used as upper limit for wtsklst)
DT_ID * wtsklst : Pointer to region storing ID list of waiting tasks
DT_UINT msgcnt : Count of message headers (also used as upper limit for msglst)
DT_T_MSG ** msglst: Pointer to region storing list of all messages

} T_ROMBX;

•T_ROMBF [rif_ref_obj]
typedef struct t_rombf_msglst
{

DT_VP msgadr : Message address
DT_UINT msgsz : Message length

} T_ROMBF_MSGLST;

typedef struct t_rombf
{

BITMASK valid : Valid field flag
DT_ATR mbfatr : Message buffer attribute
DT_UINT maxmsz : Message maximum size
DT_SIZE mbfsz : Buffer region size
DT_UINT stskcnt : Count of tasks waiting for sending (also used as upper limit for

wtsklst)
DT_ID * stsklst : Pointer to region storing ID list of waiting tasks
DT_UINT rtskcnt : Count of tasks waiting for reception (also used as upper limit

for rtsklst)
DT_ID * rtsklst : Pointer to region storing ID list of waiting tasks
DT_SIZE fmbfsz : Free region size
DT_UINT msgcnt : Count of messages (also used as upper limit for msglst)
T_ROMBF_MSGLST * msglst

: Pointer to information about messages
} T_ROMBF;

•T_ROMPF [rif_ref_obj]
typedef struct t_rompf_blklst
{

DT_ID htskid : ID number of task that got block
DT_VP blkadr : Block start address

} T_ROMPF_BLKLST;

typedef struct t_rompf
{

BITMASK valid : Valid field flag
DT_ATR mpfatr : Fixed-length memory pool attribute
DT_SIZE blksz : Block size

ITRON Debugging Interface Specification Ver. 1.00.00

177 Reference - Structures

DT_UINT fblkcnt : Count of remaining fixed-length memory blocks
DT_UINT blkcnt : Count of all memory blocks
DT_UINT ablkcnt : Count of allocated block (upper limit for blklst)
T_ROMPF_BLKLST * ablklst

: Pointer to detailed information about each block
DT_UINT wtskcnt : Count of tasks waiting for acquisition (wtsklst upper limit)
DT_ID * wtsklst : Pointer to region storing IDs of tasks waiting for getting

} T_ROMPF;

• T_ROMPL [rif_ref_obj]
typedef struct t_rompl_blklst
{

DT_SIZE blksz : Block size
DT_ID htskid : ID number of task that got block
DT_VP blkadr : Block start address

} T_ROMPL_BLKLST;

typedef struct t_rompl
{

BITMASK valid : Valid field flag
DT_ATR mplatr : Variable-length memory pool attribute
DT_SIZE mplsz : Variable-length memory pool region size
DT_UINT fblksz : Maximum size that can be got
DT_UINT ablkcnt : Count of blocks that have got (upper limit for blklst)
T_ROMPL_BLKLST * ablklst

: Pointer to detailed information about each block
DT_UINT wtskcnt : Count of tasks waiting for get (wtsklst upper limit)
DT_ID * wtsklst : Pointer to region storing IDs of tasks waiting for getting

} T_ROMPL;

• T_ROMTX [rif_ref_obj]
typedef struct t_romtx
{

BITMASK valid : Valid field flag
DT_ATR mtxatr : Mutex attribute
DT_PRI ceilpri : Upper-limit priority
DT_ID htskid : ID of task that locks mutex
DT_UINT wtskcnt : Count of waiting tasks (also used as upper limit for wtsklst)
DT_ID * wtsklst : Pointer to region storing ID list of waiting tasks

} T_ROMTX;

• T_ROOVR [rif_ref_obj]
typedef struct t_roovr
{

BITMASK valid : Valid field flag
DT_ATR ovratr : Attribute
DT_FP ovrhdr : Startup address
DT_STAT ovrstat : Handler start status
DT_OVRTIM lefttmo: Remaining processor time

ITRON Debugging Interface Specification Ver. 1.00.00

178 Reference - Structures

} T_ROOVR;

• T_ROPOR [rif_ref_obj]
typedef struct t_ropor
{

BITMASK valid : Valid field flag
DT_ATR poratr : Rendezvous port attribute
DT_UINT maxcmsz : Call message maximum size
DT_UINT maxrmsz : Response message maximum size
DT_UINT ctskcnt : Count of tasks waiting for a call (also used as upper limit for

ctsklst)
DT_ID * ctsklst : Pointer to region storing IDs of all tasks waiting for call
DT_UINT atskcnt : Count of waiting tasks (also used as upper limit for atsklst)
DT_ID * atsklst : Pointer to region storing IDs of all waiting tasks

} T_ROPOR;

•T_RORDV [rif_ref_obj]
typedef struct t_rordv
{

BITMASK valid : Valid field flag
DT_ID tskid : ID of task waiting for rendezvous

} T_RORDV;

•T_RORDQ [rif_ref_obj]
typedef struct t_rordq
{

BITMASK valid : Valid field flag
DT_ID runtskid : ID of currently executing task
DT_UINT tskcnt : Count of ready tasks (running ones included) (upper limit for

tsklst)
DT_ID * tsklst : Pointer to region storing IDs of all executable tasks

} T_RORDQ;

• T_ROSEM [rif_ref_obj]
typedef struct t_rosem
{

BITMASK valid : Valid field flag
DT_ATR sematr : Semaphore attribute
DT_UINT isemcnt : Initial semaphore count
DT_UINT maxsem : Semaphore maximum value
DT_UINT semcnt : Semaphore count value
DT_UINT wtskcnt : Waiting task count (also used as upper limit for wtsklst)
DT_ID * wtsklst : Pointer to region to storing ID list of waiting tasks

} T_ROSEM;

ITRON Debugging Interface Specification Ver. 1.00.00

179 Reference - Structures

• T_ROTEX [rif_ref_obj]
typedef struct t_totex
{

BITMASK valid : Valid field flag
DT_TEXPTN pndptn: Suspended exception cause
DT_FP texrtn : Exception handler startup address

} T_ROTEX;

• T_ROTMQ [rif_ref_obj]
typedef struct t_rotmq_quelst
{

UINT objtyp : Pointer to region storing types of waiting objects
DT_ID wobjid : Pointer to region storing IDs of waiting objects
DT_TMO lefttmo : Pointer to region storing remaining wait time

} T_ROTMQ_QUELST;

typedef struct t_rotmq
{

BITMASK valid : Valid field flag
SYSTIM systim : System time prevailing at getting information
DT_UINT quecnt : Count of waiting objects in timer queue (upper limit for quelst)
T_ROTMQ_QUELST * quelst

: Pointer to information about waiting objects in timer queue
} T_ROTMQ;

• T_ROTSK [rif_ref_obj]
typedef struct t_rotsk
{

BITMASK valid : Valid field flag
DT_ATR tskatr : Task attribute
DT_VP_INT exinf : Extension information
DT_FP task : Startup address
DT_PRI itskpri : Initial priority
DT_VP stk : Initial stack start address
DT_SIZE stksz : Stack size
DT_STAT tskstat : Task status
DT_PRI tskpri : Task current priority
DT_PRI tskbpri : Task base priority
DT_STAT tskwait : Factor of task wait
DT_ID wobjid : ID of object to be waited for
DT_TMO lefttmo : Time remaining before timeout
DT_UINT actcnt : Count of queued start requests
DT_UINT wupcnt : Count of queued wake-up request
DT_UINT suscnt : Count of nested forced wait requests

} T_ROTSK;

ITRON Debugging Interface Specification Ver. 1.00.00

180 Reference - Structures

• T_RRCND_DBG [rif_ref_cnd]
typedef struct t_rrcnd_dbg
{

DT_VP execadr : Execution address (NULL: NC)
DT_VP valadr : Address (NULL: NC)
UINT vallen : Data length (1, 2, or 4 bytes)
VP_INT value : Data or pointer value

} T_RRCND_DBG;

• T_RRCND_RTOS [rif_ref_cnd]
typedef struct t_rrcnd_rtos
{

FLAG type : Contents to be examined
DT_ID objid : ID as condition

} T_RRCND_RTOS;

•T_RSBRK [rif_set_brk]
typedef struct t_rsbrk
{

UINT brktype : Break type
UINT brkcnt : Count before break
DT_ID tskid : Task ID
DT_ID objid : Object ID
UINT objtype : Object type
VP_INT brkprm : Parameter for callback function
DT_VP brkadr : Address for break setting
DT_FN svcfn : Functional code

} T_RSBRK;

• T_RGLOG [rif_get_log]
typedef struct t_rglog
{

UINT logtype : Log type
LOGTIM logtim : Occurrence time
BITMASK valid : Valid field bit map
UINT bufsz : Size of buffer region ‘buf’ (in bytes)
char buf[] : Buffer region for information storage (detailed later)

} T_RGLOG;

• T_RSLOG_CPUEXC [rif_set_log]
typedef struct t_rslog_cpuexc
{

DT_EXCNO excno : CPU exception code (ID_ALL available)
} T_RSLOG_CPUEXC;

ITRON Debugging Interface Specification Ver. 1.00.00

181 Reference - Structures

• T_RSLOG_DISPATCH [rif_set_log]
typedef struct t_rslog_dispatch
{

DT_ID tskid : Task ID (ID_ALL available)
} T_RSLOG_DISPATCH;

• T_RSLOG_INTERRUPT [rif_set_log]
typedef struct t_rslog_interrupt
{

DT_INTNO intno : Interrupt number (ID_ALL available)
} T_RSLOG_INTERRUPT;

• T_RSLOG_ISR [rif_set_log]
typedef struct t_rslog_isr
{

DT_ID isrid : Interrupt service routine ID (ID_ALL available)
DT_INTNO intno : Interrupt number (ID_ALL available)

} T_RSLOG_ISR;

• T_RSLOG_SVC [rif_set_log]
typedef struct t_rslog_svc
{

DT_FN svcfn : Functional code (ID_ALL available)
DT_ID objid : Targeted object ID (ignored when SVC does not have target,

ID_ALL available)
DT_ID tskid : Task ID (ID_ALL available)
BITMASK param : Parameter to be got (ID_ALL available)

} T_RSLOG_SVC;

typedef struct t_rslog_svc
{

DT_FN svcfn : Functional code (ID_ALL available)
DT_ID objid : Targeted object ID (ignored when SVC does not have target,

ID_ALL available)
DT_ID tskid : Task ID (ID_ALL available)
BITMASK param : Parameter to be got (ID_ALL available)

} T_RSLOG_SVC;

typedef struct t_T_RSLOG_TIMERHDR [rif_set_log]
typedef struct t_rslog_timerhdr
{

UINT type : Handler type (OBJ_ALL available)
(Stores constant OBJ_xxx used for rif_ref_obj::objtype)
(All types are targeted when OBJ_ALL(= ID_ALL) is specified.)

DT_ID hdrid : Handler ID (ID_ALL available)
} T_RSLOG_TIMERHDR;

ITRON Debugging Interface Specification Ver. 1.00.00

182 Reference - Structures

• T_RSLOG_TSKEXC [rif_set_log]
typedef struct t_rslog_tskexc
{

DT_ID tskid : Task ID (ID_ALL available)
} T_RSLOG_TSKEXC;

• T_RSLOG_TSKSTAT [rif_set_log]
typedef struct t_rslog_tskstat
{

DT_ID tskid : Task ID (ID_ALL available)
} T_RSLOG_TSKSTAT;

• T_RSLOG_USEREVT [rif_set_log]
typedef struct t_rslog_comment
{

UINT length : Comment character string length
} T_RSLOG_COMMENT;

• T_TCFNC[tif_cal_fnc]
typedef struct t_tcfnc_prmary
{

UINT prmsz : Parameter size (in bytes)
VP prmptr : Pointer to region storing parameter

} T_TCFNC_PRMARY;

typedef struct t_tcfnc
{

DT_VP fncadr : Function address
DT_VP stkadr : Stack pointer for function issue
UINT retsz : Size (in bytes) of region storing parameter
VP retptr : Pointer to region storing execution results
UINT prmcnt : Parameter count
T_TCFNC_PRMARY prmary[]

: Parameter
} T_TCFNC;

• T_TGLOG [tif_get_log]
typedef struct t_tglog
{

ID logid : Corresponding log ID
DT_VP staaddr : Set starting address
DT_VP endaddr : Set ending address
UINT logtype : Log type information
LOGTIM logtim : Time stamp
DT_SIZE bufsz : Buffer size
char buf[] : The region that stores a value which was got

} T_TGLOG;

ITRON Debugging Interface Specification Ver. 1.00.00

183 Reference - Structures

• T_TSBRK [tif_set_brk]
typedef struct t_tsbrk
{

UINT brktype : Break type
DT_VP brkadr : Address to set a break
VP_INT brkprm : Callback routine report flag

} T_TSBRK;

• T_TSBRK_CND [tif_set_brk]
typedef struct t_tsbrk_cnd
{

UINT brktype : Break type
DT_VP brkadr : Address to set a break
VP_INT brkprm : Callback routine report flag
DT_VP cndadr : Address to be set for conditional break
VP_INT cndval : Value to be set for conditional break
UINT cndlen : Byte length (1, 2, or 4) of value to be set for conditional break

} T_TSBRK_CND;

• T_TSLOG [tif_set_log]
typedef struct t_slog
{

UINT logtype : Log type flag
DT_VP staadr : Starting address
DT_VP endadr : Ending address (NULL if range not to be specified)
DT_VP valptr : Read start position (NULL: event occurrence position)
DT_SIZE valsz : Data length (in bytes)

} T_TSLOG;

ITRON Debugging Interface Specification Ver. 1.00.00

184 Reference - Structures

 9.2 Function List
Get of object status [OBJ]

ER rif_ref_obj
(VP p_result, UINT objtype, DT_ID objid, FLAG flags)

Get of description table [CTX]
ER rif_get_rdt (const T_GRDT ** ppk_pgrdt, FLAG flags)

Get of task context [CTX]
ER rif_get_ctx

(VP p_ctxblk, BITMASK_8 * p_valid, DT_ID tskid, FLAG flags)
Set of task context [CTX]

ER rif_set_ctx
(VP p_ctxblk, BITMASK_8 * valid, FLAG flags)

Issue of service call [SVC]
ER rif_cal_svc (T_RCSVC * pk_psvc, FLAG flags)

Cancel of an issued service call [SVC]
ER rif_can_svc (FLAG flags)

Report of service call end [SVC:callback]
void rif_rep_svc (DT_ER result)

Get of function code [SVC]
ER rif_ref_svc (DT_FN * p_svcfn, char * strsvc, FLAG flags)

Get of service call name [SVC]
ER rif_rrf_svc (char * p_strsvc, UINT buf, DT_FN svcfn, FLAG flags)

Set of break point [BRK]
ER_ID rif_set_brk (ID brkid, T_RSBRK * pk_rsbrk, FLAG flags)

Delate of break point [BRK]
ER rif_del_brk (ID brkid, FLAG flags)

Report of break hit [BRK:callback]
void rif_rep_brk (ID brkid, VP_INT exinf)

Get of break informationt [BRK]
ER rif_ref_brk (ID brkid, T_RSBRK * ppk_rsbrk, FLAG flags)

Get of break condition [CND]
ER rif_ref_cnd

(T_RRCND_DBG * ppk_dbg, T_RRCND_RTOS * pk_rtos, FLAG flags)
Set trace log [LOG]

ER_ID rif_set_log
(ID logid, UINT logtype, VP pk_rslog , FLAG flags)

Delete of trace log [LOG]
ER rif_del_log (ID logid, FLAG flags)

Request of trace log function start [LOG]
ER rif_sta_log (ID logid, FLAG flags)

Request of trace log stop [LOG]
ER rif_stp_log (ID logid, FLAG flags)

Get of trace log [LOG]
ER rif_get_log (T_RGLOG * ppk_rglog, FLAG flags)

ITRON Debugging Interface Specification Ver. 1.00.00

185 Reference - Structures

Reconfigure of Trace log mechanism [LOG]
ER rif_get_log (T_RGLOG * ppk_rglog, FLAG flags)

Get of kernel configuration [R]
ER rif_ref_cfg

(T_INFO * p_information, UINT packets, FLAG flags)
Allocate memory (on host) [R]

ER tif_alc_mbh (VP * p_blk, UINT blksz, FLAG flags)
Allocate Memory (on target) [E]

ER tif_alc_mbt (DT_VP * p_blk, DT_SIZE blksz, FLAG flags)
Free Memory (on host) [R]

ER tif_fre_mbh (VP blk, FLAG flags)
Free Memory (on target) [E]

ER tif_fre_mbt (DT_VP blk, FLAG flags)
Read memory [R]

ER tif_get_mem
(VP p_result, DT_VP memadr, DT_SIZE memsz, FLAG flags)

Read memory by block set [R]
ER tif_get_bls

(VP p_result, T_BLKSET * blkset, FLAG flags)
Write memory [R]

ER tif_set_mem
(VP storage, DT_VP memadr, DT_SIZE memsz, FLAG flags)

Write memory by block set [R]
ER tif_set_bls (VP storage, T_BLKSET * blkset, FLAG flags)

Set of memory data change report [E]
ER_ID tif_set_pol

(ID polid, DT_VP adr, DT_INT value, UINT length, FLAG flags)
Delete of change report setting [E]

ER tif_del_pol (ID polid, FLAG flags)
Report of memory data change [E:callback]

void tif_rep_pol (ID polid, DT_INT value, FLAG flags)
Read of register value [R]

ER tif_get_reg (VP r_result, BITMASK_8 * p_valid, FLAG flags)
Write of register value [R]

ER tif_set_reg (VP storage, BITMASK_8 * p_valid, FLAG flags)
Start of target execution [R]

ER tif_sta_tgt (DT_VP staaddr, FLAG flags)
Stop of target execution [E]

ER tif_stp_tgt (FLAG flags)
Break of target execution [E]

ER tif_brk_tgt (FLAG flags)
Resumption of target execution [R]

ER tif_cnt_tgt (FLAG flags)

ITRON Debugging Interface Specification Ver. 1.00.00

186 Reference - Structures

Set of break point [R]
ER_ID tif_set_brk (ID brkid, T_TSBRK * pk_tsbrk, FLAG flags)

Delete of break point [R]
ER tif_del_brk (ID brkid, FLAG flags)

Report break [R:callback]
ER tif_rep_brk (ID brkid, VP_INT param)

Reference of in symbol table value [R]
ER tif_ref_sym (INT * p_value, char * strsym, FLAG flags)

Reference of symbol in symbol table [E]
ER tif_rrf_sym

(char * p_sym, UINT maxlen, INT value, FLAG flags)
Function call [E]

ER tif_cal_fnc (T_TCFNC * pk_tcfnc, FLAG flags)
Report of function execution end [E:callback]

void tif_rep_fnc (FLAG flags)
Set of trace log [E]

ER_ID tif_set_log (ID logid, T_TSLOG * pk_tslog, FLAG flags)
Delete of trace log setting [E]

ER tif_del_log (ID logid, FLAG flags)
Start of trace log [E]

ER tif_sta_log (ID logid, FLAG flags)
Stop of trace log [E]

ER tif_stp_log (ID logid, FLAG flags)
Trace logs callback [E:callback]

void tif_rep_log (ID logid, UINT event, FLAG flags)
Get of trace log [E]

ER tif_get_log (VP p_result, FLAG flags)
Get of debugging tool information [R]

ER dgb_ref_dbg
(T_INFO * pk_rdbg, UINT packets, FLAG flags)

RIM initialization [R]
ER dbg_ini_rim (VP param)

RIM finalization process [R]
ER dbg_fin_rim (VP param)

Get of RIM information [R]
ER dbg_ref_rim

(T_INFO * ppk_rrim, UINT packets, FLAG flags)
Interface initialization [E]

ER dbg_ini_inf (T_INTERFACE * ppk_interface, VP param)

ITRON Debugging Interface Specification Ver. 1.00.00

187 Reference - Option Flags

9.3 Option Flags

9.3.1 Common flags
FLG_AUTONUMBERING (40000000H): ID automatic assignment

Automatically assigns ID. If an argument is used to specify the ID, it is
ignored by the function. When the function is successfully executed, it
returns the automatically assigned ID.

FLG_NOCONSISTENCE (10000000H): Nonconsistency flag
When this flag is specified, the got data need not be consistent (e.g., the task
is not freed from the waiting state although there is no factor for the task
wait).

FLG_NOREPORT (80000000H): Report function invalidation
The paired callback function is not called.

FLG_NOSYSTEMSTOP (20000000H): An explicit system stop is not permitted
When this flag is specified, tif_brk_tgt must not be used within the function
to halt the system. If this flag is not supported, the E_NOSPT error occurs.

9.3.2 Unique flags
OPT_APPCONTEXT (1)

Handles context on application level

OPT_BLOCKING (1)
Performs execution in blocking mode

OPT_CANCEL (0)
Does not consider effect of issued service call (default)

OPT_CMPVALUE (2)
Sets value targeted for comparison

OPT_CNDBREAK (4)
Uses conditional break mechanism of debugging tool

OPT_EXTPARAM (2)
Specifies extension parameter

OPT_GETMAXCNT (1)
Even when the upper limit value is smaller than the variable-length data
count, this flag tracks to get the data count.

OPT_NOCNDBREAK (1)
Does not use conditional break for break setting

OPT_NORDT (2)
Does not get register set description table

OPT_PEEK (1)
Gets trace log without deleting it from spool

OPT-RESTART (1)
Restarts target (ignores argument staadr)

ITRON Debugging Interface Specification Ver. 1.00.00

188 Reference - Option Flags

OPT_SEARCH_BACKWARD (2)
Search backward (in decreasing address direction) to locate symbol closest
to specified value

OPT_SEARCH_COMPLETELY (0)
Searches for only symbol that perfectly matches search key (default)

OPT_SEARCH_FORWARD (1)
Search backward (in increasing address direction) to locate symbol closest to
specified value

OPT_UNDO (1)
Returns to state before issue.

OPT_VENDORDEPEND (2)
Gets implement-dependent information.

ITRON Debugging Interface Specification Ver. 1.00.00

189 Reference - Constants

9.4 Constants

9.4.1 Object identification constants
OBJ_SEMAPHORE (1)

Semaphore

OBJ_EVENTFLAG (2)
Event flag

OBJ_DATAQUEUE (3)
Data queue

OBJ_MAILBOX (4)
Mailbox

OBJ_MUTEX (5)
Mutex

OBJ_MESSAGEBUFFER (6)
Message buffer

OBJ_RENDEZVOUSPORT (8)
Rendezvous port

OBJ_RENDEZVOUS (9)
Rendezvous

OBJ_FMEMPOOL (10)
Fixed-length memory pool

OBJ_VMEMPOOL (11)
Variable-length memory pool

OBJ_TASK (12)
Task

OBJ_READYQUEUE (14)
Ready queue

OBJ_TIMERQUEUE (15)
Timer queue

OBJ_CYCLICHANDLER (17)
Cyclic handler

OBJ_ALARMHANDLER (18)
Alarm handler

OBJ_OVERRUNHANDLER (19)
Overrun handler

OBJ_ISR (20)
Interrupt service routine

OBJ_KERNELSTATUS (21)
Kernel information

OBJ_TASKEXCEPTION (22)
Task exception handler

OBJ_CPUEXCEPTION (23)
CPU Exception handler

ITRON Debugging Interface Specification Ver. 1.00.00

190 Reference - Constants

OBJ_ALL (-1u)
Special constant that denotes all objects

9.4.2 Error constants
E_CONSIST (-225)

Consistency was not assured (however, it is not handled as an error if
FLG_NOCONSISTENCE is set).

E_EXCLUSIVE (-226)
Another request is already issued. The function could not receive a new
request until execution of the previous request ends.

E_FAIL (-227)
The operation failure was caused by some reason (although the operation
could be continued)

E_ID (-146)
The specified object ID was invalid.

E_NOID (-162)
Count of IDs form automatic assignment was insufficient.

E_NOMEM (-161)
The request could not be executed due to insufficient host memory.

E_NOSPT (-137)
An unsupported operation was executed.

E_OBJ (-169)
The targeted object on teh target was inoperative.

E_OK (0)
 Normally ended.

E_PAR (-145)
A parameter value was invalid.

E_SYS (-133)
An irrecoverable (fatal) error occurred for some reason.

E_TMOUT (-178)
The process timed out (when OPT_BLOCKING specified).

E_ID (-18)
The specified kernel object ID was invalid.

ET_MACV (-26)
An invalid memory region on the target was accessed.

ET_NOEXS (-42)
The targeted object was not found on the target.

ET_NOMEM (-33)
The request could not be executed due to insufficient memory on teh target.

ET_OACV (-27)
An illegal target on an target was accessed (tskid < 0).

ET_OBJ (-41)
The targeted object on the target was inoperative.

ITRON Debugging Interface Specification Ver. 1.00.00

191 Reference - Constants

9.4.3 Break constants
BRK_ACCESS (2)

Sets access break.

BRK_DISPATCH (3)
Sets break for task dispatcher (after execution)

BRK_ENTER (0)
Places break at starting position (BRK_DISPATCH, BRK_SVC)

BRK_EXECUTE (1)
Sets execution break.

BRK_LEAVE (128)
Places break at escape position (BRK_DISPATCH, BRK_SVC)

BRK_REPORT (32)
Report only (and does not perform break)

BRK_SVC (4)
Breaks with SVC.

BRK_SYSTEM (0)
Stops entire system when break occurs.

BRK_TASK (64)
Stops only task when break occurs.

9.4.4 Log constants

Log type - Object
LOG_TYP_INTERRUPT (1)

Interrupt

LOG_TYP_ISR (2)
Interrupt service routine

LOG_TYP_TIMERHDR (3)
Timer event handler

LOG_TYP_CPUEXC (4)
CPU exception

LOG_TYP_TSKEXC (5)
Task exception

LOG_TYP_TSK STAT (6)
Task status

LOG_TYP_DISPATCH (7)
Task dispatch

LOG_TYP_SVC (8)
Service call

LOG_TYP_COMMENT (9)
Comment (log consisting of character string only; to be written mainly by
user)

ITRON Debugging Interface Specification Ver. 1.00.00

192 Reference - Constants

Log type - Break method
LOG_INSTRUCTION (0)

Instruction

LOG_DATA (4)
Data

Log type - Break conditions
LOG_READ (8)

Read

LOG_WRITE (16)
Write

LOG_MODIFY (32)
Modification (Read Modify Write)

Log mechanism - Configuration setup
LOG_HARDWARE (0)

Uses TIF-based hardware log mechanism for getting

LOG_SOFTWARE (1)
Uses software-based log mechanism executed by RIM alone, for getting

LOG_BUFFUL_STOP (0)
Stops getting log when buffer full

LOG_BUFFUL_CALLBACK (2)
Executes callback function when buffer full

LOG_BUFFUL_FORCEEXEC (4)
Continues getting by discarding oldest data when buffer full

Report events
EV_BUFFER_FULL (1)

The trace buffer is full.

EV_STOP (2)
The trace log function is stopped.

EV_REPORT (4)
The report conditions specified by tif_sta_log are satisfied.

Dispatch type
DSP_NORMAL (0)

Dispatch from task context

DSP_NONTSKCTX (1)
Dispatch from interrupt process or CPU exception

ITRON Debugging Interface Specification Ver. 1.00.00

193 Reference - Constants

9.4.5 Other constants
ADR_SYSTEMSTART (0)

Restarts target

CND_CURTSKID (0)
Generates expression in which task ID used as condition

ID_ALL (-1)
Targets all IDs

ID_NONTSKCTX (-127)
Targets nontask context

ITRON Debugging Interface Specification Ver. 1.00.00

194 Reference - Constants

 9.5 Key Code List of Getting Information
First key Value [type]

Explanation of the information that this key can get
.Second key Value [type]

Explanation of the information that this key can get
.Third key Value [type]

Explanation of the information that this key can get
.Fourth key Value [type]

Explanation of the information that this key can get
RIF 4H

.UNIT 20H
.OBJ 1H [1]

Supports the "getting Object status" functional unit.
.LOG 2H [1]

Supports the "getting execution history" functional unit.
.SVC 3H [1]

Supports the "service call invocation" functional unit.
.BRK 4H [1]

Supports the "break setting" functional unit.
.CND 5H [1]

Supports the "getting break condition" functional unit.
.CTX 6H [1]

Supports the "getting context" functional unit.
RIF 4H

.RIF_REF_OBJ 1H
.FLG_NOCONSISTENCE 1H [1]

The "FLG_NOCONSISTENCE" flag is available.
.FLG_NOSYSTEMSTOP 2H [1]

The "FLG_NOSYSTEMSTOP" flag is available.
.OPT_VENDORDEPEND 10H [1]

The "OPT_VENDORDEPEND" option is available.
.OPT_GETMAXCNT 11H [1]

The "OPT_GETMAXCNT" option is available.
.STATICPARAMETER 12H

.OBJ_SEMAPHORE 80H [T]
This structure has semaphore information that is statically determina-
tive.

.OBJ_EVENTFLAG 81H [T]
This structure has event flag information that is statically determinative.

.OBJ_DATAQUEUE 82H [T]
This structure has data queue information that is statically determina-
tive.

.OBJ_MAILBOX 83H [T]
This structure has mailbox information that is statically determinative.

ITRON Debugging Interface Specification Ver. 1.00.00

195 Reference - Constants

.OBJ_MUTEX 84H [T]
This structure has mutex information that is statically determinative.

.OBJ_MESSAGEBUFFER 85H [T]
This structure has message box information that is statically determina-
tive.

.OBJ_RENDEZVOUSPORT 86H [T]
This structure has rendezvous port information that is statically deter-
minative.

.OBJ_RENDEZVOUS 87H [T]
This structure has rendezvous information that is statically determina-
tive.

.OBJ_FMEMPOOL 88H [T]
This structure has fixed-length memory pool information that is statical-
ly determinative.

.OBJ_VMEMPOOL 89H [T]
This structure has variable-length memory pool information that is stat-
ically determinative.

.OBJ_TASK 8AH [T]
This structure has task information that is statically determinative.

.OBJ_READYQUEUE 8BH [T]
This structure has ready queue information that is statically determina-
tive.

.OBJ_TIMERQUEUE 8CH [T]
This structure has timer queue information that is statically determina-
tive.

.OBJ_CYCLICHANDLER 8DH [T]
This structure has cyclic handler information that is statically determi-
native.

.OBJ_ALARMHANDLER 8EH [T]
This structure has alarm handler information that is statically determi-
native.

.OBJ_OVERRUNHANDLER 8FH [T]
This structure has overrun handler information that is statically determi-
native.

.OBJ_ISR 90H [T]
This structure has interrupt service routine information that is statically
determinative.

.OBJ_KERNELSTATUS 91H [T]
This structure has kernel information that is statically determinative.

.OBJ_TASKEXCEPTION 92H [T]
This structure has task exception information that is statically determi-
native.

.OBJ_CPUEXCEPTION 93H [T]
This structure has CPU exception information that is statically determi-
native.

ITRON Debugging Interface Specification Ver. 1.00.00

196 Reference - Constants

RIF 04H
.RIF_GET_RDT 02H

.REGISTER 2H
.SIZE 04H [W]

Size (in bytes) of enough region for register storage
.CONTEXT 12H

.SIZE 04H [W]
Size (in bytes) of enough region for context storage

RIF 04H
.RIF_GET_CTX 03H

.FLG_NOCONSISTENCE 01H [1]
The "FLG_NOCONSISTENCE" flag is available.

.FLG_NOSYSTEMSTOP 02H [1]
The "FLG_NOSYSTEMSTOP" flag is available.

.OPT_APPCONTEXT 10H [1]
The "OPT_APPCONTEXT" option is available.

RIF 04H
.RIF_SET_CTX 13H

.FLG_NOSYSTEMSTOP 02H [1]
The "FLG_NOSYSTEMSTOP" flag is available.

.OPT_APPCONTEXT 10H [1]
The "OPT_APPCONTEXT" option is available.

RIF 04H
.RIF_CAL_SVC 04H

.FLG_NOREPORT 03H [1]
The "FLG_NOREPORT" flag is available.

.OPT_BLOCKING 10H [1]
The "OPT_BLOCKING" flag is available.

.NONBLOCKING 12H [1]
A nonblocking SVC issue is supported.

RIF 04H
.RIF_CAN_SVC 05H [1]

rif_can_svc is implemented.
.OPT_CANCEL 10H [1]

The "OPT_CANCEL" option is available.
.OPT_UNDO 11H [1]

The "OPT_UNDO" option is available.
RIF 04H

.RIF_CAL_SVC 06H
RIF 04H

.RIF_REF_SVC 07H
RIF 04H

.RIF_RRF_SVC 08H

ITRON Debugging Interface Specification Ver. 1.00.00

197 Reference - Constants

RIF 04H
.RIF_SET_BRK 09H

.FLG_NOREPORT 03H [1]
The "FLG_NOREPORT" flag is available.

.FLG_AUTONUMBERING 04H [1]
The "FLG_AUTONUMBERING" flag is available.

.OPT_NOCNDBREAK 10H [1]
The "OPT_NOCNDBREAK" option is available.

.OPT_EXTPARAM 11H [1]
The "OPT_EXTPARAM" option is available.

RIF 04H
.RIF_DEL_BRK 0AH

RIF 04H
.RIF_REP_BRK 0BH

RIF 04H
.RIF_REF_BRK 0CH

RIF 04H
.RIF_REF_CND 0DH

RIF 04H
.RIF_SET_LOG 0EH

.FLG_AUTONUMBERING 04H [1]
The "FLG_AUTONUMBERING" flag is available.

.OPT_BUFFUL_STOP 10H [1]
The "OPT_BUFFUL_STOP" option is available.

.OPT_BUFFUL_FORCEEXEC 11H [1]
The "OPT_BUFFUL_FORCEEXEC" option is available.

RIF 04H
.RIF_DEL_LOG 0FH

RIF 04H
.RIF_STA_LOG 10H

RIF 04H
.RIF_STP_LOG 11H

RIF 04H
.RIF_GET_LOG 12H

.OPT_PEEK 10H [1]
The "OPT_PEEK" option is available.

.STRUCT_SVC 11H [1]
Uses a dedicated structure for the start/end of LOG_TYP_SVC.

RIF 04H
.RIF_CFG_LOG 13H

ITRON Debugging Interface Specification Ver. 1.00.00

198 Reference - Constants

CFG 7H
.CPUEXCEPTION 17H

.MIN 1H[W]
Minimum value of the internal exception factor that the kernel uses

.MAX 2H [W]
Maximum value of the internal exception factor that the kernel uses

.NUM 3H [W]
Count of internal exception factor that the kernel uses

.SYSTIM 20H
.TICK_D 1H [W]

Denominator when the timer resolution is expressed in milliseconds
(ms)

.TICK_N 2H [W]
Numerator when the timer resolution is expressed in milliseconds (ms)

.UNIT_D 3H [W]
Denominator when the timer unit is expressed in milliseconds (ms)

.UNIT_N 4H [W]
Numerator when the timer unit is expressed in milliseconds (ms)

.LOGTIM 21H
.TICK_D 1H [W]

Denominator when the log time resolution is expressed in milliseconds
(ms)

.TICK_N 2H [W]
Numerator when the log time resolution is expressed in milliseconds
(ms)

.UNIT_D 3H [W]
Denominator when the log time unit is expressed in milliseconds (ms)

.UNIT_N 4H [W]
Numerator when the log time unit is expressed in milliseconds (ms)

.INTERRUPT 22H
.MIN 1H [W]

Minimum value of the external interrupt factor that the kernel uses
.MAX 2H [W]

Maximum value of the external interrupt factor that the kernel uses
.NUM 3H [W]

Count of external interrupt factor that the kernel uses
.ISR 25H

.MIN 1H [W]
Minimum ISR number offered by kernel

.MAX 2H [W]
Maximum ISR number offered by kernel

.NUM 3H [W]
Number of ISRs offered by kernel

.MAKER 23H [W]
Manufacturer code

ITRON Debugging Interface Specification Ver. 1.00.00

199 Reference - Constants

.PRIORITY 24H
.MIN 1H [W]

Minimum value of the priority levels available to the kernel
.MAX 2H [W]

Maximum value of the priority levels available to the kernel
.OBJ_SEMAPHORE 80H

.MIN 1H [W]
Minimum value of assignable IDs

.MAX 2H [W]
Maximum value of assignable IDs

.OBJ_EVENTFLAG 81H
.MIN 1H [W]

Minimum value of assignable IDs
.MAX 2H [W]

Maximum value of assignable IDs
.OBJ_DATAQUEUE 82H

.MIN 1H [W]
Minimum value of assignable IDs

.MAX 2H [W]
Maximum value of assignable IDs

.OBJ_MAILBOX 83H
.MIN 1H [W]

Minimum value of assignable IDs
.MAX 2H [W]

Maximum value of assignable IDs
.OBJ_MUTEX 84H

.MIN 1H [W]
Minimum value of assignable IDs

.MAX 2H [W]
Maximum value of assignable IDs

.OBJ_MESSAGEBUFFER 85H
.MIN 1H [W]

Minimum value of assignable IDs
.MAX 2H [W]

Maximum value of assignable IDs
.OBJ_RENDEZVOUSPORT 86H

.MIN 1H [W]
Minimum value of assignable IDs

.MAX 2H[W]
Maximum value of assignable IDs

.OBJ_RENDEZVOUS 87H
.MIN 1H [W]

Minimum value of assignable IDs

ITRON Debugging Interface Specification Ver. 1.00.00

200 Reference - Constants

.MAX 2H [W]
Maximum value of assignable IDs

.OBJ_FMEMPOOL 88H
.MIN 1H [W]

Minimum value of assignable IDs
.MAX 2H [W]

Maximum value of assignable IDs
.OBJ_VMEMPOOL 89H

.MIN 1H [W]
Minimum value of assignable IDs

.MAX 2H [W]
Maximum value of assignable IDs

.OBJ_TASK 8AH
.MIN 1H [W]

Minimum value of assignable IDs
.MAX 2H [W]

Maximum value of assignable IDs
.OBJ_CYCLICHANDLER 8DH

.MIN 1H [W]
Minimum value of assignable IDs

.MAX 2H [W]
Maximum value of assignable IDs

.OBJ_ALARMHANDLER 8EH
.MIN 1H [W]

Minimum value of assignable IDs
.MAX 2H [W]

Maximum value of assignable IDs
.PRVER A0H [S]

Version number of the kernel
.SPVER A1H [S]

ITRON Specification version number
TIF 05H

.TIF_ALC_MBH 01H
TIF 05H

.TIF_ALC_MBT 02H [1]
Supports this function.

TIF 05H
.TIF_FRE_MBH 03H

TIF 05H
.TIF_FRE_MBT 04H [1]

Supports this function.

ITRON Debugging Interface Specification Ver. 1.00.00

201 Reference - Constants

TIF 05H
.TIF_GET_MEM 05H

.FLG_NOCONSISTENCE 01H [1]
Supports the "FLG_NOCONSISTENCE" flag.

.FLG_NOSYSTEMSTOP 02H [1]
Supports the "FLG_NOSYSTEMSTOP" flag.

TIF 05H
.TIF_GET_BLS 06H

.FLG_NOCONSISTENCE 01H [1]
Supports the "FLG_NOCONSISTENCE" flag.

.FLG_NOSYSTEMSTOP 02H [1]
Supports the "FLG_NOSYSTEMSTOP" flag.

TIF 05H
.TIF_SET_MEM 07H

.FLG_NOCONSISTENCE 01H [1]
Supports the "FLG_NOCONSISTENCE" flag.

.FLG_NOSYSTEMSTOP 02H [1]
Supports the "FLG_NOSYSTEMSTOP" flag.

TIF 05H
.TIF_SET_BLS 08H

.FLG_NOCONSISTENCE 01H [1]
Supports the "FLG_NOCONSISTENCE" flag.

.FLG_NOSYSTEMSTOP 02H [1]
Supports the "FLG_NOSYSTEMSTOP" flag.

TIF 05H
.TIF_SET_POL 09H [1]

Supports this function.
.FLG_AUTONUMBERING 04H [1]

Supports the "FLG_AUTONUMBERING" flag.
.OPT_CMPVALUE 10H [1]

Supports the "OPT_CMPVALUE" option.
TIF 05H

.TIF_DEL_POL 0AH [1]
Supports this function.

TIF 05H
.TIF_REP_POL 0BH

TIF 05H
.TIF_GET_REG 0CH

.FLG_NOCONSISTENCE 01H [1]
Supports the "FLG_NOCONSISTENCE" flag.

.FLG_NOSYSTEMSTOP 02H [1]
Supports the "FLG_NOSYSTEMSTOP" flag.

ITRON Debugging Interface Specification Ver. 1.00.00

202 Reference - Constants

TIF 05H
.TIF_SET_REG 0DH

TIF 05H
.TIF_STA_TGT 0EH

.OPT_RESTART 10H [B]
OPT_RESTART is available.

TIF 05H
.TIF_STP_TGT 0FH [1]

Supports this function.
TIF 05H

.TIF_BRK_TGT 10H [1]
Supports this function.

TIF 05H
.TIF_CNT_TGT 11H

TIF 05H
.TIF_SET_BRK 13H

.FLG_AUTONUMBERING 04H [1]
Supports the "FLG_AUTONUMBERING" flag.

.OPT_CNDBREAK 10H [1]
Supports the "OPT_CNDBREAK" option.

.BRK_ACCESS 11H [1]
An access break is available.

TIF 05H
.TIF_DEL_BRK 14H

TIF 05H
.TIF_REP_BRK 12H

Supports this function.
.FLG_AUTONUMBERING 04H [1]

Supports the "FLG_AUTONUMBERING" flag.
TIF 05H

.TIF_REF_SYM 15H
TIF 05H

.TIF_RRF_SYM 16H [1]
Supports this function.

.OPT_SEARCH_FORWARD 10H [1]
The "OPT_SEARCH_FORWARD" option is available.

.OPT_SEARCH_BACKWARD 11H [1]
The "OPT_SEARCH_BACKWARD" option is available.

.OPT_SEARCH_COMPLETELY 12H [1]
The "OPT_SEARCH_COMPLETELY" option is available.

TIF 05H
.TIF_CAL_FNC 17H [1]

Supports this function.

ITRON Debugging Interface Specification Ver. 1.00.00

203 Reference - Constants

.FLG_NOREPORT 03H [1]
Supports the "FLG_AUTONUMBERING" flag.

.OPT_BLOCKING 11H [1]
Supports the "OPT_NONBLOCKING" option.

.NONBLOCKING 12H [1]
Supports a nonblocking function call.

TIF 05H
.TIF_REP_FNC 18H [1]

Supports this function.
TIF 05H

.TIF_SET_LOG 19H [1]
Supports this function.

.FLG_NOREPORT 03H [1]
The "FLG_NOREPORT" flag is available.

.FLG_AUTONUMBERING 04H [1]
Supports the "FLG_AUTONUMBERING" flag.

.OPT_BUFFUL_FORCEEXEC 11H [1]
The "OPT_BUFFUL_FORCEEXEC" option is available.

.OPT_BUFFUL_CALLBACK 12H [1]
The "OPT_BUFFUL_CALLBACK" option is available.

.LOG_INSTRUCTION 13H [1]
The log type "LOG_INSTRUCTION" is available.

.LOG_DATA 14H [1]
The log type "LOG_DATA" is available.

.LOG_READ 15H [1]
LOG_READ is available.

.LOG_WRITE 16H [1]
LOG_WRITE is available.

.LOG_MODIFY 17H [1]
LOG_MODIFY is available.

TIF 05H
.TIF_DEL_LOG 1AH [1]

Supports this function.
TIF 05H

.TIF_STA_LOG 1BH [1]
Supports this function.

TIF 05H
.TIF_STP_LOG 1CH [1]

Supports this function.
TIF 05H

.TIF_REP_LOG 1DH [1]
Supports this function.

ITRON Debugging Interface Specification Ver. 1.00.00

204 Reference - Constants

TIF 05H
.TIF_GET_LOG 1EH [1]

Supports this function.
.OPT_PEEK 10H [1]

Supports the OPT_PEEK option.
DEBUGGER 1H

.CNDBREAK 1H
.NUM 3H [W]

Count of conditional breaks that can be set (0: not supported)
.LOG 2H

.NUM 3H [W]
Count of hardware logs that can be set (0: not supported)

.NAME 80H [S]
Unique character(s) for debugging tool identification

HOST 2H
.ENDIAN 1H [W]

Host computer’s endian (0: little; 1: big)
.NAME 80H [S]

Unique character(s) for host computer identification
TARGET 3H

.ENDIAN 1H [W]
Target computer’s endian (0: little; 1: big)

.REGISTER 2H
.NUM 3H [W]

Count of target computer registers
.NAME 80H [S]

Unique character(s) for target device identification
OS 8H

.NAME 80H [S]
Unique character(s) for target OS identification ("ITRON")

ITRON Debugging Interface Specification 1.00.00

205 A

 Appendix A

Member List
In honor of persons who contributed much to the preparation of the specification, the names of
the ITRON Debugging Interface Specification Working Group members are listed below (in
alphabetical order):

Table 26: Member List

Name Organization

Kouei Abe NEC Microcomputer Technology, Ltd.

Kazuyuki Iori Midoriya Electric Co., Ltd. Design Center

Norihisa Iga NEC Software Product Engineering Laboratory

Hidehiro Ishii YDC Corporation

Kazutoyo Inamitsu Fujitsu Devices Inc.

Shigeto Iwata eSOL Co., Ltd.

Kazuyuki Uchida Matsushita Electric Industrial Co., Ltd.

Shinnichiro Eto Matsushita Information System Reserch Laboratory
Hiroshima Co., Ltd.

Yoshinori Kaneko NEC Microcomputer Technology, Inc.

Takao Kawai AI Corporation Inc.

Masahiro Kawakami Oki Electric Industry Co., Ltd.

Motoko Kishitani MITSUBISHI Electric Semiconductors Systems Corporation

Kenji Kudo Fujitsu Devices Inc.

Hisaya Kuroda Sophia Systems Co., Ltd.

Yoshiyuki Koizumi TOSHIBA Corporation

Masahiko Kohda Advanced Data Controls Corp.

Shirou Kojima Fujitsu Devices Inc.

Yasuhiro Kobayashi Fujitsu Limited

Masaki Gondo eSOL Co., Ltd.

Masaaki Sakuraba Fujitsu Devices Inc.

Shigeru Sasaki Toyota Motor Corporation

Takako Sato NEC Microcomputer Technology, Ltd.

Shinji Shibata Firmware Systems Inc.

ITRON Debugging Interface Specification 1.00.00

206 A

Masahiro Shukuguchi Mitsubishi Electric Micro-Computer Application Software
Co., Ltd.

Tetsuo Takagi DENSO Create Inc.

Hiroaki Takada Toyohashi Univ. of Technology

Chiharu Takei YDC Corporation

Tohru Takeuchi TRON Association

Yuichi Tsukada Cats Corp.

Shoji Nagata Matsushita Electric Industrial Co., Ltd.

Satoshi Nagamine Matsushita Electric Industrial Co., Ltd.

Shigeki Nankaku Mitsubishi Electric Corporation

Yukio Nomoto BITRAN Corporation

Shinnichi Hashimoto Access Co., Ltd.

Yasushi Hasegawa Fujitsu Devices Inc.

Shinichi Hayakashi TOSHIBA Corporation

Tadakatsu Masaki Matsushita Information System Reserch Laboratory
Hiroshima Co., Ltd.

Yukihiro Mizukoshi Oki Electric Industry Co., Ltd.

Satoshi Midorikawa Midoriya Electric Co., Ltd.

Hiroyuki Muraki MITSUBISHI Electric Semiconductors Systems Corporation

Kiyoshi Motoki Fujitsu Devices Inc.

Toshiko Morimoto YDC Corporation

Shinjiro Yamada Hitachi Ltd.

Masaru Yamanaka QNX Software Systems Ltd. Japan

Tatsuo Yamada Motorola Inc.

Ichiro Yamamoto LIGHTWELL Co., Ltd.

Akira Yokozawa TOSHIBA Corporation

Munehiro Yoshida MITSUBISHI Electric Semiconductors Systems Corporation

Miyoko Yoshimura eSOL Co., Ltd.

Takayuki Wakabayashi Toyohashi Univ. of Technology

Table 26: Member List

Name Organization

ITRON Debugging Interface Specification 1.00.00

207 B

 Appendix B

Numerics
32-bit RIM DLL Target Types ..166
32-bit RIM DLL Host Types ..166

A
argument name ...1,3
adr ...5
agent..8,43,164,165
alignment ..167
allocate memory (on host) ..107
allocate memory (on target) ..108
API ..9,77,78
approach ..12,13,14
approach plans ...12

B
background ..9
Bit Mask ..24
BITMASK ...23,36,55,56,124,126
block set .. 7,113,114,118,185
blocking ...38,72,73,76,142,187
break report ...136
BRK ..63,69,70,77,80
BRK_ACCESS ...80,133,191
BRK_DISPATCH ...80,81,191
BRK_ENTER ..81,191
BRK_EXECUTE ..80,132,191
BRK_LEAVE ..81,191
BRK_NOCNT ..81
BRK_REPORT ...81,136,191
BRK_SVC ..80,81,191
BRK_SYSTEM ...81,191
BRK_TASK ...81,191

C
callback ...2,15,18
cancel of an issued service call ...75
CND ...7,41
CND_CURTSKID ...87,193
cnt ...5,54
comment...40,89,91,98,168,169,172,182,191
Concept Diagram ..15
conditional break ..17,18,42,46,82,133,183,187
consistency ..22
consistency assurance ...22
control block ...12,16,39
count parameter ...54
critical section ..22,29
CTX ..41

D
dbg_fin_rim ...158,160
dbg_ini_inf ...21,157,160,167
dbg_ini_rim ...21,157,160
dbg_ref_dbg ..155,160,172
dbg_ref_rim ..72,102,159,160,172
debug tool ...7,39,47
delete of break point ...80
delete of change report setting ..122
delete of trace log setting ...93,149
DSP_NONTSKCTX ..97,192
DSP_NORMAL ...97,192
duplication can be avoided ..167

ITRON Debugging Interface Specification 1.00.00

208 B

E
E_FAIL ...64,67,69,71,73
E_FALSE ...44,46,136,137
E_NOMEM ...64,67,69,71,73
E_NOSPT ..42,53,64,67,69
E_OBJ ..75,77,79,84
E_OK ...64,67,68,69
E_PAR ..65,67,69,71
E_SYS ..46,67,69,71
E_TRUE ...44,45,136,137
end ...52
endian ...125,126,156,204
error ...2,3,18,19,22,23,26,27,28
error constants ..2,190
EV_BUFFER_FULL ..146,152,192
EV_REPORT ..146,152,192
EV_STOP ..152,192
execution history ..39,40,41,48,53,89,168,169
export ..167
extended functions ..1,42,124

F
feature ..35,46
File Format of Standard Execution History ..168
flags ..5,54,55,66
FLAG ...54,66,68,70
FLG_AUTONUMBERING ...82,92,120,121
FLG_NOCONSISTENCE ...63,65,69,71
FLG_NOREPORT ...72,73,76,82
FLG_NOSYSTEMSTOP ...63,69,70,71
focus ..9,17,75
free ...6,158
free memory (on host) ... 109fFree memory (on target) 110
function export ..167
functional unit ...27,41,53

G
get context..65,67,68
get information into debugging tool ...13
Get of break condition ..41
Get of break information ..86,184
Get of description table ...35,66,184
Get of function code ...77,78,80,91,98
Get of kernel configuration ...42,102,185
Get of object Status ...29,39,40,41,53,54,55
Get of service call name ...78,184
Get of task context ..35,36,66,68,184
Get RIM-related information ..159
gets a trace log source..153
glue routine ...108
guaranteed ...77
guideline ...8,15,39,163,166,167

H
historical information storage region ..51

I
ID ...4,39,40,45
ID_ALL ...81,84,90,91
Identification Number ...32
INF_CFG ..102
INF_HOST ..25
INF_OBJ_xxx ...27
INF_TIF ..156
INF_UNIT ..27
information key code ...25,142
initialization ...21,157,160,163,167,186
Interface Function Registration ..21
interface initialization ...160
Issue of function ..138

ITRON Debugging Interface Specification 1.00.00

209 B

Issue of service call ...72,141,184
K

key ..2,25,26,53,63,67,69,71,73,75
key code ..2,25,26,27,53,68,101

L
len ..5
length ...5,18,23,24
Level Indications ..41,42
LOG ...3,41,89,90
Log ...7,16,23,32,41,48,49,77,89,145
LOG_DATA ..145,147,192
LOG_ENTER ..90,91,97,98
LOG_INSTRUCTION ..145,147,192
LOG_LEAVE ...90,91,98,99
LOG_MODIFY ..147,192,203
LOG_READ ...147,192,203
LOG_TYP_COMMENT ...89,91,98,191
LOG_TYP_CPUEXC ..89,90,97,191
LOG_TYP_DISPATCH ..89,91,96,97,98
LOG_TYP_INTERRUPT ..89,90,96,191
LOG_TYP_ISR ...89,90,97,191
LOG_TYP_SVC ..89,91,98,99,191,197
LOG_TYP_SVC_ENT ...98
LOG_TYP_TIMERHDR ...89,90,97,191
LOG_TYP_TSK ..90,191
LOG_TYP_TSKEXC ..89,90,91,97,99,191
LOG_TYP_TSKSTAT ..89,90,91,97,99
LOG_WRITE ..147,192,203
LOGTIM ...23,96,153,166,167
lst ...5,30,54

M
malloc ..107
memory block ... 7,111,116
Memory Management Unit ...12
MMU ..12

N
name ...1,2,3,4
Naming Rules ...3
non-blocking ..72,94,141,144,196,203
notation ..1,4,6,7

O
OBJ ..27,29,41,60,173,181
OBJ_ALARMHANDLER ...60,189
OBJ_CPUEXCEPTION ...62,189
OBJ_CYCLICHANDLER ...60,189
OBJ_DATAQUEUE ..56,189
OBJ_EVENTFLAG ...56,189
OBJ_FMEMPOOL ..58,189
OBJ_ISR ..61,189
OBJ_KERNELSTATUS ..61,189
OBJ_MAILBOX ..56,189
OBJ_MESSAGEBUFFER ...57,189
OBJ_MUTEX ..57,189
OBJ_OVERRUNHANDLER ..60,189
OBJ_READYQUEUE ...59,189
OBJ_RENDEZVOUS ..58,189
OBJ_RENDEZVOUSPORT ..57,189
OBJ_SEMAPHORE ...55,81,189
OBJ_TASK ..59,189
OBJ_TASKEXCEPTION ..61,189
OBJ_TIMERQUEUE ..59,189
OBJ_VMEMPOOL ...58,189
objective ..11
ofs ..5
OPT_APPCONTEXT ..68,69,70,71,187,196

ITRON Debugging Interface Specification 1.00.00

210 B

OPT_BLOCKING ...38,72,73,142
OPT_BUFFUL_CALLBACK ...146,147,152,203
OPT_BUFFUL_FORCEEXEC ...92,147,197,203
OPT_CANCEL ...75,187,196
OPT_CMPVALUE ...120,121,187,202
OPT_CNDBREAK ..133,134,187,201
OPT_EXTPARAM ..82,187,197
OPT_GETMAXCNT ..63,187,194
OPT_NOCNDBREAK ...82,187,194
OPT_NORDT ...187
OPT_PEEK ...99,153,187,197,204
OPT_RESTART ...127,202
OPT_SEARCH_BACKWARD ...139,140,188,202
OPT_SEARCH_COMPLETELY ..139,140,188,202
OPT_SEARCH_FORWARD ...139,140,188,202
OPT_UNDO ..75,188,196
OPT_VENDORDEPEND ...63,188,194
overhead ..18,20,165
overview ..9

P
param ...5,91,136,141,157,181
pointers to all the interface functions. ...21
polling ...6,32,120,122,123
prefixes ...3,4,7,23,25,34
previous history storage region ..16,50
primitive log information ..96
program code ..1
Prohibition on Target Halt ..22
ptr ...4,5,25,26,155,172
purposes ..8,9,32

R
read memory .. 111,113
read memory by block set units ..113
read of register value ...124
read upper-limit value ...54
ready queue ...39,59,64,189,195
Real-time ..9,118
Real-Time Operating System ..9
reference of in symbol table value ..138,139,186
Register ..7,33
Register Set ..35,36,66,124
Register Set Description Table ..7,8,35,66,124
register table ...8,66,68,70,124,126
report of break hit ...85
report of function execution end ...144
report of memory data change ...123,195
report of service call end ...72,76,184
report parameter ..136
request of trace log function start ...94
request of trace log stop ...95
result ..5,9,10,12,16,17,19
RIF ..27,32,41,42,46
rif_cal_svc ...38,72,76,77,194
rif_can_svc ..75,184,196
rif_del_brk ..44,84,184
rif_del_log ...48,93,184
rif_get_ctx ..35,36,68,184
rif_get_log ...48,51,96,184,185
rif_get_rdt ...33,35,36,66,68
rif_ref_brk ...44,86,184
rif_ref_cfg ...25,102,185
rif_ref_cnd ..44,46,47,87,184
rif_ref_obj ..5,28,29,54,55,60
rif_ref_svc ..77,184
rif_rep_brk ...44,45,46,47,85,136
rif_rep_svc ...76,184
rif_rrf_svc ..78,184
rif_set_brk ..44,45,77,80,85,184

ITRON Debugging Interface Specification 1.00.00

211 B

rif_set_log ..48,77,89,93,145,184
rif_sta_log ..48,93,94,184
rif_stp_log ...48,95,184
RIM ..2,8,15,16,17,18,19,20
RIM finalization process..158
RIM initialization...157
RIM-dependent input/output..16
RTOS ...9,10,11,12,13,14,15
RTOS access interface ...6,8,15,44,53
RTOS interface module..7,8,15
RTOS Support Function Guideline...15,39
RTOS-dependent break..17,80,84
RTOS-dependent information...15,16,17,22

S
same-space variable-length region ...30,31
scalability ..9
separate-space variable-length region ...30
Set of Break Point ..79,132
set of memory data change report ..120,195
Set of Trace Log ..48,89,144
stack ..36,39,59,61,68,72,141,175,182
standard information storage region ...16
start of trace log ..150
stop of trace log ...151
storage ...5,16,17,26,30,35,37
structure bits alignment ...167
structure names ..1,3
suffix ...5,30,31,77,78
support function guideline ...15,39
SVC ..41,72,73,75,76,81
synchronous object ...39
system-related ..39,40

T
T_BLKSET .. 113,118,171,185
T_GRDT ...35,66,171
T_INFO ...25,26,27,102,155,159,172
T_INTERFAC...21,160
T_MEMBLK ...113,171
T_RCSVC ...72,73,171
T_RGLOG ...96,97,98,180
T_RGLOG_DISPATCH_ENTER ..97,172
T_RGLOG_DISPATCH_LEAVE ..98,173
T_RGLOG_SVC ...98,173
T_RGLOG_TSKSTAT ..97,173
T_ROALM ...60,174
T_ROCYC ...60,174
T_RODTQ ...56,174
T_ROEXC ...62,174
T_ROFLG ..56,175
T_ROISR ...61,175
T_ROKER ...61,175
T_ROMBF ...57,176
T_ROMBX ..56,176
T_ROMPF ..55,58,177
T_ROMPL ..58,59,177
T_ROOVR ..61,177,178
T_RORDQ ...59,178
T_RORDV ...58,178
T_ROSEM ...3,54,55,178
T_ROTEX ..61,179
T_ROTMQ ..59,60,179
T_ROTSK ..59,179
T_RRCND_DBG ...87,180
T_RRCND_RTOS ..87,180,184
T_RSBRK ...1,80,81,85,86,180,184
T_RSLOG_INTERRUPT ..90,181
T_RSLOG_ISR ..90,181
T_RSLOG_SVC ..91,181

ITRON Debugging Interface Specification 1.00.00

212 B

T_TCFNC ..141,182
T_TGLOG ...153,182
T_TSBRK ..132,133,183,186
T_TSLOG ..145,146,183,186
target ...6,8,15,22,29,36,44,45,107,127,185
target access interface ...6,8,15,29,36,44,107
target execution ..22,44,45,46,49,127
target execution break ..22,130,136,185
target execution resumption ..22,131,185
target stop ..129
task ...4,9,12,14,16,17,18,39,59,64
terminal symbol ..26,78,98
terms ..8
TIF ...1,6,8,15,21,32,41,192
tif_alc_mbh ..107,185
tif_alc_mbt ..41,108,185
tif_brk_tgt ... 22,63,69,70,111,114,116
tif_cal_fnc ..38,141,142,144,182,186
tif_cnt_tgt ..22,131,185
tif_del_brk ...44,135,186
tif_del_log ..149,186
tif_del_pol ..122,185
tif_fre_mbh ..109,185
tif_fre_mbt ...110,185
tif_get_bls ...133,118,185
tif_get_log ...96,153,186
tif_get_mem .. 111,114,185
tif_get_reg ..35,36,37,124,171,185
tif_ref_sym ...138,186
tif_rep_brk ..44,45,133,136,186
tif_rep_fnc ...142,144,186
tif_rep_log ..146,147,152,186
tif_rep_pol ..120,122,123,185
tif_rrf_sym ...139,186
tif_set_bls ..118,171,185
tif_set_brk ..44,45,132,133,136,186
tif_set_log ...48,145,149,150,152,153,186
tif_set_mem ...116,185
tif_set_pol ...38,120,122,123,185
tif_set_reg ..28,29,35,126,171,185
tif_sta_log ...49,52,150,186,192
tif_sta_tgt ..22,127,185
tif_stp_log ..52,151,152,186
tif_stp_tgt ..22,129,185
time event ...60,173
time to market ...9
time-critical ...19
timer queue ..59,64,189,195
Trace Log Getting ..51,96
trace logs callback ...152
tsbrk ...132,133,183,186
type ...23,166
type beginning with the prefix DT_ ..23

U
UINT ..27,35,59,171
undefined ..7,26,163

V
variable name ...3,139
Variable-Length Storage Region ...30
VP ..23,25,54,56,57,59,68,70
VP_INT ...23,56,59,60,61,72,80

W
Windows-DLL Creation Guideline ...166
Windows-DLL guidelines ..157,158
write memory ... 116,118
write memory by block set units ...118
write of register value ...126

	ITRON Debugging Interface Specifications
	I. CONTENTS
	II. Table of Contents
	III. Fig of Contents
	IV. Function of Contents

	1. Formats in This Document
	1.1 Notation
	1.2 Naming Rules
	1.2.1 Variable name/Argument name
	1.2.2 Prefixes
	1.2.3 Supplementary explanation
	1.2.4 Explanation
	1.2.5 Function names

	1.3 Terms and Definitions
	1.4 Abbreviated Names

	2. Overview
	2.1 Background
	2.2 Standardization Objective
	2.3 Approaches to Standardization
	2.3.1 Approach plans
	2.3.2 Approach selection and its reasons

	2.4 Concept
	2.4.1 Operation
	2.5 Characteristics
	2.5.1 Two break methods with task ID
	2.5.2 Scalable debugging environment

	3. Common Regulations
	3.1 Interface Function Registration/Unregistration
	3.2 Consistency
	3.3 Prohibition on Target Halt
	3.4 Types
	3.5 Bit Mask
	3.6 Structure and Keys of Getting Information
	3.7 Error Codes
	3.7.1 E_xxx error and ET_xxx error
	3.7.2 Common errors
	3.7.3 Similar errors

	3.8 Variable-Length Storage Region
	3.8.1 Separate-space variable-length region
	3.8.2 Same-space variable-length region

	3.9 Identification Number (ID)
	3.10 Register Name
	3.11 Flag
	3.12 Register Set Description Table
	3.13 Special Blocking Mode

	4. RTOS Support Function Guideline
	4.1 Standardization of Implemented Functionalities
	4.2 Level Indications
	4.2.1 RIF level indication
	4.2.2 TIF level indication
	4.2.3 Other interface

	4.3 Terms and Definitions
	4.3.1 Debugging tool
	4.3.2 Debugging agent

	4.4 Break Mechanism
	4.4.1 Decision of callback
	4.4.2 Break of condition-getting type

	4.5 Trace Log Mechanism
	4.5.1 Set
	4.5.2 Start
	4.5.3 Execution
	4.5.4 Get
	4.5.5 End
	4.5.6 Delete

	5. RTOS Access Interface
	5.1 Functional Unit
	5.2 Get of object Status
	5.3 Get of Task Context
	5.3.1 Get of register set description table
	5.3.2 Get of task context
	5.3.3 Set of task context

	5.4 Issue of Service Call
	5.4.1 Issue of service call
	5.4.2 Cancel of an issued service call
	5.4.3 Report of service call end
	5.4.4 Get of function code
	5.4.5 Get of service call name

	5.5 Set of Break Point
	5.5.1 Set of break point
	5.5.2 Delete of break point
	5.5.3 Report of break hit
	5.5.4 Get of break information
	5.5.5 Get of break condition

	5.6 Execution History (Trace Log)
	5.6.1 Set of trace log
	5.6.2 Delete of trace log
	5.6.3 Request of trace log function start
	5.6.4 Request of trace log stop
	5.6.5 Get of trace log
	5.6.6 Reconfigur of trace log mechanism

	5.7 Other RTOS-related Information
	5.7.1 Get of kernel configuration

	6.Target Access Interface
	6.1 Memory Operations
	6.1.1 Allocate memory (on host)
	6.1.2 Allocate memory (on target)
	6.1.3 Free memory (on host)
	6.1.4 Free memory (on target)
	6.1.5 Read memory (memory block)
	6.1.6 Read memory (block set)
	6.1.7 Write memory (memory block)
	6.1.8 Write memory (block set)
	6.1.9 Set of change report
	6.1.10 Delete of change report setting
	6.1.11 Change report

	6.2 Register Operations
	6.2.1 Read of register value
	6.2.2 Wite register

	6.3 Target Operations
	6.3.1 Start of target execution
	6.3.2 Stop of target execution
	6.3.3 Break of target execution
	6.3.4 Resumption of target execution

	6.4 Hardware Break Operations
	6.4.1 Set of break point
	6.4.2 Delete of break point
	6.4.3 Break report

	6.5 Symbol Table Operations
	6.5.1 Reference of symbol table value
	6.5.2 Reference of symbol in symbol table

	6.6 Function Execution
	6.6.1 Function call
	6.6.2 Report of function execution end

	6.7 Trace Log Operations
	6.7.1 Set of trace log
	6.7.2 Delete of trace log setting
	6.7.3 Start of trace log
	6.7.4 Stop of trace log
	6.7.5 Trace logs callback
	6.7.6 Get of trace log

	7. Other Interfaces
	7.1 Debugging Tool Operations
	7.1.1 Get of debugging tool information

	7.2 RIM Operations
	7.2.1 RIM initialization
	7.2.2 RIM finalization process
	7.2.3 Get RIM-related information

	7.3 Interface Operations
	7.3.1 Interface initialization

	8. Recommended Guidelines
	8.1 RIM Guideline
	8.1.1 RIM operation guideline
	8.1.2 RIM data format for supplying
	8.1.3 Speed enhancement and debugging agent

	8.2 Windows-DLL Creation Guideline (32-bit RIM)
	8.2.1 Type
	8.2.2 Structure bits alignment
	8.2.3 Function export

	8.3 File Format of Standard Execution History

	9. Reference
	9.1 Structures
	9.2 Function List
	9.3 Option Flags
	9.3.1 Common flags
	9.3.2 Unique flags

	9.4 Constants
	9.4.1 Object identification constants
	9.4.2 Error constants
	9.4.3 Break constants
	9.4.4 Log constants

	9.5 Key Code List of Getting Information

	Appendix A
	Appendix B

