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Abstract

Recent advances in microprocessor technologies have led to extensive use of computer
systems in real world. Because many of these systems require some real-time properties,
importance of real-time computing technologies is rapidly increasing. Demands for
large-scale and high-performance real-time systems are also growing, and multiprocessor
systems, especiallfjunction-distributed multiprocessqrare often adopted to meet the
demands.

In order to reduce the maintenance cost of a multiprocessor real-time system, even
when a part of the system is modified or when some processors are added to the system,
changes in the worst-case timing behavior of the unmodified part of the system should be
minimized. We call this property ascalability. Ideally, the worst-case execution time
of each routine executed on a processor is determined independently of the number of
processors in the system and of the activities of other processors. However, the worst-case
execution time of a routine that exclusively accesses a shared resource is unavoidably
prolonged, as the number of contending processors is increased.

When a real-time system is realized on a function-distributed multiprocessor, external
devices and tasks handling them are allocated to processors so that the number of
inter-processor synchronizations is minimized and that as many time-critical tasks as
possible are closed within a processor. Therefore, it is advantageous that the worst-case
timing behavior of the processings that can be done within a processor is determined
independently of the number of processors in the system and of the other processors’
activities.

In this dissertation, we discuss the specification and implementation issues of a
real-time kernel that facilitate to realize scalable application systems on existing shared-
memory multiprocessor system. In order to realize scalable systems, the real-time
kernel itself must also be scalable. Though real-time kernels running on shared-memory
multiprocessors have been actively studied, none of the studies has focused on the
scalability of worst-case behavior.

At first, we clarify the desired properties ofsgalable real-time kerndbr function-
distributed multiprocessors, and summarize them in four required properties. Implemen-



tation approaches of a real-time kernel on shared-memory multiprocessors are discussed,
and two obstacles for satisfying the required properties are pointed out; lack of scalability
in local operations, and incompatibility of predictable inter-processor synchronization
and constant interrupt response. Then, we propose their solutions when task-independent
synchronization and communication objects, such as semaphores and eventflags, are
not supported. With the proposed method, the four required properties are satisfied,
and the execution time and the response time of each kernel service have reasonable
upper bounds. In these discussions, we assume that the underlying inter-processor
synchronization mechanism and hardware architecture have some necessary properties.

We also propose the approach to classify kernel resources into classes with different
characteristics to improve the performance of local operations. Among them, a task
belonging to the private class satisfies the condition that its maximum execution time
is independent of the number of contending processors, but the task cannot directly
synchronize or communicate with other processors.

Effectiveness of our proposed methods are demonstrated through performance mea-
surements using an existing multiprocessor system. Though the evaluation environment
dose not satisfy the assumption on underlying inter-processor synchronization and hard-
ware, it is confirmed through the measurements that the four required properties of a
scalable real-time kernel are practically satisfied with our proposals, while they cannot be
met at the same time with other methods.

In the second half of this dissertation, we investigate on spin lock algorithms for use
in scalable real-time kernels for function-distributed multiprocessors. We propose two
kind of spin lock algorithms, queueirgpin lock with preemptioandspin lock with local
precedencewhich are combined to use in our implementation of a scalable real-time
kernel. We also discuss the scalability issuesnested spin locksand propose the
scheme to make nested spin locks scalable and the algorithpn®ofy inheritance spin
locks The effectiveness of these algorithms is also demonstrated through performance
evaluations.
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1 Real-Time Systems and Real-Time Kernel

A real-time systens a system in which the correctness of the system depends not only
on the logical results of the computation, but also on the time at which the results are
produced [64, 62}. In other words, a real-time system is required to satisfy a set of
timing constraints In ahardreal-time system, severe consequences can result if a timing
constraint is not satisfied.

Timing constraints on a real-time system always come from the external environment.
Therefore, a real-time system has some relations to its external environment. From
another point of view, a real-time system is considered to be embedded in a larger
environment, and thus is also calledembedded systejh5].

In [15], four fundamental requirements on real-time systems are lidteteliness
simultaneitypredictability, anddependability The first two of them are user requirements.
Timeliness means that a system must satisfy the given timing constraints, which are
typically described in the form that the result of the computation must be produced within
the predefined and predictable time-bound, calleddiadline Consequently, not the
average but the worst-case timing behavior, i.e. the worst-case execution times and the
worst-case response times, are primary concern in real-time systems. The worst-case
execution (or response) times usually correspond to the maximum execution (or response)
times? Simultaneity means that real-time systems must provide parallel processing
capabilities to cope with the native simultaneity of the external environment.

Predictability and dependability are supplementary requirements to the former two
requirements. Predictability means that the functional and timing behavior of a system
should be as deterministic as necessary to satisfy system specification [62]. More
precisely, “predictability means that it should be possible to show, demonstrate, or prove
that requirements are met subject to any assumptions made, for example, concerning
failures and workloads” [65].

A real-time kernelalso called as a real-time monitor or a real-time executive, is the
basic software module around which a real-time system is realized. The essential role of
a real-time kernel is to support multitasking facility for the requirement of simultaneity.

It should also support inter-task synchronization and communication functions and basic
memory management functions. On the other hand, it is not necessary for a real-time
kernel to handle various external (or input/output) devices directly. One of the reasons

1This definition is one of the many definitions of a real-time system (or computing). We consider
that this statement is appropriate for the definition of a (general) real-time system, though Stankovic and
Ramamritham definedlzardreal-time system with this statement in [64].

2If the result of a computation is obtained too early, it is usually possible to wait until the appropriate
time.



is that the external devices should be handled by tasks running on a real-time kernel,
because their response times are generally very long compared to the response times of
the core components of a computer system (such as processors and memories). Another
reason is that there is a great variety of external devices attached to deeply embedded
systems, and that efficient and uniform handling of them is very difficult.

The role of a real-time kernel can be paraphrased in contrast to the role of an operating
system as follows. Supporting the construction of an application system through the
virtualization of hardware resources of a computer system is an essential role of an
operating system. A real-time kernel is a core module of an operating system that
virtualizes only processors and memories.

2 Function-Distributed Multiprocessors

As the application areas of real-time systems expand, requirements for large-scale and
high-performance real-time systems are increasing. Areas of rapid growth include large-
scale control systems (plant- and aircraft-control systems), transaction processing (on-line
banking and seat reservation systems), and communication processing (network routers
and switches).

Inthese application areas, a large number of external devices such as sensors, actuators,
and network controllers are connected to a system, and the system is required to respond
to the external events from the devices within predefined and usually short time-bounds.
It is usually the case that such a system also requires large computational power. To meet
these requirements, multiprocessor systems are often adopted to real-time systems.

Because the required processing time for each external device can be estimated
beforehand in most real-time systems, it is preferable that each device is handled by a
fixed processor (or a fixed set of processors) and that the interface with the device is
connected to the local bus of the processor. A distributed shared-memory architecture is
also adopted, in which memory modules are connected to the local buses of processors
(Figure 1). In this kind ofunction-distributedor asymmetricimultiprocessorsbecause
the code and data areas of the program that handles an external device are placed in the
local memory of its host processor, the number of shared-bus (or interconnection network)
transactions can be reduced compared to symmetric multiprocessors. This is profitable
not only because the high-performance shared bus and expensive cache mechanisms can
be omitted, but also because the predictability of the system can be improved through the
reduction of access conflicts on the shared bus.

As a general rule, when a real-time system is realized on a function-distributed
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multiprocessor, external devices and tasks handling them are allocated to processors so
that the following goals are satisfied; (1) the number of inter-processor synchronizations
and communications is minimized and (2) as many time-critical tasks as possible are
closed within a processor. Consequently, in well-designed systems on function-distributed
multiprocessors, many tasks, including most of the time-critical tasks in the system, can
be processed without synchronizing or communicating with other processors. In other
words, tasks on a processor are fairly independent with tasks on other processors.
Multiprocessor systems discussed in this dissertation are those consisting of several
or around ten processors. Massively parallel systems are outside the scope of this study.

3 Real-Time Scalability

It is often the case that functional or performance requirements on a system are changed
during its life-time. It is also a frequent situation that the system is required to support
some additional devices. In order to reduce the maintenance cost of the system in such
situations, it is advantageous that modifications of a part of the system do not affect the
timing behavior of the unmodified parts of the system. When the computational resources
of the system are insufficient for the new requirements, the measure is often adopted with
a function-distributed multiprocessor system that one or more processors are added to the
system. The maintenance cost of the system can be greatly reduced, if the changes in
timing behavior of the unmodified parts of the system are very small in this situation. We
call this property ascalability> or modularity in time domain

Because the worst-case behavior is the primary concern in real-time systems, the timing

3We use the word “scalability” with stress on the case that processors are added to the system.

4



behavior mentioned above should be the worst-case timing behavior. Consequently, the

above requirements can be summarized as follows. Even when a part of the system is

modified (including the case that some processors are added to the system), the extension
of the worst-case execution times and response times of the unmodified parts of the system
should be minimized. This property is calleshl-time scalability or simplyscalability,

in this dissertation.

Real-time scalability also facilitates the reuse of a module consisting of a processor,
local memory, external devices, and the software handling them, i.e. the reuse in the unit
of a board in Figure 1. With real-time scalability (or modularity in time domain), timing
constraints imposed on the tasks executed within the module are kept satisfied no matter
what kind of system the module is reused for.

It goes without saying that scalability is also an important issue when the number of
processors is very large, though we do not investigate on massively parallel systems in
this study.

4 Objectives of This Study

The objectives of this study is to clarify the desired properties of a real-time kernel
for function-distributedshared-memorynultiprocessors that facilitates to realize scalable
real-time systems, and to propose its realization methods in both specification and
implementation aspects. In order to realize scalable real-time systems, the real-time
kernel itself must also have the property of real-time scalability.

Real-time kernels running on shared-memory multiprocessor systems have been
actively studied and implemented. Famous examples include Spring Kernel [63, 43, 66],
Chaos [59, 1], Chorus [49], Harmony [12], and Chimera [67]. However, none of the
studies has focused on real-time scalability. In other research areas including real-time
algorithms for multiprocessor systems, little attention has been paid to real-time scalability
either.

As described in Section 1, predictability is a fundamental requirement in real-time
systems. In case of a real-time kernel, predictability means that the maximum execution
time and response time of each kernel service are bounded and known beforehand. This
is because real-time scheduling algorithms and synchronization protocols are usually
implemented within or upon the kernel layer, and because the service times of a real-
time kernel itself are treated asnstantscheduling overheads and cannot be scheduled
as variableswith most real-time scheduling algorithms and synchronization protocols
[4, 47, 29].



system call worst-case
name function execution times
cre_tsk create a task Tere tsk

sustsk suspend executing atask | Tsyus tsk
(with a task switch)| 77

sus_tsk

rsmtsk resume executing a task Trom._tsk
(with a task switch)| 7"

rsm_tsk
vsndtmb | send a message to atask | Tsnd_tmb
(with a task switch)| T7.. ;1.
vrev_tmb | receive a message sent to mé,,c,_tmsp
(with a task switch)| 7},

vrev_tmb

maximum interrupt response time Tint

Table 1: Timing Behavior of a Uniprocessor Real-Time Kernel

The worst-case behavior of a real-time kernel is usually represented using a table. For
example, the maximum execution time of each system call and the maximum interrupt
response time of a real-time kernel for single processor systems can be presented like
Table 1, wherel,,, designates a constant value that is determined for each target
hardware.

In case of a multiprocessor real-time kernel, it is ideal that the worst-case execution
time and response time of each kernel service are determined independently of the
number of processors in the system and of the activities of other processors. However,
the worst-case execution time of a routine that exclusively accesses a shared fdsource
prolonged, as the number of contending processors is increased, at least with its linear
order. This is because concurrent executions of the routine must be serfalized.

In executing a system call of a real-time kernel, a task usually needs to access some
of the kernel data structures exclusivelsuch as the control blocks of kernel resources
(tasks and task-independent synchronization and communication objects) and the ready
queue(s). Because these data structures are also accessed from other processors and
should be accessed exclusively, the maximum execution time of such system call is

4In strict, a shared resource that is fairly accessible from each processor.

SThis limitation cannot be removed with the techniques of wait-free or block-free synchronizations
[17,37].

5With message passings or remote invocations, processors can synchronize without using a shared re-
source exclusively. In function-distributed shared-memory multiprocessors, however, this synchronization
method has some drawbacks. We will describe the drawbacks in Section 11.2.3.

A ready queue includes all the tasks that are ready to execute on the processor. The task scheduler
utilize it to find the next task to be executed efficiently. In our basic kernel model described in Section II. 2,
a ready queue is prepared for each processor.



prolonged as the number of contending processors is increased.

On the other hand, the worst-case timing behavior of the processings that can be
done within a processor is desired to be determined independently of the number of
contending processors and of the other processors’ activities. Processings that can be
done within a processor include synchronizations and communications with another task
on the same processor and interrupt services requested by the external devices. This
property is especially advantageous in function-distributed multiprocessors, because most
of the time-critical tasks can be processed without synchronizing or communicating with
other processors in well-designed systems. It is also desirable that modifications in some
processings that can be done within a processor do not affect the timing behavior of the
processings on other processors.

However, these properties cannot be obtained straightforwardly. In this dissertation,
we propose arealization method of a scalable real-time kernel with these properties without
task-independent synchronization and communication objects (such as semaphores and
eventflags), and point out the difficulty of supporting task-independent synchronization
and communication objects. In order to realize a scalable real-time kernel on an existing
multiprocessor system, we investigate on spin lock algorithms for use in scalable real-time
kernels for function-distributed multiprocessors.

5 Outline of This Dissertation

The organization of this dissertation is described in this section. We have presented
the main contributions of this dissertation in various journals and symposiums. Each
reference cited in this section shows the paper in which the contribution is presented.

In the rest of Part I, we introduce the evaluation environment with which the
performance of our proposed realization methods of real-time kernels and underlying
algorithms is measured. The evaluation metric used in the following parts is also
described.

Part 1l discusses the realization methods of a scalable real-time kernel for function-
distributed multiprocessors. At first, Section 1 presents the overview of the IFRON
specifications, a series of standard real-time kernel specifications for embedded systems.
The ITRON-MP project, which is to extend the ITRON specifications to support
shared-memory multiprocessors, is also outlined [72]. In Section 2, the basic real-time
kernel model for function-distributed multiprocessors is described and its implementation

8ITRON is an abbreviation of “Industrial TRON” and TRON is an abbreviation of “The Real-time
Operating system Nucleus.”
9“MP” stands for MultiProcessor.



approaches are discussed [71]. Two implementation approaches, direct access method
and remote invocation method, are introduced and some drawbacks of the latter method
are pointed out [82]. The section also discusses the issue on lock granularity.

In Section 3, two problems in implementing a scalable real-time kernel are described,;
the problem that the worst-case execution times of synchronizations within a processor
depend on the number of contending processors [83], and the problem that predictable
inter-processor synchronization and constant interrupt response are incompatible [76].
The section also summarizes the required properties of a scalable real-time kernel.

Then, our proposed solutions to these problems when task-independent synchroniza-
tion and communication objects are not supported are presented in Section 4 [83]. With
the proposed methods, each worst-case service time that is necessary for schedulability
analyses can be bounded, on the assumption that underlying inter-processor synchroniza-
tion mechanism and hardware architecture satisfy the necessary properties, which are also
described in this section.

In Section 5, we propose a new kernel model in which tasks and task-independent
synchronization and communication objects are classified into some classes with different
characteristics [82]. For example, there exists a class of tasks whose maximum execution
times are independent of the number of contending processors, but the tasks of this
class cannot synchronize or communicate with the tasks executed on other processors.
Another class of tasks can synchronize with the tasks on other processors, but their worst
execution times depend on the number of contending processors. The kernel resources
belonging to the class having the appropriate properties for a processing should be used
for implementing the processing.

In Section 6, the effectiveness of our proposed methods is investigated through perfor-
mance measurements. In the measurements, underlying inter-processor synchronization
is realized with spin locks implemented with software, which do not have the necessary
properties described in Section 4. The hardware platform used for the measurements
does not have the necessary properties, either. In spite of the missing properties in our
evaluation environments, the advantage of our proposals over other methods is confirmed
through the measurements.

In Section 7, the difficulty of realizing a scalable real-time kernel that supports
task-independent synchronization and communication objects is discussed [84]. In the
system calls that operate on a task-independent synchronization object, both the lock
guarding the control block of the synchronization object and the lock guarding the control
block of the task must be acquired one by one. This kindestted locksire the obstacle
for satisfying the required properties of a scalable real-time kernel. Finally, the main



contributions of Part Il are summarized in Section 8.

Part Ill discusses spin lock algorithms for use in scalable real-time kernels. Spin
lock is a fundamental synchronization primitive for exclusive access to shared resources
on shared-memory multiprocessors. In realizing a scalable real-time kernel described
in the previous part, the characteristics of underlying mutual exclusion mechanisms, i.e.
spin locks, have great importance. In this study, we assume that processors support
atomic read-modify-write operations on a single word (or aligned contiguous words) of
shared memory and propose some extensions to existing spin lock algorithms. Typical
examples of the read-modify-write operations are_tagtset, fetchandstore (swap),
fetch.andadd, and comparandswap. A brief survey on spin lock algorithms using
these operations is presented in Section 1.

In Section 2, we propose two algorithms of queueing spin lock with preemption. We
point out that conventional spin lock algorithms cannot satisfy two important requirements
on scalable real-time systems, namely, predictable inter-processor synchronization and
constant interrupt response, at the same time, and present two spin lock algorithms to
solve this problem [76, 79]. These algorithms, which are extensions of queueing spin
locks modified to be preemptable for servicing interrupts, can give upper bounds on the
times to acquire and release an inter-processor lock, while achieving constant response
to interrupt requests. We also demonstrate that the algorithms have required properties
through performance measurements in this section.

Section 3 presents an algorithm of spin lock with local precedence, which is necessary
to make the worst-case execution times of intra-processor synchronizations independent
of the number of contending processors. Though spin lock with local precedence can
be realized using a priority-ordered spin lock algorithm, the overhead of priority-ordered
spin locks is generally quite large. We propose a more efficient algorithm in this section.

Section 4 and Section 5 discuss two issues on nested spin locks, which are necessary
to implement task-independent synchronization and communication objects. In Section 4,
the scalability issue of the maximum execution times of critical sections guarded by nested
spin locks is discussed. With the simplest method, the maximum execution times become
O(n™), wheren is the number of contending processors ané the maximum nesting
level of locks. In this section, we propose an algorithm with which this order can be
reduced t@)(n - ™) and demonstrate its effectiveness when- 2 through performance
measurements [80]. The proposed method requiresity inheritance spin locka spin
lock algorithm that are enhanced with the priority inheritance scheme, wher.

In Section 5, we present two algorithms of priority inheritance spin locks and
demonstrate their effectiveness through performance measurements. This section also



Figure 2: The Front Panel of TRONBOX

illustrates the problem of uncontrolled priority inversions in the context of spin locks.
Finally, the contributions of Part Ill are summarized in Section 6.

Part IV summarizes the overall contributions of this dissertation and describes the
future work. The most important future work to do is to solve the difficulty described in
Section I1.7 for supporting task-independent synchronization and communication objects.
Others include the support of the global class of tasks that can be executed on multiple
(or all) processors in the system and migrate between them [82].

After the bibliography, Appendix A presents the implementation details of our real-
time kernel for multiprocessor systems. Especially, data structures managing the resource
classes are discussed. In Appendix B, we present the correctness proofs on the queueing
spin lock algorithm with the simple preemption scheme described in Section I11.2. We
show that the algorithm realizes mutual exclusion and deadlock freedom in this appendix
[74].

6 Evaluation Environment and Performance Met-
ric

6.1 Evaluation Environment

In this dissertation, we present the results of some performance measurements of real-
time kernels and spin lock algorithms. For the measurements, we use a shared-bus
multiprocessor system named the TRONBOX [87] (Figure 2 and 3).

The system consists of nine processor boards and a global memory board which are
connected with a shared backplane bus conforming to the VMEbus specification [21]
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Figure 3: A Processor Board of TRONBOX
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Figure 4. Evaluation Environment

(Figure 4). Each processor board consists ofMtd&o/200 microprocessor [86, 23],
1 MB of local memory, and some I/O interfaces. Th&Gro/200 is the first TRON-
specification microprocessor and rated approximately at 10 MIPS with a 20 MHz clock.
The local memory can be accessed from other processors through the shared bus. No
coherent cache is equipped on the board. Accessing a local memory on another processor
board takes nearly is and is a relatively slow operation compared with the performance
of the processor. In our experiments, the data area necessary for each processor and all
the program code area are placed in the local memory of the processor. Data requiring
only one instance in the system is placed in the local membf the master processor
or in the global memory.

TRON-specification microprocessors support three read-modify-write instructions:
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bit testand set (BSET]I), bittestand clear (BCLRI), and comparand swap (CSI) [53].

Since the fetchand store operation which is used in many spin lock algorithms presented

in Part Il is not supported, it is emulated using the compard swap instruction and a

retry loop. The evaluation programs are written in C programming language, with some

inline assembler code for special instructions including the read-modify-write instructions.

There is some overhead in passing data between code written in C and code in assembler.
This hardware platform has some problems as our evaluation environment. The

problems and our measures to them are as the followings.

1. Because the VMEbus has only four pairs of bus request/grant lines, the round-robin
scheme can be applied to at most four bus masters [21]. Therefore, the access
time of the local memory of another processor has no upper bound. The maximum
execution time of a routine in which a remote memory is accessed cannot be
bounded either.

In our evaluation environment, processors are classified into four classes by the
bus request line they use. The round-robin arbitration scheme is adopted among
classes and the static priority scheme is applied among processors belonging to a
same class.

2. The local memory of each processor board can be accessed from its host processor
with the addresses 0x00000000 — OxOQOfffff, and can be accessed from other
processors with the addresses 0x00000 — Ox0fffff wheren is the ID number
of the board (1< n < 9). This configuration makes it possible to use the same
program code on all processors. Because a processor on bhaagnot access
its own local memory with the addresses 0x00000 — Ox00fffff, however, an
address conversion is necessary to follow a pointer between the local memories
of different processor boards. This address conversion causes some overhead in
pointer operations.

In evaluating spin lock algorithms, because the case in which this kind of address

conversion is necessary is very rare, we convert the address with software when
necessary. In implementing a real-time kernel, we convert the address using the
MMU (Memory Management Unit) because too many conversions are necessary.

In other words, the local memory of a processor is also mapped to the addresses
0x002,00000 — Ox0offfff. The MMU is used only for this address conversion.

3. The processor board causes a bus error under the following condition. If a processor
P; tries to access the local memory of another processavhen F; initiates a
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read-modify-write operation on a remote memory, a kind of deadlock occurs in
which P; cannot acquire the shared bus becalisis using the shared bus, aft

cannot acquire the local bus 6f becauseP; is using the local bus. This problem
occurs because the processor is directly attached to the local bus (no line buffer is
used between them), and because the processor would not release the bus once it
initiates a read-modify-write operation. To solve this deadlock, the processor board
raises a bus error off;. When a bus error occur$; should retry the operation

with software. This retry overhead is quite large and degrade the preciseness of
performance measurements.

In our performance measurements, we record the occurrences of bus errors and
subtract the overhead from the measured time if possible. When the estimation of

the overhead is very difficult, we discard the measurement time when a bus error

occurs.

In spite of these problems, the advantage of our proposals over other methods can be
confirmed through the performance measurements.

6.2 Performance Metric

In real-time systems, the effectiveness of implementation methods or algorithms should
not be evaluated with their average performance but with their worst-case execution (or
response) times. In our performance evaluations, however, adopting worst-case times as
performance metric has following difficulties.

1. Worst-case times cannot be measured through experiments because of unavoidable
non-determinism in asynchronous multiprocessor systems.

2. With our evaluation environment, the execution time of a routine in which a remote
memory is accessed has no upper bound. Therefore, the worst-case execution times
of such routines cannot be determined inherently.

3. It is often possible to give practical upper bound on the execution time of a
routine, even if the routine does not have the maximum execution time inherently.
For example, if a fetclandadd operation is emulated with a compaired swap
and aretry loop, the maximum execution time of the fedcioladd operation cannot
be bounded theoretically.
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4. Adopting the maximum execution (or response) time appeared during a mea-
surement is not appropriate, because the maximum time widely varies for each
measurement.

In order to illustrate this situation, we present in Figure 5 the distributions of the
execution times of the critical regiéftwith the first algorithm of queueing spin lock with
preemption (represented as QL/P1) and the test&set lock with preemption (represented as
T&S/P), which are described in Section I11.2. In this figure, the vertical axis represents the
probability that the execution ot finished within the specified time in logarithmic scale.

We can say that if the probability is rapidly decreasing with the increase of the execution
time, a practical upper bound on the execution time can be determined. Consequently,
this figure indicates that the execution time with QL/P1 has a practical upper bound, while
it is not the case with T&S/P. This demonstrates that T&S/P is not suitable for real-time
systems.

From this observation, in place of a worst-case time, we have adopte@lmble
time, the time within which a processor finishes to execute (or responds) with probability
p, as the performance metric. In other words, whenraliable time is determined to be
the deadline, the probability that the deadline is kept,isr the deadline miss ratio is
1-—»p.

0n strict, this figure presents the distributions of the execution times of the critical region, when no
interrupt request is serviced while waiting for a lock. Four processors are executing spin locks. Refer to
Section 111.2.5 for the detalils.
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In this dissertation, we use the 99.99%-reliable execution (or response) times as the
performance metric. Figure 6 preseptseliable execution times of the critical region
with QL/P1 whenp = 99%, 999%, and 999%, and its maximum execution times
appeared during the measurements, when the number of contending processors is changed
from one to eight. Although the absolute times are different, the same evaluation results
can be derived from each performance metric. In order to check the adequacy of the other
evaluation results usingreliable times, we have also confirmed that the same evaluation
results can be derived from the maximum times appeared during the measurements.

This performance metric is also justified from application requirements. It is obvious
that the failure rate of any system cannot be zero. Even with the hardest real-time
system, the system specification cannot require that the failure rate is zero, but that
the (estimated) failure rate is below the permissible value determined in design time.
The deadline miss ratio of each software component should be as low as necessary that
the system as a whole can satisfy the specification. It should be noted that a deadline
miss ratio always depends on system workloads. Therefopereliable time that is
obtained through our performance measurements does not correspgrdcicble time
in application systems. Generally speaking, because we evaluate the performance of
implementation methods or algorithms under a very heavy workloaggekable time
with our performance measurements has much higher reliability in application systems.
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Part |l

Scalable Real-Time Kernels for
Function-Distributed Multiprocessors
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1 ITRON Specifications and ITRON-MP

In this section, we present the overview of the ITRON specifications, a series of standard
real-time kernel specifications for embedded systems in Section 1.2 and 1.3, after a
short introduction of the TRON Project in Section 1.1. Then, the overview of Itls
(ITRON Implementation by Sakamura Laboratory), which we extend to support shared-
memory multiprocessors, is presented in Section 1.4. We describe the design goals and
approaches of ITRON-MP, which is an extension of the ITRON specifications to support
shared-memory multiprocessors in Section 1.5.

1.1 TRON Project and ITRON

Recent advances in microprocessor technologies have made every kind of electric and
electronic equipment around our daily life embedded with microcomputers and offer
higher functions to the users. In the next decade, most kind of equipment, appliances,
tools, and other objects making up our living environments will be augmented with
embedded computers, be connected with networks, and cooperate each other to provide
better living environments for human beings. In other words, these objects and networks
constitute a large distributed computing system and support human activities on many
aspects. We call this kind of system akighly functionally distributed system (HFDS)

and have been conducting a research and development project, called the TRON Project,
for its realization [51, 55, 77].

In HFDS environments, a large number of embedded systems are developed and
utilized. We have been investigating on standard real-time operating system specifications
for embedded systems, called the ITRON specifications, and have published a series of
kernel specifications [50, 45, 73, 78]. The reason for centering these studies on kernel
specifications is that only the kernel functions are used in most deeply embedded systems.
We will describe the overview of the ITRON kernel specifications in the following
sections.

The TRON Project is going ahead on various subprojects including the ITRON
subproject. The BTRON subproject aims to design an operating system specification
for personal computers and workstations. CTRON is an OS interface specifications for
communication and information processing. MTRON is an attached OS architecture
for connecting various systems in HFDS. CHIP subproject aims to design a VLSI
microprocessor architecture for use in these operating systems. HMI subproject designs
standard human-machine interface guidelines. Application subprojects, including the
TRON-concept Computer Augmented Building subproject, are proceeded to find problems
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in actual applications of HFDS.

1.2 Design Principles of the ITRON Specifications

Requirements on a standard real-time kernel for embedded systems can be summarized
as follows [85, 78].

e Deriving maximum hardware performance.
¢ Software productivity improvement.

¢ Uniform application to various processor scales and types.

In order to satisfy these requirements, the following design principles are established
in designing the ITRON specifications [78].

¢ Avoiding excessive hardware virtualization.

To derive the maximum performance from hardware and achieve high real-time
performance, we must limit the amount of hardware virtualization. Although
intended for a variety of processors, the ITRON kernel specifications assume each
implementation will possess processor-specific aspects.

To this end, we divided the specification into aspects that are standardized across
all processors and implementation-dependent aspects. Standardized items include
task scheduling rules; system call names and functions; parameter names, sequence
and meanings; and error code names and meanings.

On the other hand, we did not strictly standardize those aspects that need to
be decided separately for each implementation based on runtime performance
considerations. Examples are parameter bit size, the method of invoking interrupt
handlers, and exception handlings.

¢ Permitting adaptation to application.

Modifying the kernel specification and internal implementation method, based on
the kernel functions and performance required by a particular application, increases
system performance. For embedded systems, the kernel object code is generated
for each application, making this adaptation especially effective.

Specifically, the specification was designed so as to make the kernel functions
independent of each other to the extent possible, so that each application can use
just the functions it needs. In fact, many ITRON-specification kernels are provided
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in the form of libraries, and are designed so that only the necessary modules
are loaded when the kernel is linked to the application. Also, each system call
provides a single function, making it easy to select out the necessary functions for
an application.

Permitting adaptation to hardware.

Modifying the kernel specification and internal implementation method, based on
the characteristics of the hardware and its performance, also increases system
performance. For example, the method of invoking interrupt handlers is left
unspecified in the ITRON specifications. In fact, it is a usual approach to invoke
a user-defined interrupt handler when an external interrupt occurs without going
through the operating system. The overhead required here is practically zero. The
user must, instead, save the registers used in the interrupt handler.

Easing training.

A primary aim of standardization in the ITRON specifications is to facilitate learning

by and training of software engineers, so that once they learn something they will
be able to apply that knowledge broadly. To archive this, for example, the use of
terminology in the specification, and things like the way system calls are named,
are made as consistent as possible. Consistent concepts and terminology also leads
to the improved communication among software engineers.

Creating a specification series and/or level divisions.

Specifications are issued in series and divided into levels to make them applicable toa
wide variety of hardware. Of the specifications developed in the past)|THON
specification (Ver. 2.0) was designed mainly for 8-bit MCUs (Micro-Controller
Units) and other smaller-scale systems, while the ITRON2 specification was geared
to large-scale systems including 32-bit processors. Moreover, each specification
divides functions into different levels based on their degree of necessity. The latest
specification,ITRON3.0, uses a level-division of system calls to enable this one
specification to cover the range from small-scale to high-performance processors
(Table 2).

Making available a full range of functions.

Rather than limiting the number of primitives provided by the kernel, the approach
is taken of making available a wide variety of primitives with different functions.
The idea is to enable implementors to raise the runtime performance and improve
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Level R (Required)

Functions required in ajiITRON3.0-specification kernels.
Level S (Standard)

Functions to be provided in a standarld RON3.0-specification kernel.
Level E (Extended)

Advanced or additional functions.
Level C (CPU dependent)

Functions dependent on the processor, hardware configuration, or im-
plementation.

Level X (option)

Extended functions that may be introduced as part of system| call
functions.

Table 2: Levels il TRON3.0 Specification

ease of programming by using primitives suitable for the particular hardware and
application.

A concept common to many of these design principles is thiaiosle standardizatian
This means setting uniform standards only to the extent that performance will not suffer,
rather than trying to force all systems into one rigid mold, and leaving room to decide
matters depending on the processor or application.

1.3 History and Current Status of the ITRON Specifica-
tions

The first ITRON kernel specification was released in 1987 as ITRON1. Thereafter
studies were carried out on a reduced-function specification galleRION (Ver. 2.0) for
smaller-scale 8- and 16-bit MCUs [52], and on the ITRON2 specification for larger-scale
systems with 32-bit processors [54]. Both of these were released in 1989.

Of these, theuITRON specification offered very realistic performance even on an
MCU with only very limited processing and memory resources, and has therefore been
implemented on many different MCUSs. Its application has even widened to various 16-bit
MCUs as well as 32-bit processors. Just counting;tilERON-specification products
that have been registered officially, there are around thirty implementations for more than
twenty processors. In addition to them, thid RON-specification kernel, with its small
size and relative ease of implementation, has been used in numerous developments for
in-house systems. There are also sevelf&@RON-specification kernels that have been
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Consumer Applications
TVs, VCRs, audio components, air-conditioners, washing machines,
microwave ovens, rice cookers, lighting

OA Applications
printers, copiers, image scanners, word processors, optical filing sys-
tems

Communications

answer phones, ISDN telephones, cellular phones, FAX, broadcasting
equipment, wireless systems, antenna controllers, satellite controllers,
ATM switches

FA and Other Applications

PDAs, game gear, automobiles, vending machines, electronic musical
instruments, digital cameras, FA computers, industrial robots

Table 3: Typical ITRON-specification Kernel Applications

made available as free software.

It goes without saying that the reason for this large number of ITRON-specification
kernel implementations is the wide range of application fields and numerous application
examples. Table 3 lists some of the applications in which ITRON-specification kernels
are used.

As the uITRON-specification kernel has come to be applied to a wide range of fields,
a clearer picture has emerged as to the necessity of each function and the performance
demands. Also, as noted above, [HERON-specification kernel has in some instances
been implemented for 32-bit processors, something we did not originally anticipate. It
was therefore decided to reexamine the existing ITRON specifications, resulting in the
release in 1993 of the third-generation ITRON specification, callERON3.0 [56]. The
main functions in the:ITRON3.0 kernel are listed in Table 4.

1.4 Overview of ltls

Itls (ITRON Implementation by Sakamura Laboratory) is a real-time kernel developed
for research and educational purposes by the members of Sakamura Laboratory [69]. It
conforms to the:ITRON3.0 specification and runs on TRON-specification microproces-
sors. The current version implements all the functions initHiERON3.0 specification

up to level E (Extended level), as well as all level X (optional) functions. It also
has some original extended functions. The target microprocessors presently supported
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Task management

¢ Direct manipulation and referencing of task status
Task-dependent synchronization

e Task synchronization functions in the task itself

Synchronization and communication

e Three task-independent synchronization and communication functions:

semaphores, eventflags, and mailboxes
Extended synchronization and communication

e Two advanced task-independent synchronization and communication
tions: message buffers and rendezvous

Interrupt management

e Function for defining a handler for external interrupts
e Function for disabling and enabling external interrupts

Memory pool management

e Functions for software management of memory pools and memory K
allocation

Time management

e Functions for system clock setting and reference
e Task delay function
e Timer handler functions, for time-triggered starting

System management
e Functions for setting and referencing the system environment as a wholg
Network management

¢ Management and support functions for a loosely coupled network

func-

nlock

Table 4. Main Functions Supported in theTRONS3.0-specification Kernel
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are GuICR0O/200 [86, 23] and ®ICRO/300 [24]. It is designed to be easily ported to
other target systems based on TRON-specification microprocessors. Porting to other
microprocessors is also possible.

Main features of Itls are as follows.

¢ Emphasizing ease of extension and maintenance.

Development of Itls is aimed mainly at research and educational use. For this reason,
the implementation emphasizes such factors as ease of understanding, modification,
and maintenance over run-time performance. For example, C language is used
throughout, with assembly language use kept to a bare minimum.

Itls implements all the functions in thelTRON3.0 specification and can be
reconfigured as needed by means of compile options, as the amount of kernel
coding is approximately 8,000 lines, including the generation script and definition
files (but not including blank lines or comments).

e Supporting two system call interfaces.

The uITRON3.0 specification defines two different interfaces for invoking system
calls, one using a software interrupt with a function number set in a register, and the
other making use of an ordinary subroutine call. Itls allows both of these methods
to be used in the same system. Accordingly, in a large-scale system, subroutine
calls can be used in system tasks providing basic services for the system, while
other user tasks are able to make use of a software interrupt.

¢ Providing original extended functions.

Itls supports some original extended functions, including functions for automatic
ID assignment, debugging support functions, and priority inheritance semaphores
[75].

e Taking advantage of the TRON-specification microprocessor architecture.

Itls takes full advantage of the high-level instructions, delayed interrupt, and
other features of the TRON-specification microprocessor architecture. Because of
the policy of minimizing assembly language use, the functions using high-level
instructions are written in an inline assembler, which is called by a C language
routine. The same functions are also provided as C language routines to facilitate
porting to other microprocessors.

¢ Designed for flexible reconfiguration.
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Changes in the kernel configuration are generated from the source code, enabling
flexible reconfiguration.

e Available as free software.

Itls also supports a simulation environment running on BSD UNIX. Multiple tasks are
switched and run in a UNIX process, an approach that makes it usable as a prototyping
environment for system development on an ITRON-specification kernel. Use as a thread
library on UNIX is also possible, and this environment has the potential for effective use
in education and training regarding the ITRON specifications [70].

1.5 Design Goals and Approaches of ITRON-MP

ITRON-MP is an extension of the ITRON kernel specifications to support shared-memory
multiprocessors. The design goals of the ITRON-MP specification are as follows.

¢ ITRON-MP should be implementable with satisfying the required properties of a
scalable real-time kernel, which will be described in Section 3.

¢ ITRON-MP should be valid for various multiprocessor architectures. Namely, it
has the adaptability to an architecture.

e The kernel code for an application system can be generated to be optimal for the
nature of its application. Namely, it has the adaptability to an application.

¢ An ITRON-MP based kernel must not degrade the native performance of a machine
or an architecture.

e Programmer can easily grasp the real-time natures of the system developed on an
ITRON-MP based kernel.

¢ ITRON-MP should be applicable to applications requiring fault-tolerance.

The ITRON-MP specification should be easy to learn.

The first goal is the main theme of this dissertation and is discussed in the rest of
Part Il.

The second goal means that a real-time kernel based on the ITRON-MP specification
can be used for various multiprocessor architectures in spite of the differences among
them, such as the kind and the number of processors, how to connect processors each
other, and the accessibility of hardware resources from each processor. In order to achieve
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this property, a standard set of kernel interface which can be adapted to wide varieties
of multiprocessor architectures is defined in the specification, and a tuned kernel code,
which is generated from the description of the architecture and the kernel constitution, is
used for the construction of application systems.

The sixth goal comes from the fact that fault-tolerance is another important feature
for almost all real-time systems. The adoption of multiprocessor architecture to a fault-
tolerant system is a promising approach and has been studied for a long period [19].
Because the actual mechanism to achieve fault-tolerance varies for each system, ITRON-
MP should serve as a basis for the construction of fault-tolerant systems. Therefore, we
include some kernel functions necessary for the realization of fault-tolerant feature in
the ITRON-MP specification. For example, ITRON-MP has a set of system calls which
enable user programs to take a snapshot of a task and to resume the task from the snapshot.
In other words, ITRON-MP should have the adaptability to a fault-tolerant architecture.

The other goals of the ITRON-MP specification are inherited from the ITRON
specifications. The same approaches with ITRON are also valid for ITRON-MP.

2 Basic Kernel Model

In this section, the basic real-time kernel model for function-distributed multiprocessors
is presented (Section 2.1) and its implementation approaches are discussed. Two
implementation approaches, direct access method and remote invocation method, are
introduced in Section 2.2 and some drawbacks of the latter method are pointed out in
Section 2.3. We also discuss the issue on lock granularity in Section 2.4.

2.1 Basic Kernel Model for Function-Distributed Multi-
processors

When a hard real-time system is realized on a function-distributed multiprocessor,
the method is often adopted as a realistic approach that a real-time kernel for single
processor is used on each processor, and that synchronizations and communications
among processors are implemented with application-level programs. However, this
method has a drawback that when the configuration of the system is modified due to
the change of the requirements for example, and when the allocation of the tasks to the
processors is changed, a large part of the application program is necessary to be modified.
This is because the synchronization and communication interface with tasks on the same
processor and that with tasks on other processors are different.

25



&7 IR

A

170 MPU 170 <—>[MPU]
=L =
~ (Memory Memory

< DD — -->

: task-independent
synchronization object
(

semaphore, eventflag, mailbox)

Figure 7. Basic Kernel Model

To remedy this problem, a real-time kernel is required with which a task can
synchronize and communicate with tasks on other processors with the same interface
with tasks on the same processor. In other words, a task can operate on any task with
the same set of system calls. In this dissertation, we call this kernel model as the basic
model of real-time kernels for function-distributed multiprocessors, or the basic kernel
model in short (Figure 7). In the basic kernel model, each task has its host processor on
which it is executed, and is calledacal taskof the processor. A ready queue is prepared
for each processor in which all the local tasks that are ready to execute are included
in the descending order of their priorities. Each task-independent synchronization and
communication object (called as synchronization objects or simply as objects in this part),
such as a semaphore and an eventflag, also has its host processor and can be accessed
from any task in the system. In other words, each kernel resource is classified into the
local resource of its host processor.

2.2 Direct Access Method and Remote Invocation Method

There are two approaches to implementing an operating system kernel on function-
distributed shared-memory multiprocessors: the direct access method and the remote
invocation method [6, 7].

With the direct access method, when a task operates on a kernel resource on another
processor, it directly accesses the control block of the resource located on the local memory
of the processor. Therefore, some mutual exclusion mechanism among processors is
necessary for the access control of the control blocks. In implementing a real-time kernel,
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because the execution time of each primitive operation is very short, spin locks are usually
used for this exclusive control.

With the remote invocation method, which is also applicable to multiprocessors
without shared memory, when a task operates on a kernel resource on another processor,
it sends a message to the processor requesting the operation and receives the result. The
requesting processor spins until the requested processor completes the operation.

Below, we will illustrate the behavior with these two approaches when atask
on processoP; invokes a system call to resume the execution of a taskn another
processorP,. We denote the resume task operationssas _tsk after the system call
name inuITRONS3.0 specification [56].

Direct Access Method

At first, 7, finds the address of’s task control block (TCB) and then tries to lock
the lock unit guarding the TCB. When succeeds to acquire the lock, it accesses
the TCB and changes the statusofBecause, becomes ready to execute with the
operation,;r; acquires the lock unit guarding the ready queué’dfand enqueues
T, to the ready queue. If (and only ifj, executes lower priority task than (the
priority of the currently executed task must be stored on a shared memwory),
requests-, to switch the executing task using an inter-processor interrupt.

Remote Invocation Method

At first, 1 checks some kind of parameter errors which can be detected statically.
Then, it enqueues eequest information blockto the request queue @%. The
request information block includes the kind of operatiosn(_tsk , in this case),

the parameters passed to it (the identification,jfand an empty field to which the
requested processor writes the result. ThemasksP, to process the request using

an inter-processor interrupt and spins until the result of the operation is written
in the request information block. Whe accepts the interrupt, it dequeues the
request information block, executes the requested operation, and writes the result
in the block.

Which method of them is appropriate is determined by the characteristics of the

underlying hardware (e.g. remote memory access cost) and the performance requirements
of the application.

1This is necessary, only when the ready queuBx0f included in a different lock unit withy,’s TCB.

27



2.3 Drawbacks of the Remote Invocation Method

From the performance requirements of real-time applications, the direct access method is
usually suitable because the serialization unit of processing is too large with the remote
invocation method. More precisely, the remote invocation method has the following
drawbacks in implementing real-time kernels for function-distributed multiprocessors.

1. With the remote invocation method, because requests come from other processors
asynchronously, any task can be delayed by the processing of the requests. This
makes the schedulability analysis of the system very difficult.

In order to predict the timing behavior of time-critical tasks, it is possible to disable
interrupt services during their executions. With this method, however, a request
that makes a higher priority task executable is also pended. It is also difficult to
predict the maximum time since the time-critical task are completed (or blocked)
until another task starts, because all pended requests are processed at this moment.
It also has a problem that the requesting task must wait for the completion of the
time-critical task.

2. In functional-distributed multiprocessors, interrupt requests from external devices
are raised on each processor. If an external interrupt has a higher priority than the
inter-processor interrupt, the execution of a requested operation can be delayed due
to the service of the external interrupt. This makes it difficult (or even impossible
depending on the situation) to bound the time until the remote invocation is finished.
Otherwise (i.e. if the inter-processor interrupt has a higher priority than an external
interrupt), it is difficult to bound the response time to the external interrupt.

When a requested operation is very simple and its result is not necessary, the re-
questing processor can proceed without waiting for the completion of the operation.
In this case, this problem can be avoided by making the priority of the external
interrupt always higher than that of the inter-processor interrupt. However, the
limitation that the requesting task cannot receive the result of a remote operation at
all is usually too restrictive to realize the access transparency of remote resources.

With these reasons, we adopt the direct access method as the base implementation
method below. We will also refer to the remote invocation method when necessary.
Differences of these methods will be clarified through performance measurements in
Section 6.
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2.4 Kernel Data Structures and Lock Granularity

In implementing a real-time kernel for shared-memory multiprocessors, the lock granular-
ity of kernel data structures is one of the most important issues. Below, we first describe
the data structures and access patterns on them in a real-time kernel for single processor
systems, and then investigate on the granularity of lock units.

In general, using fine-grained lock units reduces lock contention rate and then improves
concurrency. Conversely, using coarse-grained lock units reduces lock acquisition
overhead and deadlock avoidance overhead. For real-time kernels, making lock units so
small that many locks are necessary to be acquired in some operations is not a suitable
approach. This is because the execution time of each critical section is very short in
real-time kernels and therefore the lock acquisition overhead is relatively large. Another
reason is that the necessity of acquiring multiple locks at the same time has a great impact
on the worst-case behavior, because the maximum execution time of a critical section
guarded by nested spin locks increases with the exponential order of the maximum nesting
level of locks (Refer to Section I11.4 for detailed discussions).

The simplest method to avoid nested locks is to enter all kernel data structures in one

lock unit. Another method in which all kernel services are executed on one processor
is essentially the same approach. With these methods, only one kernel service can be
executed at the same time. Therefore, the execution throughput of kernel services cannot
scale well and the methods are thought to be problematic from the viewpoint of scalability.
It is also reported that the computational power of a processor is not sufficient to execute
all the kernel services, when kernel services are heavily used [22, 25]. We consider that
kernel data structures on different processors, at least, should be placed in different lock
units.

In order to determine an appropriate granularity of lock units, we have examined a real-
time kernel implementation for single processors based opltiRON3.0 specification.
Major data structures in the kernel are as the followings.

(1) The task control blocks (TCBSs).
(2) The (task) ready queue.

(3) The control blocks of each kind of synchronization and communication objects
(including a task queue in which waiting tasks on the object are included).

(4) The timer event queue (a queue which manages various events triggered by the
system timer).

29



As described in Section 2, a ready queue is prepared for each processor in the basic
kernel model for function-distributed multiprocessors. Also, a timer event queue should
be prepared for each processor.

We analyze the access pattern on the data structures of each system call what should
be supported in level S in thd TRON3.0 specification, which is listed in Table 5. For
example, thsig _semsystem call, which returns a resource to the designated semaphore,
first accesses the control block of the semaphore. When a task that is waiting on the
semaphore becomes ready to execute by the system call, it also needs to access the TCB of
the awaked task and the ready queue. fhe_wai system call, which forcibly releases
the waiting state of the designated task, accesses the TCB of the task and the ready queue.
When the task is waiting for a synchronization object and is included in its waiting queue,
it also accesses the control block of the object and the TCBs of the tasks that are waiting
for the object.

From these observations, because the ready queue is usually accessed with a TCB,
we have concluded that the TCBs of the local tasks of a processor and the ready queue
for the tasks should be included in the same lock unit. We also conclude that the timer
event queue for the tasks should be included in the same lock unit. Another observation
is that one-writer/many-readers type synchronization primitives are not necessary. This
is because a read access on a data structure is usually followed by a write access.

System calls in Table 5 are classified into the following six categories from their
access patterns on the kernel data structures. We omit the accesses on a timer event
queue, because whenever the ready queue for the task is accessed, the timer event queue
for a task may also be accessed.

(a) Normal operations on a task.
A system call of this category accesses the TCB of the designated task (or issuing
task) and/or the ready queue for the task.

(b) Special operations on a task.

A system call of this category accesses the TCB of the designated task, the ready
queue for the task, and the control block of the synchronization or communication
object on which the task is waiting. In some situations, it also accesses the TCBs
of the other tasks that are waiting on the object and the ready queues for the tasks.
At most one TCB and the ready queue for it must be locked at once.

(c) Simple operations on a synchronization or communication object.
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Name Function Category

sta _tsk start a task @)
ext _tsk exit the issuing task (a)
ter _tsk terminate a task (b)
dis _dsp disable task dispatch ®
ena_dsp enable task dispatch ()
chg _pri change the priority of a task (a),(b)
rot _rdq rotate tasks on a ready queue (@)
rel _wai release a task from wait state (b)
get _tid get the issuing task identifier (a)
sus _tsk suspend executing a task @)
rsm _tsk resume executing a task @)
slp _tsk make the issuing task sleep €)
wup_tsk wakeup a sleeping task @)
can_wup  cancel wakeup requests (@)
sig _.sem  signal a semaphore (e)
wai _.sem  wait on a semaphore (d)
preq _sem poll and request a semaphore (c)
set flg set an eventflag (e)
clr flg clear an eventflag (c)
wai _flg wait for an eventflag (d)
pol flg poll an eventflag (c)
snd _msg send a message to a mailbox (e)
rcv _msg receive a message from a mailbox (d)
prcv _msg poll and receive a message from a mailbox (©
loc _cpu disable interrupt and dispatch ()]
unl _cpu enable interrupt and dispatch ®
ret _int return from interrupt handler ®
set _tim set the system clock )
get _tim get the system clock ()
dly _tsk delay execution of the issuing task @)
get _ver get the version information ®

Table 5: Classification of System Calls

A system call of this category accesses only the control block of the designated
synchronization or communication object.
(d) Wait operations on a synchronization or communication object.

A system call of this category first accesses the control block of the designated
synchronization or communication object. When the issuing task is blocked, it also
accesses the TCB of the issuing task and the ready queue for the task.

(e) Release operations on a synchronization or communication object.

A system call of this category first accesses the control block of the designated

31



synchronization or communication object. When some tasks that are waiting on the
object are released from the waiting states, it also accesses the TCBs of the tasks
and the ready queues for the tasks. At most one TCB and the ready queue for it
must be locked at once.

() Other operations.

A system call of this category does not access these kernel data structures.

Table 5 also presents the category to which each system call is classified. The
chg _pri system call, which changes the priority of the designated task, is classified into
both (a) and (b), because its access pattern varies depending on the state of the designated
task.

Another kernel service routine that should be considered here is the timer interrupt
handler, which is periodically executed with constant interval and processes various
time-triggered events. In processing timeouts, a typical time-triggered event, the handler
accesses kernel data structures in the same pattern with the system calls in category (b),
I.e. the handler accesses the TCB of the designated task, the ready queue for the task, and
the control block of the synchronization or communication object on which the task is
waiting.

As the results of these investigations, we conclude that a separate lock unit should be
prepared for the control blocks of synchronization and communication objects on each
processor. As described before, the TCBs and the ready queue on the processor are
included in another lock unit. In order to avoid deadlocks, when both kind of locks are
necessary to be acquired, the lock unit of the synchronization and communication objects
should be acquired first.

In implementing the system calls of category (b), which are special operations on a
task, a deadlock detection and re-execution mechanism must be adopted. Therefore, itis
very difficult to bound the maximum execution times of the system calls of this category.
Because the system calls of this category is rarely used, we give up solving this problem.
In processing timeouts, the synchronization or communication object whose control block
IS necessary to be accessed can be determined beforehand. Thus it is possible to acquire
the lock unit of the object first, and the deadlock can be avoided.

On the other hand, when the TCBs and the control blocks of synchronization and
communication objects were included in the same lock unit, two parallel invocations of
system calls of category (e), which are used very frequently, could cause a deadlock.
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3 Requirements and Problems

This section presents two major problems in implementing a scalable real-time ker-
nel for function-distributed multiprocessors; the degraded scalability of intra-processor
synchronization (Section 3.1), and the incompatibility of predictable inter-processor
synchronization and constant interrupt response (Section 3.2). We also summarize the
required properties of a scalable real-time kernel in Section 3.3.

3.1 Scalability of Intra-Processor Synchronization

The first problem is that the worst-case execution times of inter-task synchronizations
within a processor depend on the number of contending processors in the system. This is
because a task must acquire an inter-processor lock before it accesses the TCB of another
task, even when both tasks are executed on a same processor.

As described in Section 1.4, the worst-case timing behavior of the processings that
can be done within a processor is desired to be independent of the number of contending
processors and of the other processors’ activities. Because tasks on each processor are
fairly independent with tasks on other processors in function-distributed multiprocessors,
this property is an essential requirement to reduce the maintenance cost of the system. It
is also a prerequisite to facilitates the reuse of a module consisting of a processor, local
memory, external devices, and the software handling them.

3.2 Predictable Inter-Processor Synchronization and In-
terrupt Response

The second problem is that constant interrupt response is not compatible with predictable
inter-processor synchronization. This problem is similar to the problem with the
remote invocation method on the precedence of external interrupts and inter-processor
synchronizations, which is pointed out in Section 2.3.

In order to bound the time until a processor acquires an inter-processor lock, the
duration that each processor holds the lock must be bounded as well as the number
of contending processors that the processor must wait for. The latter condition can be
met with a bounded spin lock algorithm, such as the ticket locks and the FIFO-ordered
queueing locks [38], with which the turn that a processor acquires a lock is reserved
when it begins waiting for the lock. To satisfy the former condition, the relationship with
interrupt services must be considered.

In function-distributed multiprocessors, interrupt services for external devices are
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requested for each processor. When multiple devices are connected to a processor,
interrupt requests from them are usually raised independently and the maximum time to
service all of the requests becomes very long or even unbounded. Consequently, in order
to give a practical bound on the duration that a processor holds a lock, interrupt services
should be inhibited for that duration (1).

On the other hand, the worst-case interrupt latency should be given independently of
the number of contending processors. If a processor disables interrupt services before
enqueueing itself to the queue, the interrupt disabled period includes the time to acquire
the lock and its upper bound depends on the number of contending processors. Therefore,
interrupt requests must be serviced while the processor is waiting for a lock (2).

Though the test-and-set locks, which are not suitable for real-time systems, can be
extended to satisfy both (1) and (2) easily, bounded spin lock algorithms, such as the
ticket locks and the queueing locks, cannot be extended similarly. The reason is as
follows. In all bounded spin lock algorithms, a processor modifies some shared variable
and reserves its turn to acquire the lock when it begins waiting for the lock. When its turn
comes, the lock is passed to the processor by another. If the processor simply branches
to an interrupt handler while waiting for the lock, it cannot begin to execute the critical
section immediately after the lock is passed to the processor, and makes the contending
processors wait wastefully until the interrupt service is finished.

When a processor finishes the interrupt request that is serviced while waiting for a
lock, it resumes waiting for the lock. It is usual that the maximum time that the processor
is waiting for the lock is prolonged by the interrupt service. It is also the case with some
spin lock algorithms that some processings are necessary after the interrupt service to
resume waiting for the lock.

When the schedulability of the system is analyzed, all the overhead that is caused
by an interrupt service should be added to the maximum service time of the interrupt
request. We call this overhead sserrupt service overhead Because the maximum
frequency of interrupt requests is usually quite high compared with tasks, a little increase
of the interrupt service overhead can severely degrade the schedulability of the system.
Therefore, the interrupt service overhead should also be independent of the number of
contending processors.

3.3 Required Properties

From the above discussions, the properties that a scalable real-time kernel should satisfy
can be summarized as follows.
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(A)

(B)

(©)

(D)

system call intra-processo inter-processor
name function operations operations
cretsk | create a task Tere_tsk n - Twait + Tove_ok
sustsk | suspend executing atask | Tyys ssk - Twait + Teys sk
. . ’ "
(with a task switch) 17, ;o n - Tyait + Ts,;w_tsk
rsmtsk resume executing a task Trom._tsk N Twait + Trgpy 15k
. . ’ "
(with a task switch) 7 ... 1 Twait T Trgm_tsk
vsndtmb | send a message toa ta;k Tv,snd_tmb n - Tyait + Tv,,S,"d tmb
- (with a task switch)) Ty, ymp 1 - Twait + Lysnd_tmp
vrcv_tmb | receive a message sent to M&,,.., b —
(with a task switch)| 77 .. ;.0 —
maximum interrupt response time Tint
interrupt service overhead Tint_overhead

Table 6: Required Timing Behavior

The maximum execution time of a system call that is to synchronize or communicate
with tasks on the same processor can be determined independently of the other
processors’ activities and the number of contending processors.

The maximum execution time of a system call that is to synchronize or communicate
with tasks on other processors can be determined independently of the other
processors’ activities and be bounded with a linear order of the number of

contending processors.

The maximum interrupt response time on each processor can be determined
independently of the other processors’ activities and the number of contending
processors.

The interrupt service overhead can be determined independently of the other
processors’ activities and the number of contending processors.

The required timing behavior is illustrated in Table 6.

4

Proposed Solutions

In Section 4.1 and 4.2, we present our proposed solutions to the two problem described in
the previous section when task-independent synchronization and communication objects
are not supported. With the proposed methods, each worst-case service time that is
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necessary for schedulability analyses can be bounded, on the assumption that underlying
inter-processor synchronization mechanism and hardware satisfy the required properties,
which are described in Section 4.3.

Because task-independent synchronization and communication objects are not consid-
ered in this section, all shared data structures located on the local memory of a processor
are thought to be included in a single lock unit.

4.1 Spin Lock with Local Precedence

In order to improve the worst-case execution times of an operation on a local task
(called a local operation, in short), the local lock guarding the local data structures
should be obtained with precedence over the other processors. With this approach, the
maximum execution time of a local operation is determined independently of the number
of contending processors. More precisely, a task must wait for at most one critical section
executed by other processors until it acquires its local lock. On the other hand, the
maximum number of critical sections that a processor must wait for until it acquires a
non-local lock is increased. More precisely, when a task tries to acquire a non-local lock,
it must wait forn — 1 critical sections executed by its host processor in additionta2
critical sections executed by the other processors, whaesehe number of contending
processors.

The spin lock algorithms with which the local lock can be acquired with precedence
over the other processors, called spin locks with local precedence, will be described in
Section 111.3.

4.2 Spin Lock with Preemption

To satisfy both of the conditions (1) and (2) described in Section 3.2 at the same time, we
adopt FIFO-ordered queueing spin lock algorithms with preemption.

As described in Section 3.2, in a bounded spin lock algorithm, a processor modifies
some shared variable and reserves its turn to acquire the lock. In order not to make the
contending processors wait wastefully, a processor must inform others that it is servicing
interrupts and should not be passed the lock, when it begins to service interrupts while
waiting for the lock. The processor trying to release the lock checks if the succeeding
processor is servicing interrupts. If the succeeding one is found to be servicing interrupts,
the lock is passed to the nextin line.

More precisely, when the processor trying to release the lock finds that the succeeding
one is servicing interrupts, the processor is dequeued from the waiting queue for the
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lock. When the processor finishes the interrupt service, it checks whether it is dequeued
from the waiting queue during the interrupt service or not. If it has been dequeued,

it re-executes the lock acquisition routine from the beginning. Obviously, this simple
preemption scheme has the problem that the interrupt service overhead depends on the
number of contending processors.

In order to solve this problem, we propose an improved preemption scheme, in which
the processor is not dequeued even when its turn to acquire the lock comes during an
interrupt service. Instead, the processor trying to release the lock simply passes the
lock to the next processor in the waiting queue. When the processor returning from
the interrupt service, it resumes waiting for the lock in its original position. With this
improved preemption scheme, the interrupt service overhead can be reduced to a constant
time length, which is independent of the number of contending processors.

One more problematic situation is as follows. Assume the case that a proégssor
services an interrupt request while the task executed,ois waiting for a lock. The
problem occurs when the interrupt handler executedPiyies to acquire the same lock.

If P, executes the lock acquisition routine from the beginning, another procBstuet

has just begun waiting for the same lock must possibly wait for the two executions of
critical sections byP;. As the result, the maximum number of critical sections tRat
must wait for is increased with an interrupt service executed®on This violates the
required property (B) presented in Section 3.3. More precisely, the maximum time until
P> acquires the lock cannot be bounded with a linear order of the number of contending
processors without some assumptions on the occurrence of interrupt requests.

Our solution to this problem is that the interrupt handler trying to acquire the lock
inherits the turn that the preempted task have reserved to acquire the lock. In this case,
the task must re-execute the lock acquisition routine from the beginning after the interrupt
service, and thus the interrupt service overhead is prolonged. Instead, the interrupt
service time is shortened, because the interrupt handler inherits the turn reserved by the
preempted task. Because the sum of the interrupt service time and the interrupt service
overhead remain unchanged, schedulability of the system is not affected with this method.
The same method can be applied to the situation that another task that becomes ready to
execute by the interrupt service tries to acquire the same lock.

With these methods, all of the required properties described in Section 3.3 are
satisfied, on the assumption that underlying inter-processor synchronization mechanism
and hardware satisfy the properties described in the next section. Timing behavior of
our proposed method is illustrated in Table 7, in whi¢h denotes the maximum time
duration that a processor holds a lock.
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system call intra-processo inter-processor
name function operations operations

cretsk | create a task Tere_tsk 2-m-Tes +Thro on
sustsk | suspend executing atask | Tyus sk 2-n-Tos+T0 1ok

(with a task switch) 77, . ., 2-m-Tes + Ty o
rsmtsk | resume executing atask | T}om ¢k 2-n-Tes+ TV 1ok

(with a task switch) 77, .. 2-n-Tos + T ok
vsndtmb | send a message to atask | Tysnd tmb 2-n-Tos+ TV 0 ib

(with a task switch) 77, ., . 2-n-Tes +Tland tmb
vrcv_tmb | receive a message sent to M&,.co_mp —

(with a task switch)| 77 .. .0 —
maximum interrupt response time Tint
interrupt service overhead Tint_overhead

Table 7: Timing Behavior of the Proposed Method

The bounded spin lock algorithms with preemption will be discussed in Section 111.2.

4.3 Assumptions on Underlying Synchronization Mecha-
nism and Hardware

In order that our proposed method strictly satisfies the required properties described in
Section 3.3, the following assumptions on underlying inter-processor synchronization
mechanism (i.e. spin lock) and hardware are necessary to be satisfied.

1. The maximum execution time of underlying inter-processor synchronization mech-
anism can be determined independently of the number of contending processors.

2. The maximum access time of a local memory can be determined independently of
the number of contending processors.

3. The maximum access time of a remote memory can be bounded with a linear order
of the number of contending processors.

Because the maximum execution time of our queueing spin lock algorithm with
preemption which will be described in Section 111.2 depends on the number of contending
processors, the first assumption is not satisfied. However, the dependency is very small
and can be ignored in usual applications. For very hard real-time applications, the
underlying synchronization mechanism should be implemented with hardware. Because
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only one lock is necessary for each processor, we think that the cost of the synchronization
hardware can be justified.

In order to satisfy the second assumption, the maximum access time of the local bus of
the processor should be able to be determined independently of the number of contending
processors, or the local memory should be realized using two-port memories. The third
assumption requires that the maximum access time of the shared bus (or interconnection
network) and that of the local bus of another processor are bounded with a linear order of
the number of contending processors.

A hardware architecture in which all these assumption are satisfied with reasonable
cost is as follows. A complete round-robin scheme should be adopted as the arbitration
scheme of the shared bus (or interconnection network). The local bus of a processor
should also be scheduled in a round-robin fashion between its host processor and the
other processors. More precisely, after the local bus is used by its host processor, another
(remote) processor should be able to acquire the bus. After a remote processor uses the
local bus, the host processor of the bus can acquire the bus with higher precedence over
the other processors.

5 Classification of Kernel Resources

In the basic kernel model for function-distributed multiprocessors described in Section 2.1,
each kernel resource is classified intoltheal classof its host processor. Kernel resources
included in eachocal classhave the same characteristics except that they are located on
the local memory of its host processor and that (in case of local tasks) they are executed
only by its host processor.

In this section, we propose a new kernel model in which kernel resources are classified
into some classes with different characteristics. The kernel resources belonging to the
class having the appropriate property for a processing should be used for implementing
the processing.

At first, we introduce the class of private tasks, whose maximum execution times
are independent of the number of contending processors, but that cannot synchronize or
communicate with the tasks executed on other processors in Section 5.1. Task-independent
synchronization and communication objects are also classified into the private class and
the shared class in Section 5.2. We also introduce the class of isolated tasks in Section 5.3.
Though isolated tasks themselves have little use, the same access restriction with it should
be imposed on interrupt handlers. Finally, we describe the kernel interface with which
resources of different classes are accessed in Section 5.4.
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Figure 8: Kernel Model with Private Tasks

5.1 Private Tasks

Though the spin lock with local precedence described in Section 4.1 makes the worst-
case performance of an intra-processor synchronization independent of the number of
contending processors, its performance is quite low compared with a single processor
system. As described in Section |. 2, many of the tasks can be processed within a processor
and need not synchronize or communicate with other processors in well-designed
application system on a function-distributed multiprocessor. The total performance of
the system is expected to be improved, if such tasks can be executed with the same
performance with a single processor system.

To meet this requirement, we propose an approach to classify tasks according as
their characteristics. In the concrete, we classify the tasks that are not operated by tasks
executed on other processorspas/ate tasks which are managed differently from the
other tasks (i.e. local tasks). Because the TCB of a private task is not accessed by other
processors than its host processor, no inter-processor lock is necessary to access its TCB.
A separate ready queue and a timer event queue also accessible without an inter-processor
lock are prepared for the private tasks on each processor. Both the ready queue for the
private tasks and that for the local tasks are checked in determining which task to be
executed. The kernel model with private tasks is illustrated in Figure 8.

A private task on a processor can synchronize or communicate with a local task
on the same processor. When the private task accesses the TCB of the local task, the
maximum time until it acquires the lock guarding the TCB is independent of the number
of contending processors, because the private task, which is on the same processor with
the local task, can acquire the lock with precedence over the other processors.
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Another motivation to introduce the class of private tasks is as follows. Because the
maximum execution time of an operation on a remote resource (called a remote operation,
in short) is prolonged as the number of contending processors is increased, a task whose
worse-case behavior should not depend on the number of contending processors must
not invoke such operations. Moreover, the same restriction applies to any higher priority
task than the former task in order to bound its response time independently of the number
of contending processors. If this restriction is imposed on each private task, and if the
private tasks are always scheduled with higher priorities than the local tasks on the same
processor, the worst-case behavior of private tasks can be determined independently of
the number of contending processors.

In order to schedule the private tasks with higher priorities than the local tasks, the
task dispatcher (a kernel module which switches the contexts of tasks) first checks the
ready queue for the private tasks, then checks the ready queue for the local tasks only
when the former one is empty, and determines to which task to dispatch.

5.2 Classification of Task-Independent Synchronization
and Communication Objects

In order that local tasks on different processors synchronize and communicate each
other through task-independent objects (such as semaphores and eventflags), a class of
synchronization and communication objects that can be accessed by local tasks on any
processor is necessary. We call this class of objecsdaed objectsWhen the control
blocks of shared objects is located on the local memory of a processor, it is also called
local objectsof the processor. Non-local shared objects are callebal objects

When a task operates on a shared object, it is necessary for the task to access the
TCBs of other tasks that are waiting on the object in addition to the control block of the
object. Because a private task cannot access the TCBs of the tasks on other processors
that can wait on a shared object, a private task cannot operate on the shared object.
Consequently, in order that private tasks and local tasks on a processor synchronize and
communicate each other through task-independent objects, a class of synchronization
and communication objects that can be accessed only from the tasks on the processor is
necessary. We call this class of objectspaivate objects No inter-processor lock is
necessary to access the control blocks of the private objects (Figure 9).

Table 8 presents the accessibility of each class of kernel resources from each class of
tasks. P, and P in this table represent different processors in the systempPaipdivate
(or local) task denotes a private (or local) task on procegsor*1” represents that a
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Table 8: Accessibility of Kernel Resources

task can access another task with normal operations (the system calls of category (a) in
Section 2.4) but cannot access with special operations (the system calls of category (b)).
When a task tries to operate on an unaccessible resource, the kernel reports an error.

In Table 8, aP;-private task cannot accessFa-local task with special operations,
because the private task cannot access the control block of a shared object on which the
P;-local task may be waiting. A&;-local task cannot accessfa-local task with special
operations, because thg-local task cannot access the control block oPaprivate
object on which the,-local task may be waiting.

5.3

As described in Section 5.1, a private task is hecessary to acquire an inter-processor lock
when it synchronizes with a local task on the same processor. Therefore, its maximum
execution time and response time are long compared with a single processor system.

Isolated Tasks and Interrupt Handlers

When some deadlines are very short and the same response time with a single processor
system is required, another class of tasks that never use inter-processor locks becomes
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Table 9: Accessibility of Kernel Resources with Isolated Classes

necessary. We call this class of taskssatated taskslIsolated tasks are always scheduled

with higher priorities than the private tasks and the local tasks on the same processor.
Because an isolated task cannot operate on a private object on which a local task may be
waiting, isolated objectshat can be operated on only by the isolated tasks and the private
tasks are necessary. An isolated task cannot access even the task control block of a local
task because a local task can be accessed from other processors, while a private task can
access it.

The accessibility of kernel resources with isolated classes are summarized in Table 9.
In this table, “*2” represents that a task can access a synchronization object with the
operations of category (c) and (e) but cannot access with the operations of category (d),
that is, the task cannot wait on the object. PXlocal task cannot wait on &;-isolated
object, because B, isolated task, which cannot access the TCB of the local task, must be
able to operate on the object.

InthexITRONS.O specification, application programmers can write interrupt handlers.
System calls can be invoked from interrupt handlers, except for the operations that make
the issuing task blocketlBecause the execution time of an interrupt handler is included
in the maximum response time of isolated tasks, interrupt handlers should not use inter-
processor lock and thus the same access restriction with the isolated tasks should be
applied. When isolated tasks are not used, it is still reasonable that the same access
restriction is applied to interrupt handlers.

A system call that disables interrupt services is prepared iplfARON3.0 specifica-
tion. While a task disables interrupt services, both the access restriction on the task and
that on an isolated task on the same processor should be applied to the task.

2This is because an interrupt handler does not have a task context and cannot be blocked.
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5.4 Kernel Interface

The classification of kernel resources is reflected to the kernel interface through ID
numbers of the resources. In thETRON3.0 specification, a kernel resource is accessed
with its ID number. We divide a resource ID into the field indicating to which class the
resource belongs and the field identifying the resource in the class. With this approach,
the system call interface, especially the number of parameters, remains unchanged.

It is usually the case that the ID numbers of kernel resources are represented with
symbols in source code and that the mapping of the symbols to actual numbers is given
within a definition module. With this guideline, when the class of a kernel resource is
changed, only the definition module is necessary to be modified.

6 Performance Measurements

In this section, the effectiveness of our proposals is investigated through performance
measurements. The measurement method is described in Section 6.1, and the measurement
results, which are to see whether the four required properties of a scalable real-time kernel
described in Section 3.3 are satisfied or not, are presented in Section 6.2.

In the measurements, underlying inter-processor synchronization is realized with spin
locks implemented with software, which do not satisfy the required property presented in
Section 4.3. Our evaluation environment described in Section 1.6.1, does not satisfy one
of the required properties either. In spite of the missing properties, the advantage of our
proposals over other methods is confirmed through the measurements.

6.1 Measurement Method

We have prepared five versions of real-time kernels for the evaluation: a real-time kernel
using the proposed method (i.e. spin lock with the improved preemption scheme and
local precedence rule; titled “proposed” in the graphs in this section), one using spin
lock with the improved preemption scheme but without local precedence rule (“w/o
local precedence”), one using spin lock with the simple preemption scheme and local
precedence rule (“w/o improved preemption”), one using spin lock without preemption
and with local precedence rule (“w/o preemption”), and one using the remote invocation
method (“remote invocation”).

We have measured the execution times of system calls and the interrupt response
times using two synthetic workloads. The workloads are determined so that worst-case
situations can occur.
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Figure 10: The First Workload

The first workload is to evaluate the performance of a local operation, or an intra-
processor synchronization. A local taskon processof; repeatedly invokes a system
call that sends a message to a higher priority local tastn the same processor, and
the execution times of the system call (the time sincevokes the system call unti,
starts execution) are measured. The execution times when an interrupt request is serviced
during the execution are recorded separately. The execution times of a system call that
sends a message to a private tas&n the same processor are also measured.

In order to interfere the local operation, local tasks on the other processors alternately
suspend and resume the execution of lower priority taskB, @t random intervals. The
average interval is about 5Q6s. During the measurement, periodic interrupt requests
are also raised on each processor, and the interrupt response times are measured within
the interrupt handler. The interrupt period is around 5 ms and is varied in 0-5% for
each processor in order that the timing of interrupt requests for each processor should
not be synchronized. The execution time of the interrupt handler including the time for
invoking and returning from the handler is about/33 Other external interrupt requests
are inhibited during the measureméntThe relation among tasks in this workload is
illustrated in Figure 10.

The second workload is to evaluate the performance of a remote operation, or an
inter-processor synchronization. A local taskon processoiP, repeatedly invokes a
system call that sends a message to a local tasi processor’;, and the execution
times of the system call (the time singginvokes the system call until the execution of
the system call is finished) are measured. The execution times when an interrupt request

3The inter-processor interrupts should not be inhibited, of course. The word “external” excludes the
inter-processor interrupts.
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Figure 11: The Second Workload

is serviced during the execution are recorded separately.

In order to interfere the remote operation, a taskPpand tasks on the other processors
alternately suspend and resume the execution of lower priority tasig amh random
intervals. The average interval is same with the first workload. During the measurement,
periodic interrupt requests are also raised on each processor, and the interrupt response
times are measured. The interrupt period and the execution time of the interrupt handler
are same with the first workload. The relation among tasks in this workload is illustrated
in Figure 11.

6.2 Measurement Results

Figure 12 presents the 99.99%-reliable execution times of a system call that sends a
message to a higher priority task under the first workload, when no interrupt request is
serviced during the execution. The number of contending processors (incliging
changed from one (no interference) to nine (eight interfering tasks). With the proposed
method, the execution time is nearly constant when the number of processors is larger
than two. Its slight increase is due to the contentions for the local bug ahd for
the shared bus. Without local precedence scheme, the execution time is prolonged as
the number of contending processors is increased. The execution time with the remote
invocation method, which can not be bounded inherently, is prolonged more rapidly. This
result demonstrates that our proposed method can practically satisfy the required property
(A) in Section 3.3, but other methods cannot.

The execution time of a system call that sends a message to a private task is quite
short because no inter-processor synchronization is necessary to execute the system call.
Moreover, the number of contending processors has only a little influence on the execution
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Figure 12: Execution Times of Local Operation

time. When the number of processors is one, the execution time is aboust, ¥hich
corresponds to the execution time of the system call in single processor systems. The
execution time with the remote invocation method when the number of processors is one
is almost same with this, because inter-processor synchronization is also unnecessary with
the remote invocation method.

Figure 13 presents the 99.99%-reliable execution times of a system call that sends a
message to a local task on another processor under the second workload, when no external
interrupt request is serviced during the execution. The number of contending processors
(including P,) is changed from two (an interfering task éh) to nine (eight interfering
tasks). The proposed method has worse performance than the other methods, because of
the performance penalty imposed on non-local operations. This result demonstrates that
each method satisfies the required property (B) in Section 3.3.

In order to show that our proposed method can satisfy the required property (C), we
present the 99.99%-reliable interrupt response times on proc&ssorder the second
workload in Figure 14. The number of contending processors is changed from two to
nine. Under this workload?, repeatedly acquires the lock guarding the TCB’pdocal
tasks. Unless a preemption scheme is adopted, the interrupt response fimedodes
the time thatP; is waiting for the lock and is prolonged as the number of contending
processors is increasing. With either preemption scheme, the interrupt latency becomes
almost independent of the number of contending processors.

Finally, we demonstrate that our proposed method can satisfy the required property
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(D). Figure 15 presents the differences of the 99.99%-reliable execution times of a remote

operation when an interrupt request is serviced during the execution and those when no
interrupt request is serviced, which represent the measured interrupt service overheads,
under the second workload. With the proposed method, the interrupt service overhead

does not depend on the number of contending processors. With the simple preemption
scheme, the interrupt service overhead becomes long as the number of contending
processors is increased.

From these measurement results, we can say that the proposed method has advantage
over other implementation methods. The four required properties of a scalable real-time
kernel described in Section 3.3 are not satisfied in strict, because the assumptions on the
underlying synchronization mechanism and hardware are not satisfied in our evaluation
environments. However, we found that their effect is quite small and the four properties
can be thought to be satisfied in practice, except for very hard read-time applications.

7 Difficulty To Be Solved

In this section, we discuss the implementation method of a scalable real-time kernel
that satisfies the four required properties presented in Section 3.3 and that supports
task-independent synchronization and communication objects, such as semaphores and
eventflags. As the result, the difficulty for its realization is illustrated. Discussions in this
section are also based on the assumptions on underlying inter-processor synchronization
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acquirelock(Lock for_Objects);

deterimine which lock to acquire

if (lock is necessary to be acquirethen
acquirelock(Lock for_Tasks);
execute the system call
releasdock(Lock for_Tasks)

else
execute the system call

end,

releasdock(Lock for_Objects);

Figure 16: Acquiring Nested Spin Locks

and hardware presented in Section 4.3.

7.1 Necessity of Nested Spin Locks

When tasks whose control blocks are guarded by different lock units can wait on a
synchronization object, the control block of the object should be included in a different
lock unit with the TCBs as described in Section 2.4. A system call that operates on a
task-independent synchronization object first acquires the lock guarding its control block.
When a task that has been waiting on the object is released from the blocked state with
the system call, or when the task that issues the system call begins to wait on the object,
the system call also needs to acquire the lock guarding the TCB of the target task. Note
here that which TCB is necessary to be accessed is determined after accessing the control
block of the synchronization object. Consequently, the lock guarding the control block of
the synchronization object must be acquired at first, and after accessing the control block,
the TCB of the target task must be acquired. This kincedted locksre the obstacle

for satisfying the required properties of a scalable real-time kernel. Figure 16 illustrates
a skeleton of a routine that executes a system call requiring nested spin locks.

Onthe other hand, when only the tasks included in a class can wait on a synchronization
object, the control block of the object can be included in the same lock unit with the
TCBs of the tasks. Therefore, this type of synchronization object can be realized with
the method described in Section 4. Its typical example is the task-dependent rhaitbox
which only its host task can wait. We have used this type of mailbox for the performance
measurements in Section 6.

A private synchronization object can also be realized without nested spin locks. This
is because a private object cannot be accessed from other processors, and because the

4The task-dependent mailbox function is defined in the version 2.0 offRRON specification, but
not defined in the lategtl TRON specificationy [ TRON3.0.
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control block of the object need not be guarded with an inter-processor lock. Another
important feature of a private synchronization object is that the maximum execution time
of an operation on the object does not depend on the number of contending processors.
The reason is as follows. When a taskon processorP; operates on &-private
synchronization object, the only inter-processor lock thaiossibly needs to acquire is

the lock guarding the TCBs aP;-local tasks. This is becausefa-private object can be
waited on only byP;-local tasks and’;-private tasks. The maximum time to acquire the
lock guarding the TCBs of;-local tasks can be bounded independently of the number

of contending processors thanks to the local precedence scheme described in Section 4.1.
As the result, the maximum execution time of an operation on a private synchronization
object can be bounded independently of the number of contending processors. If tasks
within a processor synchronize and communicate using private objects of the processor,
the required property (A) in Section 3.3 can be satisfied.

7.2 Candidate Implementation Methods

Below, we try to satisfy the three other required properties (B), (C), and (D) presented in
Section 3.3. The first method can satisfy the properties (B) and (C), but cannot satisfy
(D). Though we propose the second method for satisfying the required property (D), it
can not satisfy (B) instead.

The First Method

In order to make the required properties (B) and (C) compatible, when an interrupt is
requested to a processor while it is waiting for a lock, the processor must suspend the
spin-waiting and start servicing the interrupt request as discussed in Section 3.2. When
the interrupt request occurs while a processor is waiting for the outer lock (the lock
guarding the control blocks of synchronization objects), the same preemption scheme
with that proposed in Section 4.2 can be applied straightforwardly.

The problem arises when the interrupt request occurs while a processor is waiting
for the inner lock (the lock guarding the TCBs). In this case, in addition to suspend the
spin-waiting for the inner lock, the processor must release the outer lock before servicing
the interrupt request. Otherwise, the maximum duration that the processor holds the lock
includes interrupt service times. The skeleton of the routine supporting preemption is
presented in Figure 17. In this figure, t@equirelock function is assumed to return
false, when an interrupt in requested while waiting for the lock. After returning from
the interrupt service, the processor must re-acquire the outer lock and re-execute the
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retry:
disable interrupts
@ if (—acquirelock(Lock for_Objects))then
enable interrupts
interrupt requests are serviced here
gotoretry
end,
(@ deterimine which lock to acquire
if (lock is necessary to be acquijethen
® if (—acquirelock(Lock for_Tasks))then
releasdock(Lock for_Objects);
enable interrupts
interrupt requests are serviced here
gotoretry
end;
execute the system call
releaselock(Lock for_Tasks)
else
execute the system call
end;
releasdock(Lock for_Objects);
enable interrupts

Figure 17: Acquiring Nested Spin Locks with Preemption

processings to determine which lock to be acquired (the routine bet@emnd (3

in Figure 17), because which lock to be acquired may be changed during the interrupt
service. This re-execution overhead should be treated as included in the interrupt service
overhead.

With this preemption scheme, the required properties (B) and (C) are satisfied. The
methods to bound the maximum time to acquire nested spin locks with a linear order of
the number of contending processors will be discussed in Section 111.4.

However, the processor must re-execute the lock acquisition routine for the outer
lock from the beginning after it finishes interrupt services. In other words, this method
corresponds to the simple preemption scheme presented in Section 4.2. Therefore, the
interrupt service overhead depends on the number of contending processors and the
required property (D) cannot be satisfied with this method.

The Second Method

In order to satisfy the required property (D), Section 4.2 has proposed the improved
preemption scheme, with which the processor returns to its original position in the waiting
gueue instead of enqueues itself at the tail of the queue. We try to apply this policy to this
case.
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After a processor returns from an interrupt service which is requested while waiting
for the inner lock, the processor should be enqueued to the head of the waiting queue for
the outer lock instead of the tail of it. With this preemption scheme, the interrupt service
overhead can be bounded independently of the number of contending processors, and the
required property (D) can be satisfied.

With this method, however, the property (B) cannot be met with the following reason.
Suppose the case that a procesBpiis holding the outer lock. on which two other
processor$, and P; are waiting. When an interrupt is requestedrgmwhile it is waiting
for the inner lock,P; suspends waiting for the inner lock, passes the lbdk P,, and
starts the interrupt service. Assume thatis waiting for the inner lock and is still
holding L when P; returns from the interrupt service. In this cagg,enqueues itself at
the head of the waiting queue, i.e. in front/4. If an interrupt request is raised d# at
this moment, it passes the lo¢kto P;. Again, P, can return to the head of the waiting
gueue, i.e. in front of’;. This process can continue permanently and violates the required
property (B). More precisely, the maximum time un® acquires. cannot be bounded
without some assumptions on the occurrence of interrupt requests.

8 Summary

In this part, the required properties of a scalable real-time kernel for function-distributed
multiprocessors have been summarized in four items, and its realization methods have
been discussed. Before the discussions on a scalable real-time kernel, we have presented
the overview of the TRON project, the ITRON specifications, and the ITRON-MP
specification, which constitute the background of this study.

In Section 2, we have presented the basic real-time kernel model for function-
distributed multiprocessors. We have also described the two implementation approaches
of the model, the direct access method and the remote invocation method, and illustrated
that the latter method is not suitable for real-time system. Itis one of the reasons why we
focus on shared-memory multiprocessors in this study. The granularity of inter-processor
locks with the direct access method has also been discussed.

In a well-designed application system on a function-distributed multiprocessor ar-
chitecture, many of the tasks can be processed without direct synchronizations or
communications with other processors. Therefore, it is advantageous that the worst-case
timing behavior of such tasks is determined independently of the other processors’ activ-
ities and the number of contending processors. The timing behavior of interrupt handling
should be also independent of the number of contending processors. In Section 3, we
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have summarized these requirements on a scalable real-time kernel in four properties and
pointed out two problems to realize the properties.

In Section 4, we have proposed the solutions to the problems presented in the previous
section. With the proposed implementation method, a multiprocessor real-time kernel
that does not support task-independent synchronization and communication objects can
be realized with satisfying the four required properties, on the assumption that underlying
inter-processor synchronization mechanism and hardware architecture satisfy the required
properties described in Section 4.3.

In Section 5, we have proposed a new kernel model in which tasks and task-
independent synchronization and communication objects are classified into some classes
with different characteristics. Tasks are classified into the local tasks, the private tasks,
and the isolated tasks of each processor. Task-independent synchronization objects are
also classified into the shared objects, the private objects, and the isolated objects. The
accessibility of each class of kernel resources from each task class has been presented in
atable.

In Section 6, the effectiveness of our proposals in Section 4 and 5 are demonstrated
through performance evaluations. Though underlying inter-processor synchronization
mechanism and hardware architecture do not satisfy the assumptions described in
Section 4.3, the four required properties of a scalable real-time kernel are practically
satisfied with our proposals. They cannot be satisfied at the same time with other methods.

Section 4 has focused on direct operations on tasks and has not considered task-
independent synchronization and communication objects, such as semaphores and event-
flags. Because tasks belonging to different classes can wait on a task-independent object,
the control block of the object should be included in a different lock unit from the
TCBs, and two lock units are necessary to be acquired one by one in some system
calls. Section 7 has shown the difficulty to implement task-independent synchronization
and communication objects while satisfying all of the required properties presented in
Section 3.3.

With the kernel model proposed in this part, the asymmetry of the underlying
architecture is directly reflected to the kernel interface. Here, a criticism is expected that
this approach put a burden on the system designer. We consider that this criticism is
inadequate with the follow reasons.

1. Under the current technologies of real-time computing, it is necessary for a system
designer to be conscious of the underlying execution mechanism of the system in
designing a hard real-time system with severe timing constraints. Therefore, it is
not a good approach that the characteristics of underlying hardware architecture is
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hidden with an operating system kernel.

2. When atechnology is developed with which a system designer need not be conscious
of the underlying hardware architecture in designing a hard real-time system, the
technology should be incorporated to the tools supporting real-time system design
such as schedulability analyzers and the CASE tools, and not to the real-time kernel.

95



Part Il

Spin Lock Algorithms for Scalable
Real-Time Kernels

56



1 A Brief Survey on Spin Lock Algorithms

An inter-processdockis used for exclusive access to shared resources on shared-memory
multiprocessors. When a processor accesses a shared resource, it must acquire the lock
guarding the resource. When the lock is held by another processor, the processor must
wait until the lock is released. In waiting for the lock, two approaches exist; busy-waiting
and blocking.

A spin lockis the mechanism for realizing an inter-processor lock with busy-waiting
approach. When the lock is held by another processor, the procgsesuntil the lock
is released. Though spin-waiting wastes processor cycles, it is useful in two situations:
when the execution time of the critical section is so short that the expected waiting time
Is shorter than the time to block and resume the task, and when there is no other work
to do. In implementing a multiprocessor real-time kernel, spin locks are usually adopted
because the execution time of each critical section is very short.

1.1 Hardware Primitives and Spin Locks

Spin lock algorithms for shared-memory multiprocessors have been intensively studied
under various hardware environments.

The first spin lock algorithm was proposed by Dijkstra in 1965 [10], which assumes
that the hardware supports only (atomic) read and (atomic) write operations. After some
proposals of its improvements [30, 11, 32], an efficient algorithm in the absence of
contention was proposed under the same hardware assumption quite recently [33]. More
recently, the algorithm is improved with the timing-based approach, in which the relative
execution speed of each processor is assumed to be bounded at any moment [35, 2, 41].

Because these algorithms that use only (atomic) read and (atomic) write operations
have quite large overhead, however, most modern shared-memory multiprocessor archi-
tectures provide hardware support for exclusive accesses to shared resources. The most
popular approach is to support atomic read-modify-write operations on a single word of
shared memory. Another approach is to support spin locks with hardware [13, 34].

In this study, we assume that atomic read-modify-write operations on a single word
(or aligned contiguous words) of shared memory are supported with hardware. Typical
examples of the operations are tesid set, fetchand store (swap), fetclandadd, and
compareandswap.

Among the operations, the compaaadswap operation is most powerful and is
supported by many microprocessors. With a comargswap operation and a retry
loop, the other read-modify-write operations can be emulated. Congpakswap is also
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universal in the sense that a wait-free implementation of any concurrent data object is
possible with the operation, while the other operations listed above are not [16, 17].

Several recent high-performance microprocessors supportildeet (or loadandreserve)
and storeconditional operations [28, 61, 20]. The lofdked operation reads the value
of a shared variable to a register. A subsequent storglitional operation to the shared
variable changes its value only if no other processor has modified the variable since the
last loadlinked operation. The storeonditional operation returns true if it succeeds to
store a new value to the shared variable.

With a pair of loadlinked and storeconditional operations and a retry loop, the
other read-modify-write operations including comparelswap can be emulated [68].
These operations are also universal in principle [18]. In practice, there are some
differences between the pair of loéidked and storeconditional operations and the
compareandswap operation [42]. Because all comparedswap operations used in
this dissertation can be replaced with these operations, the results of this study are also
applicable to the processors supporting only Itialled and storeconditional.

1.2 Notations Used in Pseudo-Codes

In the following sections, several pseudo-codes of spin lock algorithms are presented. In
these pseudo-codes, the following notations are used.

In presenting the pseudo-codes, we use our original syntax which is a mixture of
Modula-2 programming language [88] and C programming language. We also use some
non-ASCII characters, such as+", “ =", and “#£”, for readability. Lines beginning with
“II" are comments, which we borrow from C++ programming language.

The keywordsharedndicates that only one instance of the variable is allocated and
shared in the system. Other variables are allocated for each processor. The binary
operatorandis assumed to be the conditional-and operation, i.e. the right hand side of the
andoperator is evaluated only if its left hand side is true. When priorities are represented
with numbers, we assume that a larger value represents a higher priority. Therefore, if
priol> prio2is satisfiedpriolrepresents a higher priority thamio2

Fetchandstorereads the shared variable addressed by the first parameter (which
must be a pointer), returns the contents of the variable as its value, and atomically writes
the second parameter to the variabl€ompareand swapis a Boolean function with
three parameters. It first reads the shared variable addressed by the first parameter and
compares its contents with the second parameter. If they are equal, the function writes the
third parameter to the variable atomically and returns true. Otherwise, it returns false.

The compareand swap instructions of many microprocessors store the contents of the memory to the
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1.3 Basic Spin Lock Algorithms

On the assumption that atomic read-modify-write operations on a single word (or aligned
contiguous words) of shared memory are supported with hardware, we can classify major
basic spin lock algorithms into following four categorfesn the following, abounded

spin lockis defined to be a spin lock algorithm with which the maximum time to acquire

a lock can be bounded. ObviouslyF&#O-ordered spin locks a class of bounded spin
locks.

Test&Set Locks

Each processor trying to acquire a lock repeatedly executes artdset operation

on a shared Boolean variable indicating the lock status. When it sets the variable,
it succeeds to acquire the lock. It releases the lock by clearing the variable. There
are many variations of this algorithm in how each processor retries to execute a
testand set operation [3].

Because the time until a processor can acquire a lock cannot be bounded with
test&set locks, they are not appropriate for real-time systems.

Ticket Locks

Two shared counters are used in ticket locks: a request counter and a release
counter. A processor trying to acquire a lock increments its request counter using
a fetchand add operation and obtains the old value of the counter, which indicates
its turn to acquire the lock. Then, it waits until the release counter is equal to the
value. To release the lock, the processor increments the release counter. There
are some variations in how each processor retries to read the release counter [3].
Obviously, processors can acquire a lock in a FIFO order with ticket locks.

FIFO-Ordered Queueing Locks

There are two subclasses of this category of algorithms: array-based FIFO-ordered
gueueing locks and list-based FIFO-ordered queueing locks.

In array-based FIFO-ordered queueing locks, a processor trying to acquire a lock is
linked at the tail of an array-based waiting queue for the lock. If the waiting queue

is empty, the processor can acquire the lock at once. Otherwise, the processor spins
on a memory location in the array-based queue on which only the processor spins.

third parameter in this case. This facility is not used in this study.
20n the same assumption, Mellor-Crummey and Scott have classified spin lock algorithms into a bit
different four categories [38].
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The processor trying to release the lock passes the lock to the next processor in the
waiting queue. If there are no other processors in the queue, the processor makes
the waiting queue empty.

An algorithm using the fetclandadd operation [3] and another using the
fetch.andstore operation [14] have been proposed. On cache-coherent multi-
processors, the number of shared-bus transactions is bounded independently of the
number of processors with these algorithms, and the contention problem on the
shared bus (or interconnection network) can be resolved.

In list-based FIFO-ordered queueing locks, a processor trying to acquire a lock is
linked at the tail of a list-based waiting queue. Two famous algorithms in this
class is the MCS lock algorithm [40, 38], which uses the fedol store operation

and the comparand swap operation, and the Craig’s FIFO-ordered queueing lock
algorithm [9, 8], which uses only the fet@nd store operation. Another advantage

of the Craig’s algorithm is that the required memory space is as smallas- P),
whereL is the number of locks ang is the number of processors, even when spin
locks are nested. With the MCS lock, this becoré4 + P x D), whereD is the
maximum number of locks that a processor must acquire at the same time.

Other Bounded Locks

With the spin lock algorithms proposed by Burns [5], the maximum time to acquire
a lock can be bounded, but the lock is not passed in a FIFO order. There is also a
trial to improve the efficiency of the algorithm [44].

Because the MCS lock algorithm, the representative FIFO-ordered queueing lock
algorithm, has some good features and is very simple, many extensions of the algorithm
are proposed [39]. We also propose some extensions in the following sections.

Pseudo-code for the MCS lock appears in Figure 18, and its behavior is illustrated in
Figure 19. The queue node of the lock holder (the processor that holds the lock) is at the
head of the waiting queue for the lock, and the queue nodes of the processors waiting for
the lock are linked to the queue in a FIFO ordeockpoints to the last node of the queue.
When a processor begins waiting for the lock, it enqueues its queue node at the tail of the
queue. Precisely, it initialize its queue node at first (Figure 19 (a)), and swindotie
to its queue node with a fetcdind store operation (Figure 19 (b)). After the processor
rewrites thenextfield of its predecessor’s queue node (Figure 19 (c)), it begins spinning
on the/ockedfiled of its queue node. When the lock holder releases the lock, it passes
the lock to the next processor in the queue by assigRiekpasetb the lockedfield of its
queue node (Figure 19 (d)).
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type Node =record
next: pointer to Node;
locked: (Released, Locked)
end;
type Lock = pointer to Node;

shared varL: Lock;
/I L is initialized to NULL.

var |: Node;
var pred: pointer to Node;

/I try to acquire the loch{..
l.next := NULL;
/I enqueue myself.
pred := fetchand store(&L, &l);
if pred# NULL then
/ when the queue is not empty.
I.locked := Locked,;
pred—next ;= &l;
// spin until the lock is passed.
repeat until I.locked = Released
end;
1
// critical section.
1
Il try to release the lock.
if I.next = NULL then
if compareandswap(&L, &I, NULL) then
[/l the queue becomes empty.

goto exit
end;
repeat until l.next# NULL
end;
|.next—locked := Released;
exit:

Figure 18: The MCS Lock

61



@)

Pi

=
Lock ( e—}— NULL
P Pk
—

([ —( ——}—» NULL
(Released) (_Locked ) (_Locked )
lock holder spinning spinning
P
“ Look [T NULL
° ° Py
—»{ e——+»NULL
(Released) (_Locked ) (_Locked )
lock holder

Lock
P,-ENP.
— - -

—— = NULL

kReIeased)

hd | hd |
k Locked) L Locked) L Locked)

lock holder

(d)

|
, ——{ +———NULL
(Released)  ( Locked ) [ Locked)
lock holder

Figure 19: Behavior of the MCS Lock

With the MCS lock, if the queue node of each processor (varidbie located
on its locally-accessible shared memory, the number of shared-bus (or interconnection)
transactions is bounded even on multiprocessors without a coherent cache. A simple proof
of its correctness is presented in [27] (The original proof in [38] is quite complicated).

1.4 Priority-Ordered Spin Locks

It is often the case with a multiprocessor real-time system that a spin lock is desirable to

pass the lock in a priority order. To meet this requirement, spriggity-ordered spin

lock algorithms, in which processors acquire a lock in the order of their priorities, have

been proposed.
Markatos has extended the MCS lock to realize a priority-ordered spin lock [36]. The

extended algorithm also uses both fetnid store and comparand swap operations.

3A strict definition of a priority-ordered spin lock is appeared in [36].
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Figure 20: Behavior of the Markatos’ Lock

With the Markatos’ algorithm, processors trying to acquire a lock are linked to the waiting
queue in a FIFO order. The processor trying to release the lock searches for the highest
priority processor in the waiting queue (Figure 20 (a)), moves it to the head of the queue
(Figure 20 (b)), and passes the lock to it (Figure 20 (c)). Therefore, the maximum
execution time of the lock release routine depends on the number of processors in the
system.

The original algorithm proposed by Markatos adopts a double-linked queue structure
for the waiting queue. We found that a single-linked queue structure is sufficient
to implement the algorithm. Pseudo-code for the single-linked queue version of the
Markatos’ algorithm is presented in Figure 21 and 22.

Though there is a non-local spinning (marked with #) in this algorithm, it is limited
to a very short period after another processor writes the pointer to its queue noda to
successful execution of the fetemd store operation marked wit))) and until it writes
non-NULL value to thenext field of its predecessor (marked witp), and its effect is
very limited.

Craig has also proposed priority-ordered versions of queueing spin locks that require
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type Node =record
next: pointer to Node;
locked: (Released, Locked);
prio: integer

end;

type Lock = pointer to Node;

shared varL: Lock;
/I L is initialized to VULL.

procedure moveto_top(lock: pointer to Lock,
entry, pred, oldtoppointer to Node);
I move entryto the top of the waiting queue ddck.
Il predis the predecessor efntry
Il oldtopis the top of the queue before the move.
var succ:pointer to Node;
begin
succ := entry-next;
if succ = NULLthen
pred—next := NULL,;
if compareandswap(lock, entry, predhen
entry—next := oldtop;
return
end,
# repeatsucc ;= entry-nextuntil succ# NULL
end,
pred—next := succ;
entry—next := oldtop
end,

Figure 21: The Markatos’ Algorithm (Definition Part)

only the fetchand store operation [9, 8]. Similarly to the Markatos’ algorithm, processors
trying to acquire a lock are linked to the waiting queue in a FIFO order. The processor
trying to release the lock finds the highest priority processor and passes the lock to it.

With the PR-lock algorithm on the other hand, processors trying to acquire a lock
are enqueued to the waiting queue in a priority order, and the processor trying to release
the lock passes the lock to the first processor in the waiting queue [26]. Therefore,
the maximum execution time of the lock acquisition routine depends on the number of
processors in the system. This algorithm has an advantage over the previous algorithms
that enqueueing operations, which are the most time-consuming part of the algorithm, can
be done in parallel.

We are also proposing a priority-ordered spin lock named the bubble lock [57], which
adopts another scheme for realizing priority-ordered spin locks.
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var |: Node;
var top, entry, predpointer to Node;
var hentry, hpredpointer to Node;

I/ try to acquire the loclL.
l.next := NULL;
/I enqueue myself.
@ pred = fetchand store(&L, &l);
if pred# NULL then
/[ when the queue is not empty.
|.locked := Locked;
l.prio := my_priority;
® pred—next ;= &l;
repeat until I.locked = Released
end
I
/[ critical section.
I
/I try to release the lock.
top ;= l.next;
if top = NULL then
if compareand swap(&L, &I, NULL) then
// the queue becomes empty.
goto exit
end;
repeattop := l.nextuntil top # NULL
end;
Il search for the higest priority processor.
hentry := top;
pred :=top;
entry := pred-next;
while entry# NULL do
if (entry—prio > hentry—prio) then
I whenentryhas a higher priority thatentry
hentry ;= entry;

hpred := pred
end;
pred := entry;
entry := pred-next

end
/I now, hentryis the higest priority processor.
if hentry#£ topthen
moveto_top(&L, hentry, hpred, top)
end
hentry—locked := Released,;
exit:

Figure 22: The Markatos’ Algorithm (Main Part)
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2 Bounded Spin Lock with Preemption

In this section, we propose two algorithms of queuespg lock with preemptioand
demonstrate their effectiveness through performance measurements. The necessity of
spin lock with preemption is pointed out in Section 11.4.2 and is described in more detail

in this section.

In Section 2.1, the difficulty to satisfy two important requirements on scalable real-
time systems, predictable inter-processor synchronization and constant interrupt response,
at the same time. Section 2.2 describes that the adoption of a preemption scheme to spin
locks can solve the difficulty. Two queueing spin lock algorithms supporting different
preemption schemes are presented in Section 2.3 and 2.4, and their effectiveness is
evaluated through performance measurement in Section 2.5. Finally, in Section 2.6, we
point out the necessity to support two preemption scheme at the same time, and describe
a combined algorithm.

2.1 Spin Locks and Interrupt Latency

When a spin lock is used for a real-time system, the maximum times to acquire and release
a lock should be bounded. In order to bound the time until a processor acquires a lock,
the maximum duration that each processor holds the lock must be bounded, in addition
to bound the number of contending processors that the processor waits for, which can be
satisfied with bounded spin lock algorithms.

In order to bound the maximum duration that a processor holds the lock, the service
time of interrupt requests should be considered. In function-distributed multiprocessor
systems, interrupt services for external devices are requested for each processor. When
multiple devices are connected to a processor, interrupt requests from them are usually
asynchronous and the maximum time to service all of them becomes very long or even
unbounded. Consequently, in order to give a practical upper bound on the duration that a
processor holds a lock, interrupt services should be inhibited for that duration.

On the other hand, fast response to external events is also an important feature for
real-time systems. Because external events are notified to each processor as interrupt
requests as mentioned above, interrupt mask times on each processor should be minimized
to realize a system with fast response. Particularly, when the scalability of the system is
an important issue, the maximum interrupt mask time should be given independently of
the number of processors in the system.

Here a problem arises in deciding whether interrupts should be disabled first or an
inter-processor lock should be acquired first. Figure 23 presents a method in which
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acquirelock();
disableinterrupts
I

I/ critical section.
I
enableinterrupts
releaselock();

Figure 23: Acquiring a Lock Precedes Disabling Interrupts

disableinterrupts
acquirelock();

I

/[ critical section.
I

releaselock();
enableinterrupts

Figure 24: Disabling Interrupts Precedes Acquiring a Lock

acquiring a lock precedes disabling interrupts. With this method, interrupts are serviced
while the processor holds the lock, and the condition that interrupt services should be
inhibited while a processor holds a lock is not satisfied. Figure 24 presents another method
where acquiring a lock follows disabling interrupts. With this method, the interrupt mask
time includes the time to acquire a lock and its upper bound heavily depends on the
number of processors.

2.2 Spin Locks with Preemption

In order to solve the problem described above, interrupt services must not be inhibited
while a processor waits for an inter-processor lock and must be kept inhibited once the
processor acquires the lock. One of the methods to realize this principle is the following.
While a processor is waiting for a lock, it repeatedly probes interrupt requests. When
interrupt requests are detected, it suspends waiting for the lock and services the requests.

The test&set locks can be extended easily with this method as presented in Figure 25
[58]. The algorithm is not suitable for real-time systems, however, because the time
until a processor acquires a lock cannot be bounded with it. The ticket locks and the
FIFO-ordered queueing locks, on the other hand, cannot be extended similarly.

In the following sections, we present two spin lock algorithms with which a processor
can service interrupts with short latency while satisfying the principle described above.
The algorithms are based on the MCS lock described in Section 1.3.
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type Lock = (Released, Locked);

shared varL: Lock;
/I L is initialized to Released

disableinterrupts
while testand set(L) = Lockeddo
if interrupt.requestedhen
enableinterrupts
Il interrupt service.
disableinterrupts
else
delay
end
end;
I
/[ critical section.
I
L := Released;
enableinterrupts

Figure 25: The Test&Set Lock with Preemption

2.3 Queueing Lock with Simple Preemption Scheme

In all the spin lock algorithms that can give an upper bound on the time until a processor
acquires a lock, a processor modifies some shared variable and reserves its turn to acquire
the lock when it begins waiting for the lock. If the processor simply branches to an
interrupt service routine while waiting for the lock, it cannot begin the execution of the
critical section immediately when the lock is passed to the processor, and makes the
contending processors wait wastefully until the interrupt service is finished. Therefore,
when a processor begins to service interrupts while waiting for a lock, it must inform
others that it is servicing interrupt requests by modifying some shared variable. The
processor trying to release the lock checks if the succeeding processor is servicing
interrupts. If the succeeding one is found to be servicing interrupts, its turn to acquire the
lock is canceled or deferred, and the lock is passed to the next processor in line.

Pseudo-code of our first algorithm, which is an extension of the MCS lock to enable
interrupt services while waiting for a lock, appears in Figure 26 and 27. In this algorithm,
a processor informs others that it is servicing interrupts by assigning the Kedeenpted
to the /ockedfield of its queue node (i.€./ocked.

If the processor, that is trying to release a lock finds that the succeeding processor
P, is servicing interruptsP, dequeues’; from the waiting queue and tries to pass the
lock to the successor d?;. During this process, a transient status occurs in wiich
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type Node =record

next: pointer to Node;

locked: (Released, Locked, Preempted, Canceled)
end,
type Lock = pointer to Node;

shared varL: Lock;
/I L is initialized to NULL.

var |: Node;
var pred, succ, snpointer to Node;

/I try to acquire the loch{..
retry:
l.next := NULL;
disableinterrupts
/I enqueue myself.
pred := fetchand store(&L, &l);
if pred# NULL then
/ when the queue is not empty.
I.locked := Locked;
pred—next ;= &l;
while (l.locked# Releasedjio
if interrupt.requestedand
compareand swap(&(l.locked), Locked, Preemptetthen
enableinterrupts
Il interrupt service.
disableinterrupts
if ~compareandswap(&(l.locked), Preempted, Locketthen
enableinterrupts
repeat while I.locked# Released;
goto retry
end
end
end
end;
1l
/[ critical section.
1l

Figure 26: The Queueing Lock with Simple Preemption Scheme (Part 1)

69



I
/[ critical section.
I
I try to release the lock.
succ = l.next;
if succ = NULLthen
if compareandswap(&L, &I, NULL) then
// the queue becomes empty.
goto exit
end;
repeatsucc := l.nexuntil succ# NULL
end;
Il try to pass the lock to the successor.
while —compareand.swap(&(suce-locked), Locked, Releasedp
/I when the successor is servicing interrupts.
if compareandswap(&(suce~locked), Preempted, Canceldgtign
/I dequeue the successor from the waiting queue.
sh := suce-~next;
if sn = NULL then
if compareandswap(&L, succ, NULL)then
/I the queue becomes empty.
succ—locked ;= Released:;

goto exit
end;
repeatsn := suce-nextuntil sn# NULL
end;
succ—locked := Released;
succ :=sn
end
end;
exit:

enableinterrupts

Figure 27: The Queueing Lock with Simple Preemption Scheme (Part 2)

gueue node has been dequeued but the node area must not be reused because the value of
its nextfield is necessaryF, informs P; of this transient status by assigning the value
Canceledo the lockedfield of P;’s queue node. When the node becomes reusable,

informs P, of it by changing thelockedfield to Released When P, finds that all the

waiting processors are servicing interrupts makes the waiting queue empty.

When the processor that has branched to an interrupt service routine while waiting
for a lock finishes the interrupt service, it reads fbhekedfield of its queue node and
checks whether it has been dequeued (during the interrupt service) or not. If it has been
dequeued, it re-executes the lock acquisition routine from the beginning after waiting
until its queue node area becomes reusable. Otherwise, it recoviaskigsfield to the
value Lockedand resumes waiting for the lock.
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With this algorithm, a processor waiting for a lock can acquire the lock in the order
of the waiting queue if no interrupt request is raised on the processor. In releasing a lock,
the algorithm also gives an upper bound on the number of search loops for identifying
to which processor the releasing processor should pass the lock, unless interrupt services
start and finish repeatedly on the waiting proces$oks. interrupt services are inhibited
while a processor holds a lock, no interrupt service time is included in the lock holding
time. Consequently, both the time until a processor acquires a lock and the time until it
releases the lock can be bounded with this algorithm under the above conditions.

Because a processor repeatedly probes interrupt requests while waiting for a lock, the
upper bound of the interrupt mask time in the lock acquisition routine can be determined
independently of the number of processors. On the other hand, the interrupt mask time
in the lock release routine depends on the number of processors in strict, because the
number of search loops for identifying the processor to which to pass the lock depends
on the number of processors. However, the problem is not severe in practice, because the
processing time of one loop is very short.

The proofs of the important features of this algorithm, mutual exclusion and deadlock
freedom when a certain condition is laid on interrupt occurrence, are presented in
Appendix B.

Wisniewski et al. have proposed a similar algorithm with ours from a different
motivation [89]° The algorithm by Craig can also support the same preemption scheme.

With this algorithm, when a processor services interrupts while waiting for a lock and
is dequeued from the waiting queue, the processor must re-execute the lock acquisition
routine from thebeginning Because the processor enqueues itself at the end of the
waiting queue, the maximum number of critical sections executed by other processors
that the processor must wait for is increased. When the schedulability of the system is
analyzed, this re-execution overhead should be added to the interrupt service time and
should be included in the interrupt service overhead described in Section 11.3.2.

4A processor can be visited twice in the search loops in the following case. Immediately after the
processor is dequeued from the waiting queue, it finishes the interrupt service and links itself to the end
of the queue. If this case repeatedly occurs until the processor to which to pass the lock is identified, the
number of the loops cannot be not bounded. This case rarely occurs. But, when this problem cannot be
ignored (when the number of processors is large and when interrupts are requested frequently, in general),
the algorithm should be modified so that the assignmenRekasedo the lockedfield of dequeued
processors is delayed until the processor to which to pass the lock is determined.

STheir algorithm has a problem that the transient status in which a queue node is not reusable is not
considered, thus the algorithm possibly falls into a deadlock. We have pointed out the problem to them,
and they have acknowledged it [31].
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2.4 Queueing Lock with Improved Preemption Scheme

With our first algorithm, the interrupt service overhead depends on the number of
contending processors, because a processor possibly has to re-execute the lock acquisition
routine from the beginning after it services an interrupt request. This is problematic when
the algorithm is used for the implementation of a scalable real-time kernel as described in
Section 11.4.2.

In order to solve this problem, we propose an improved preemption scheme which
avoids dequeueing a processor from the waiting queue while servicing interrupts. Specif-
ically, the processoF, trying to release a lock searches for the first processdhat is
not servicing interrupts in the waiting queue, mov&do the top of the queue (with the
same method used in the Markatos’ priority-ordered queueing spin lock), and passes the
lock to P,. With this algorithm, when a processor finishes interrupt services, it resumes
waiting for the lock in its original position. Therefore, the interrupt service overhead,
which must be added to the interrupt service time in schedulability analysis, is minimized.

When all processors in the waiting queue are servicing interrupts, the difficulty occurs
that there is no processor to which to pass the lock and that the waiting queue should not
be made empty. To handle this situation, a new flag variable called the global lock flag
is introduced. The global lock flag indicates that the lock is released but that the waiting
gueue is not empty. If the processor trying to release the lock finds that all processors in
the queue are servicing interrupts, it sets the global lock flag. A processor returning from
interrupt services tries to acquire the global lock with the same method with test&set
locks. If it succeeds in acquiring the global lock, it moves itself to the top of the waiting
gueue. Because the processor needs to know the top processor in the queue to move
itself to the top, the processor releasing the global lock must pass the information in some
shared variable. It is also necessary for a processor to check the global lock flag once,
after it links itself at the end of the queue, because it is possible that all the processors in
the queue be servicing interrupts and the global lock be set.

Pseudo-code for the improved algorithm appears in Figure 28, 29, and 30. In this
pseudo-code, a double-linked queue structure is adopted because a processor needs to
know is predecessor when it succeeds to acquire the global lock.g/bokfield of L
serves both as the global lock flag and as the variable to pass the top processor of the
waiting queue. Exponential backoff scheme is adopted to get the global lock in this code
to reduce the number of shared-bus transactions. Two constant parameatelr$ should
be tuned for each target hardware and application.

With this preemption scheme, a transient status also occurs during the lock release
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type Node =record
next: pointer to Node;
prev: pointer to Node;
locked: (Released, Locked, Preempted, Dequeueing)
end;
type Lock =record
last: pointer to Node;
glock: pointer to Node
end;

shared varL: Lock;
/I L.Jlastand L.glockare initialized toVULL .

procedure moveto_top(lock: pointer to Lock,
entry, pred, oldtoppointer to Node);
/I moveentryto the top of the waiting queue dick.
I predis the predecessor ehtry
Il oldtopis the top of the queue before the move.
var succ: pointer to Node;
begin
succ = entry-next;
if succ = NULLthen
Il whensuccis at the tail of the waiting queue.
pred—next := NULL;
if compareand swap(&(lock—last), entry, preddhen
entry—next ;= oldtop;
return
end,
repeatsucc := entry-nextuntil succ# NULL
end;
pred—next ;= succ;
succ—prev = pred;
entry—next := oldtop
end;

Figure 28: The Queueing Lock with Improved Preemption Scheme (Part 1)
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var |: Node;
var pred, succ, toppointer to Node;
var interval, i: integer;

/I try to acquire the lock..
l.next := NULL;
disableinterrupts
/I enqueue myself.
pred := fetchandstore(&(L.last), &l);
if pred = NULLthen
gotoacquired

end;

/I when the queue is not empty.

l.prev .= pred;

I.locked := Locked;

pred—next := &l;

i=1; /I check the global lock once.
interval :=oc; /I never expires.

while (l.locked# Releasedyio
if interrupt.requestedand
compareandswap(&(l.locked), Locked, Preempteitilen
enableinterrupts
Il interrupt service.
disableinterrupts
I.locked := Locked;
i=1;
interval :=«
end,
i=i-1;
if i=0then
Il check the global lock and try to acquire it if it is set.
top := L.glock;
if top # NULL and compareandswap(&(L.glock), top, NULL)then
I/l when succeed to acquire the global lock.
if top# &I then
moveto_top(&L, &l, 1.prev, top);
end
I.locked := Released
gotoacquired
end;
i ;= interval;
interval := intervalx
end
end;
acquired:
1
/[ critical section.
1

Figure 29: The Queueing Lock with Improved Preemption Scheme (Part 2)

74



I
/[ critical section.
I
/I try to release the lock.
succ = l.next;
if succ = NULLthen
if compareandswap(&(L.last), &I, NULL)then
/l the queue becomes empty.
goto exit
end;
repeatsucc := l.nexuntil succ# NULL
end;
Il try to pass the lock to the successor.
if compareandswap(&(suce~locked), Locked, Releasett)en
goto exit
end;
top := succ;
repeat
pred := succ;
succ := pred-next;
if succ = NULLthen
I set the global lock.
L.glock := top;
/I check if predis really the last processor.
if L.last = precthen
goto exit
end,
/I try to withdraw the global lock.
if =compareandswap(&(L.glock), top, NULL)then
goto exit
end;
repeatsucc := pred~nextuntil succ# NULL
end;
until compareandswap(&(suce~locked), Locked, Dequeueing);
/I now, the lock is passed tcc
moveto_top(&L, succ, pred, top);
succ—locked := Released:;
exit:
enableinterrupts

Figure 30: The Queueing Lock with Improved Preemption Scheme (Part 3)
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for i := 1to NoLoopdo
(@ acquirelock and disableinterrupts
1
/I critical section.
1
releaselock;
(@ enableinterrupts
randomdelay
end;

Figure 31: Measurement Program Skeleton

process. The time window is after the procesBgtrying to release determines to which
processor to pass the lock (we denote the processét)asand beforeP, passes the
lock by assigningReleasedb the /ockedfield of P,’s queue node. When an interrupt is
requested orP, during this time window, the interrupt request should not be serviced.
Otherwise, the lock may be passedRowhile it is servicing the interrupt. In this time
window, P,’s queue node should not be reused either. In our algoritiyrmforms P, of

this time window by assignin@equeueingdo the lockedfield of Ps.

2.5 Performance Evaluation

The effectiveness of the two spin lock algorithms presented in the previous sections (called
QL/P1 and QL/P2, respectively, below) are examined through performance measurement.
The performance of the algorithms is compared with the MCS lock without inhibiting
interrupts (QL/ei), the method presented in Figure 24 with the MCS lock (QL/di), and the
test&set lock with preemption presented in Figure 25 (T&S/P). In T&S/P, the intervals
between successive temtdset operationsdelayin Figure 25) are made constant (the
constant backoff scheme), because it is usually better than the exponential backoff scheme
in real-time systems.

Measurement Method

Each processor executes the code presented in Figure 31 while periodic interrupt requests
are raised on the processor. The execution time of a critical region (the region between
(@D and (2) in Figure 31) is measured for each execution, and its distributions when the
processor services no interrupt request during the region and when it services an interrupt
are collected. The interrupt latency is also measured for each interrupt service and its
distribution is obtained.

Inside the critical section, a processor accesses the shared bus some number of times
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for making the effect of shared-bus contention explicit and waits for a while using an
empty loop. Without spin locks, the execution time of the critical region is abouts40
including some overhead for measuring the execution time of the region. In order to
change timing conditions, each processor waits for a random time before it re-enters the
critical region (andomdelayin Figure 31). The average time of the random delay is
about 40us including some overhead for recording the execution time of the critical
region.

Empty loops are also included in the interrupt handler in addition to the routine for
the measurement of the interrupt latency time. The total execution time of the interrupt
handler is about 8@s. The period of interrupt requests is about 5 ms. The exact length
of the period is varied in 0-2% for each processor in order that the timing of interrupt
requests for each processor should not be synchronized. Other interrupt requests are
masked during the measurement.

Evaluation Results

Figure 32 presents the 99.99%-reliable execution times of the critical region (when no
interrupt is serviced on the processor during the region) as the number of processors is
increased from one to eight. With QL/P1 and QL/P2, the execution time of the critical
region increases linearly with the number of processors, and the algorithms are found
to be scalable. QL/ei exhibits poorer performance because processors service interrupt
requests during the critical region. In Figure 33, the relation between the execution time
of the interrupt handler and that of the critical region is presented, when four processors
are executing spin locks. As the execution time of the interrupt handler becomes longer,
the performance of QL/ei becomes even worse (Figure 33). With T&S/P, the execution
time rapidly increases when the number of processor becomes large, and the algorithm
does not scale well.

In Figure 34, the interrupt latency time is almost independent of the number of
processors with QL/P1 and QL/P2. With QL/di on the contrary, the interrupt latency
becomes long as the number of processors increases. With T&S/P, the interrupt latency
slowly increases because the execution time of the code inside the critical section becomes
longer due to the effect of shared-bus contention.

From these observations, it is demonstrated that QL/P1 and QL/P2 can give a practical
upper bound on the time to acquire and release an interprocessor lock while achieving fast
response to interrupt requests. The other algorithms cannot satisfy these two requirements
at the same time.
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Figure 32: 99.99%-Reliable Execution Times of Critical Region
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Figure 34: 99.99%-Reliable Interrupt Latency Times

In order to examine the difference of QL/P2 and QL/P1, we present the the 99.99%-
reliable execution times of the critical region when an interrupt request is serviced while
waiting for the lock in Figure 35. This figure demonstrates that the re-execution overhead
after servicing an interrupt request is smaller with QL/P2 than QL/P1, especially when
the number of processors is large.

Next, in order to evaluate the overhead of the two algorithms, we compare the average
execution times of the critical region (when no interrupt is serviced) with QL/P1, QL/P2,
and T&S/P. In Figure 36, its average execution time with QL/P1 or QL/P2 is about 10%
longer than that with T&S/P, when the number of processors is small. When the number
of processors becomes large, however, T&S/P exhibits poorer performance. This is due
to the effect of shared-bus contention.

Finally, in order to check the adequacy of our evaluation metric, the 99.99%-reliable
execution times of the critical region are compared with 99.9%- and 99.999%-reliable
execution times and the worst execution times appeared during our measurement. As the
result, though the absolute length of the execution times are different, the same evaluation
result with above can be derived from each measurement data.

2.6 Combination of the Two Preemption Schemes

In Section 2.4, a problem of the first algorithm that the interrupt service overhead depends
on the number of processors is pointed out, assuming that the processor continues the trial
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Figure 37: State Transition of the Combined Algorithm

to acquire the lock after interrupt services are finished. When the algorithms are applied
to real-time kernels, however, the interrupt service routine can request the preempted
task to terminate. If the preempted task is terminated, the trial to acquire the lock is not
continued.

In our improved preemption scheme, even when a processor ceases waiting for the
lock, its queue node remains in the waiting queue as a garbage. The improved scheme
suffers a larger overhead than the simple scheme, because the processor trying to release
the lock must search the garbage queue node every time. Consequently, when the
preempted task is terminated, its queue node should be removed from the waiting queue.
In other words, the first preemption scheme should be adopted in this case.

For its realization, a combination of the two preemption scheme is necessary. The
state of a queue node is necessary to be extended to distinguish temporary preemption
and long-term preemption, and the processor trying to release the lock should handle
them differently. The state transition of the combined algorithm is presented in Figure 37.

In this figure, “P2” represents temporary preemption (i.e. preemption in the improved
scheme) and “P1” represents long-term preemption (i.e. preemption in the simple scheme).
“C” designates the transient status introduced in the algorithm with the simple preemption
scheme in which a queue node is not reusable, and “D” designates another transient status
that is necessary in the algorithm with the improved scheme.

81



3 Spin Lock with Local Precedence

In this section, we present an efficient algorithm of spin lock with local precedence based
on the MCS lock algorithm described in Section 1.3. The necessity of spin lock with
local precedence is pointed out in Section 11.4.1.

It is obvious that a spin lock with local precedence can be realized with a priority-
ordered spin lock algorithm. Specifically, a processor acquires its local lock with a higher
priority and other locks with a lower one. Only two priority levels are necessary to be
used. As described in Section 1.4, the maximum execution time of the lock acquisition
routine or release routine depends on the number of contending processors with every
priority-ordered spin lock algorithm. As the result, the overhead of a priority-ordered
spin lock is generally quite large.

By making use of the fact that a spin lock with local precedence is much simpler than
a priority-ordered spin lock, we can devise a more efficient algorithm of spin lock with
local precedence. A spin lock with local precedence is much simpler in the following two
points: (1) there are only two priority levels required (as described above), and (2) only
one processor (i.e. its host processor) has the higher priority for each lock. Therefore, we
can extend the MCS lock algorithm to support local precedence by preparing a variable
indicating the queue node of the prioritized processor. When the prioritized processor
enqueues itself to the waiting queue, it updates the variable to point to itself. The
processorP, trying to release the lock can find the prioritized procesBpusing the
variable without searching in the waiting queue. Th&npmovesP, to the top of the
gueue (with the same method adopted in the Markatos’ priority-ordered queueing spin
lock), and passes the lock . A double-linked queue structure is necessary bec&yse
needs to know the predecessorrgfwithout searching.

Pseudo-code for our algorithm based on the MCS lock is presented in Fig. 38 and
39. In this pseudo-code, thwecfield of the Lock record is the variable indicating the
prioritized processor.

4  Scalability of Nested Spin Locks

For real-time systems, two kind of spin locks are used depending on the timing
requirements on them: (1) bounded spin locks, in which the maximum times that
processors acquire and release a lock are bounded, and (2) priority-ordered spin locks, in
which processors acquire a lock in the order of their priorities [9].

In this section, the scalability issue of bounded spin locks is discussed. Because worst-
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type Node =record
next: pointer to Node;
prev: pointer to Node;
locked: (Released, Locked)
end;
type Lock =record
last: pointer to Node;
prec: pointer to Node
end;

shared varL: Lock;
/I L.lastand L.precare initialized toNULL.

procedure moveto_top(lock: pointer to Lock,
entry, pred, oldtoppointer to Node);
/I moveentryto the top of the waiting queue ddck.
Il predis the predecessor ehiry
/I oldtopis the top of the queue before the move.
var succ: pointer to Node;
begin
succ := entry-next;
if succ = NULLthen
pred—next := NULL,;
if compareand swap(&(lock—last), entry, preddhen
entry—next := oldtop;
return
end,
repeatsucc ;= entry-nextuntil succ# NULL
end,
pred—next := succ;
succ—prev ;= pred,;
entry—next := oldtop
end,

Figure 38: The Spin Lock with Local Precedence (Part 1)

case behavior has the primary importance in real-time systems, we focus on scalability
of the maximum execution times of critical sections guarded by spin locks, under the
assumption that the maximum processing time within a critical section is bounded.

In general, shared resources that must be accessed exclusively by a processor are
divided into some lock units in order to improve concurrency. When a processor accesses
some shared resources included in different lock units, it must acquire multiple locks one
by one. If FIFO spin locks are used for this kind mésted spin lockshe maximum
execution times of a whole critical section becomé:™), wheren is the number of
contending processors andis themaximum nesting levelf locks. The strict definition

of the maximum nesting level is presented in Section 4.1.
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var |: Node;
var top, pred:pointer to Node;

I/ try to acquire the lock..
l.next := NULL;
/l enqueue myself.
pred := fetchand store(&(L.last), &l);
if pred# NULL then
/I when the queue is not empty.
l.prev := pred;
I.locked := Locked;
pred—next ;= &l;
if L_is_local_to_.methen
/I direct the precedence indicator to me.
L.prec := &l
end;
repeat until I.locked = Released,;
if L_is_local_to_.methen
/I clear the precedence indicator.
L.prec := NULL
end
end,
1
/[ critical section.
1
I/ try to release the lock.
top := l.next;
if top = NULL then
if compareand swap(&L, &I, NULL) then
I/ the queue becomes empty.
goto exit
end,
repeattop := l.nextuntil top # NULL
end,
/I check the precedence indicator.
if L_is_notlocal_to_meand L.prec# NULL then
/I the lock is passed tb.prec
if L.prec# topthen
moveto_top(&L, L.prec, L.pree~preyv, top)
end;
L.prec—locked := Released
else
[/l the lock is passed tp.
top—locked := Released
end;
exit:

Figure 39: The Spin Lock with Local Precedence (Part 2)
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acquirelock(Ls); acquirelock(L,);

acquirelock(L,); acquirelock(L,);
I/ critical section. I/ critical section.
releasdock(L,); releasdock(Ls);
releasdock(Ls); releasdock(L,);
routine (a) routine (b)

Figure 40: Example of Nested Locks

It is obvious that this simple method is not acceptable from the viewpoint of real-time
scalability. In this section, we propose a method in which this order can be reduced to
O(n - €™), which is acceptable when can be kept small.

In Section 4.1, assumptions and notations adopted in this section are described. An
O(n) algorithm when the maximum nesting level is two is proposed in Section 4.2
and its effectiveness is evaluated through performance measurements in Section 4.3. In
Section 4.4, a®(n - e™) algorithm for general case is discussed.

4.1 Assumptions and Notations

A system consists of processors supporting atomic read-modify-write operations. Each
processor repeatedly executes critical sections guarded by one or more locks. The
maximum execution time of a critical section except for the waiting time for the locks is
assumed to be bounded.

In order to avoid deadlocks, a partial orderis defined on the set of locks in the
system. A processor must acquire locks following the order. We assume that if and only
if processors possibly acquire a lofk while holding a lockZ;, an orderL; > L; exists.

The nesting level,; is defined for each lock; as follows. IfL; is a minimal element
(i.e. there is nd_, such thatZ; > L;), ); is defined to be one. Otherwisg; is defined
to bemax{\; | L, > L;} + 1. We callmaz{);} as the maximum nesting level of locks
in the system. Consider the example that processors in the system execute one of the
two routines presented in Figure 40. In this example= 1, A\, = 2, A3 = 3, and the
maximum nesting level in the system is three.

A lock whose nesting level isis denoted ag.; below. When there are some locks
with the same nesting level, they are represented as;, L, - - -.

We also assume that the two-phase protocol is adopted on each processor. In other
words, once a processor releases a lock, it cannot acquire any lock until it releases all the
locks it is holding. This assumption is adopted in order to simplify the evaluation of the
maximum number of the critical sections that a processor must wait for. The estimation
of its order is also valid without the assumption.
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acquirelock(L,);

acquirelock(L); acquirelock(L,); acquirelock(L);

/[ critical section. /[ critical section. /[ critical section.

releaselock(L,); releaselock(L,); releaselock(L,);
routine (a) routine (b) releaselock(L>);

routine (c)
Figure 41: Nesting in Two Levels

acquirelock(L%);

acquirelock(L%); acquirelock(L,);

/[ critical section. /[ critical section.

releasdock(L?); releasdock(L,);
routine (d) releaselock(L?);

routine (e)

Figure 42: Nesting in Two Levels (cont.)

4.2 Nesting in Two Levels

In this section, we focus on nested spin lock algorithms when the maximum nesting level
is two. We regard them as important because the implementation method of a real-time
kernel described in Section 11.2.4 can be realized with the maximum nesting level being
two.

Problems of Simple Methods

As mentioned before, if FIFO spin locks are simply applied to the system in which the
maximum nesting level of locks is two, the maximum execution times of a whole critical
section becom®(n?), wheren is the number of contending processors.

As an example, consider the case that each processor in the system repeatedly executes
one of the three routines presented in Figure 41 in random order. Below, we illustrate the
case in which the number of the critical sections that a proceasmust wait for until it
finishes an execution of routine (c) is maximized. Assume that whenes to acquire
L, in (c), another processdr, has just acquired the lock and all the other processors
Ps, ---, P, are waiting for the lock in routine (c) in this order (Figure 43 (a)). WH#&n
releases the lock?; succeeds to acquire the lock. Just befBsdries to acquirel,, P,
can acquire the lock in routine (a). In this cage must wait until P, finishes the critical
section and releasds;, and P, must wait for two critical sections executed By and
P; (Figure 43 (b)). Similarly, wherP;_, released.,, P; succeeds to acquire the lock.
Before P; tries to acquirelL,, P», ---, P,_; can wait for the lock in (a).P; must wait
for the executions of — 2 critical sections until it succeeds to acquirg and P, must
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wait for ¢ — 1 critical sections untilP; finishes routine (c) (Figure 43 (c)). Finally, after

Py succeeds to acquirk,, P, must wait forn — 1 critical sections before it acquirds
(Figure 43 (d)). As aresult, the maximum number of the critical sections that a processor
Py must wait foris 1+ 2+ -+ (n — 1) + (n — 1) = n(n + 1)/2 — 1, thusO(n?).
Because the maximum processing time within a critical section has an upper bound, the
order of the maximum execution times of routine (ci&»?). That of routine (b) is also
O(n?), while that of routine (a) i€)(n).

A simple method to improve this order is that precedence is given to the processor
holding an outer lock. In case of Figure 41, the processor that is waiting fior routine
(c) can acquire the lock with higher priority than other processors. Because the maximum
number of the critical sections that a processor must wait for while trying to acuire
(c) is reduced to one with this method, the maximum execution times of both (b) and (c)
are improved t@(n). The maximum execution times of routine (a) remain ta’lie ),
because a processor never waitsfigin (c) while another processor holds in (c), and
because the lock is passed to a processor executing (a) when the processor in (c) releases
the lock.

However, this method has a problem when each processor can also execute the two
routines presented in Figure 42. In this case, a processor executing routine (a) can starve
while waiting for L;. Specifically, a processor trying to acquite in (a) can be passed
by a processor executing (c) and a processor executing (e) by turns, and the maximum
time until it succeeds to acquire, cannot be determined.

Another method is that a processor trying to acquire nested locks reserves its turn to
acquire the inner lock by enqueueing itself to the wait queue of the lock, when it begins
waiting for the outermost lock. This method, however, cannot be applied when which
inner lock to be acquired is determined after accessing the shared resource guarded by the
outer lock, which is the case with the implementation of a real-time kernel described in
Section 7.2.

Proposed Method

To solve the problem described above, we propose the following algorithm, which can
make the maximum execution times of each routifie ).

When a processor begins waiting for the outermost lock, it obtains a time stamp
by reading a real-time clock. Instead of using FIFO spin locks, priority-ordered spin
locks are used with the time stamps as the priorities (an earlier time stamp has a higher
priority)..  With this method, the processor that begins waiting for the outermost lock

5The fact that a FIFO-ordered lock can be realized with a priority-ordered lock using time stamps as
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earlier can acquire each lock with higher precedence. In other words, the FIFO policy is
applied to the whole critical section.

This method can reduce the order of the maximum execution times of each routine
to O(n) with the following reason. At first, the maximum number of the higher priority
critical sections (the critical sections executed by the processors with higher priorities
than P;) that a processaP; must wait for isn — 1. This is because only the processors
obtaining time stamps beforrd can acquire locks with precedence o¥&r and because
each processor can execute only one critical section with a time st@&nmpust also wait
for some lower priority critical sections. When a processor tries to acquire an inner lock,
another processor with a lower priority possibly holds the lock. This is a kind of priority
inversion and occurs at most once whenever a processor begins waiting for an inner lock.
Note that this priority inversion does not occur in acquiring an outer lock.

When a processap, with a higher priority thanP; acquires the outer lock on which
P, is waiting, and whenP; tries to acquire an inner lock?, must possibly wait for a
critical section executed by a lower priority proces8edue to priority inversion. In this
case, the critical section executed Byshould be counted in the number of the critical
sections thaf’;, must wait for. As a result, an upper bound on the number of the critical
sections thaf’; must wait for is Zn — 1) + 1 = 2n — 1, thus the order of the maximum
execution times of routine (c) i9(n). Those of the other routines are a{3¢n).

More precisely, the number of the critical sections thatmust wait for in routine
(c) in Figure 41 becomes maximum in the following case. Assume that Whéies to
acquireL, in (c), another processat, holds the lock and all the other processsss: - -,

P, are waiting for the lock in routine (c) in this order. Whéh releases the locki’s
succeeds to acquire the lock. Just befBsdries to acquirel.,, P, can acquire the lock
in routine (a@). In this caseé?’; must wait until P, released.,, and P, must wait for two
critical sections. Similarly, whe®; succeeds to acquirk, and tries to acquiré.;, one

of P,, ---, P;,_1 possibly holdsl;, and P, must wait for two critical sections. Finally,
after P; succeeds to acquirk,, it possibly needs to wait for a critical section before it
acquiresl;. As a result, the maximum number of the critical sections fhanust wait
forisl+2+---4+2+1=2n— 2. The result of this exact estimation is smaller than
the previous estimation, because the fact fhadoes not suffer any priority inversions is
counted in.

In implementing this method, following optimizations are possible.

1. In acquiring an outer lock (a lock whose nesting level is two), a FIFO spin lock
algorithm can be used instead of a priority-ordered one.

priorities is pointed out by Craig [9].
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2. A sequence number that a processor begins waiting for the outermost lock, which
can be implemented with fetcddindincrement operation, can be used as the time
stamp instead of an absolute time read from a real-time clock.

4.3 Performance Evaluation

In this section, the effectiveness of the algorithm proposed in the previous section (called
TF, in this section) is examined through performance evaluation. Its performance is
compared with the method that FIFO spin locks are simply used for all locks (called SF)
and the method that precedence is given to the processor holding an outer lock (called PI).

Evaluation Method

We have adopted the MCS lock algorithm [38] for the FIFO spin locks and the single-
linked queue version of the Markatos’ algorithm presented in Figure 21 and 22 for
priority-ordered spin locks. The FIFO spin lock with precedence, which is necessary
to implement PI, is realized using the single-linked queue version of the Markatos’
algorithm. In implementing TF, we have used a FIFO spin lock algorithm for the outer
locks and a priority-ordered one for the inner locks. We have also used a sequence number
that a processor begins waiting for the outermost lock instead of a real-time clock.

Evaluation Results

At first, processors in the system repeatedly execute one of the three routines presented in
Figure 41 in random order. The probability that a processor executes routine (a) is made
four times larger that each of other routines. A processor accesses the shared bus several
number of times and waits for a while using empty loops inside the critical section. In
case of routine (c), shared bus accesses and an empty loop are also inserted between
two acquirelock operations. Without spin locks (and the routine for obtaining the
sequence number in case of TF), the execution time of each critical section is abaut 30
including the overhead for measuring execution times. As an example, pseudo-code of
the measurement routines with TF are presented in Figure 44.

Figure 45 presents the 99.99%-reliable execution times of routine (c). When the
number of processors is large, the execution times of routine (c) is quite slower with
the simplest method (SF) than our proposed method (TF). The execution times with TF
increase a little more thaf(n). This is because the lock release times in the Markatos’
lock become long as the number of processors is increased. This problem is expected
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t0 := readcurrenttime();

prio := getsequencenumber();
acquirelock_markatos[.,, prio);
// some shared bus accesses

/I and two empty loops (about 28ec).

releaselock_markatos(,):
t1 := readcurrenttime();

t0 := readcurrenttime();
acquirelock-mcs(l.,);

// some shared bus accesses

// and two empty loops (about 28ec).
releaselock-mcs(l,);

t1 := readcurrenttime();

/l measurement result igX — ¢0).

/l measurement result isX — ¢0). )
routine (b)

routine (a)

t0 := readcurrenttime();

prio := getsequencaumber(); for i := 1 to numberof_loop do

acquirelock-mcs(L.,); caserandomnumber()of
/I some shared bus accesses 1,2,3,4:

/[ and an empty loop (about Lkec). execute routine (a)
acquirelock_markatos[.,, prio); 5:

/I some shared bus accesses execute routine ()
/[ and an empty loop (about Lkec). 6:
releasdock_markatos[); execute routine (¢)
releasdock_mcs(L»); end

t1 := readcurrenttime(); end

/l measurement result ig{ — £0).
routine (c)

main routine
Figure 44: Measurement Routines with TF

to be relieved with the PR-lock algorithm [26]. The 99.99%-reliable execution times of
routine (b) are almost same with routine (c) except that the absolute times are little shorter.

Figure 46 presents the 99.99%-reliable execution times of routine (a) under the same
condition. Though the execution times of routine (c) are fastest with PI, those of routine
(a) are slowest with the method.

The problem of PI becomes more obvious, when processors repeatedly execute one
of the fives routines in Figure 41 and 42 in random order. Figure 47 presents the
99.99%-reliable execution times of routine (a) under this condition. The probability that
a processor executes routine (a) is made twice larger than each of other routines. In this
figure, the execution times with Pl are much slower than the other methods.

From these results, we can see that our proposed method is the most appropriate
algorithm of the three methods from the viewpoint of real-time scalability.

Finally, in order to examine the average performance of the algorithms, we present
the average execution times of routine (c) and (a) in case of three routines in Figure 48
and 49 respectively. Because the difference between SF and TF is very small in routine
(c) (Figure 48), we can say that SF is more appropriate in case that improving average
performance is the primary concern.
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Figure 45: 99.99%-Reliable Execution Times of Routine (c)
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Figure 46: 99.99%-Reliable Execution Times of Routine (a)
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Figure 47: 99.99%-Reliable Execution Times of Routine (a)
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Figure 49: Average Execution Times of Routine (a)

4.4 Nesting in Three or More Levels

If FIFO spin locks are simply used when the maximum nesting level of locks,is
the maximum execution times of a whole critical section becone™). An effective
method to improve this order is proposed in this section.

Priority Inversion Problem

When the maximum nesting level of locks is more than or equal to three, the method
proposed in Section 4.2 does not work effectively due to uncontrolled priority inversions.
Consider the example that processors execute one of the three routines in Figure 50 in
random order. Assume the case that a proceBstolds L3 and waits forL, in routine
(c), and that another processBs with a lower priority thanP; holds L, and tries to
acquireL; in (a). Processors with priorities lower th&h and higher thar®, can acquire
L, with precedence oveP,. While P, is waiting for those processor$; must wait
also and the duration of the priority inversion becomes long. As a result, the maximum
execution times of (c) cannot be improved®dn). Note that this uncontrolled priority
inversions do not occur when the maximum nesting level is two.
Priority inversion problems in the context of spin locks are discussed in Section 5 in
more detail.
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acquirelock(Ls);

acquirelock(L,); acquirelock(Ly); acquirelock(L,);
acquirelock(L,); acquirelock(L,); acquirelock(L,);
// critical section. // critical section. I/ critical section.
releasdock(L,); releasdock(L,); releasdock(L,);
releasdock(L,); releaseock(L?); releasdock(L,);
routine (a) routine (b) releaselock(Ls);

routine (c)

Figure 50: Nesting in Three Levels

Incorporating Priority Inheritance Scheme

We adopt a priority inheritance scheme to solve this problem. With the basic priority
inheritance scheme in which a processor holding some locks inherits the highest priority
of the processors that are waiting for one of the locks, the duration of priority inversions
can be reduced. Since chained priority inversions cannot be avoided with this method,
however, the maximum execution times of a critical section becOme: ¢™) with the
following reason.

At first, we estimate the maximum number of priority inversions that a proce3sor
encounters while it executes a critical section guarded by algekhose nesting level
is 7, under the assumption that there are no higher priority processofthadvie denote
the maximum number of these critical sectiongag) and estimate it with an induction
oni. WhenP tries to acquirel;, another processar; which has a lower priority than
P possibly holds the lock an® must wait for the critical section executed By. If the
nesting level of the lock is one (i.e.= 1), no other priority inversions can occur, thus
inv(1l) = 1. Wheni > 1, at mostinuv(i — 1) priority inversions also occur during; is
executing the critical section becauBgmay try to acquire another lock whose nesting
level is smaller than within the critical section. Afte” succeeds to acquitg;, it may
also try to acquire another lock whose nesting level is smaller thvaithin the critical
section. During its execution, at mastv(i — 1) priority inversions can occur. As the
result,inv(i) = 2-inv(i — 1) + 1 theninv(i) = 2* — 1. WhenL,, has the maximum
nesting level in the system, the maximum number of critical sectiongtinatist wait for
until it finishes the execution of a critical section guarded.hyisinv(m—1) = 271 -1
under the assumption that there is no higher priority processorfthan

Next, we consider the case that a procegiowhich has a higher priority thaR is
added, and estimate its effect on the maximum number of critical section® thrtst
wait for until it finishes the execution of a critical section guarded hy which has the
maximum nesting level in the system. We estimate the effect with the following two

95



cases.

(a) Suppose the case that is holding or waiting forL,, when P begins waiting for
L.,. In this case P, can encounter at mostv(m — 1) priority inversions during
its execution of the critical section guarded by,. Because” must also wait for
the critical section of?;, the maximum number of critical sections tlatust wait
for is increased withinv(m — 1) + 1 =2m"1,

(b) Suppose the case thAt is holding or waiting for another lock wheR begins
waiting for L,,. In this case, some lower priority processors tifacan inherit the
priority of P, and cause additional priority inversions 8n The maximum number
of the lower priority processors that can inherit the priorityFafcorresponds to
the maximum number of priority inversions thatencounters, i.env(m — 1). In
addition to them P is necessary to wait for the critical section@f, whenP and
P try to acquire a same inner lock. As the result, the maximum number of critical
sections thaf” must wait for is increased witho(m — 1) + 1 = 2m~1,

In each case, the maximum number of critical sectionsitraust wait for is increased
with 2™~ Because the outermost lock is acquired in a FIFO order with our method, at
mostn — 1 processors have higher priorities thianConsequently, the maximum number
of critical sections thaP must wait for until it finishes the execution of a critical section
guarded by, is (2" 1 —1)+ (n—1)-2™ ! =n.2m1 — 1. Note that this also includes
some overestimations.

As the result, the order of the maximum execution times of critical sections is shown
to beO(n - ¢™) with the basic priority inheritance scheme. We can say that this method
has real-time scalability on the number of contending processors but not on the maximum
nesting level. Algorithms of spin locks with the basic priority inheritance scheme will be
presented in Section 5.

The priority ceiling policy can also be adopted, when there is prior knowledge on
which locks are acquired in each critical section. In the concrete, when a processor
acquires the outermost lock, the priority ceiling of the other locks that are required (or
possibly required) by the processor within the critical section is set to the priority of the
processor. When the priority ceiling of the lock that a processor tries to acquire is higher
than its priority, the processor must wait with spinning even if the lock is not held by any
processof.

"Though induced from the same policy, the behavior of “priority ceiling spin lock” is quite different
from those of the priority ceiling protocol [60] or its extension for shared memory multiprocessors [46].

96



In Section 4.2, we have mentioned the method that a processor trying to acquire nested
locks reserves its turn to acquire the inner locks by enqueueing itself to their wait queue
when it begins waiting for the outermost lock. When complete knowledge on all required
locks in each critical section is available, the priority ceiling method is same with this
method. To the contrary, if there is no knowledge on required locks at all, the priority
ceiling method reduced to the situation that all shared resources in the system are guarded
by a single lock, which severely degrades concurrency of the system.

5 Priority Inheritance Spin Locks

As described in Section 4.4, in order to realize bounded and scalable nested spin locks
for real-time systems, a priority inheritance scheme is necessary to be incorporated in
priority-ordered spin locks. Ariority inheritance spin locks also necessary for priority-
ordered nested spin locks. This section proposes two algorithms of priority inheritance
spin lock based on the Markatos’ algorithm [36].

Shared resources that must be accessed exclusively by a processor are usually divided
into some lock units in order to improve concurrency. When a processor accesses some
shared resources included in different lock units, it must acquire multiple locks one by
one. If priority-ordered spin locks are simply used for this kind of nested spin locks,
uncontrolled priority inversions can occur. The uncontrolled priority inversion problem
in nested spin locks is described in Section 5.1.

After describing the necessity of priority inheritance spin locks in Section 5.1, we
present two algorithms of priority inheritance spin lock in Section 5.2. In Section 5.3,
their effectiveness is evaluated through performance measurements.

5.1 Periority Inversion and Priority Inheritance

Priority inversion and priority inheritance schemes, which are promising approaches to
solve the uncontrolled priority inversion problem, are actively studied in the context of

task scheduling algorithms [48, 60, 47]. In this section, we illustrate that the uncontrolled
priority inversion problem also occurs in the context of spin locks and demonstrate that
the basic priority inheritance scheme is also effective in this case.

This is because the processor which cannot acquire a lock is blocked with those protocols, while it spins
with our situation.
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acquirelock(L,);
acquirelock(L,);
I/ critical section.
releasdock(L,);
releasdock(L,);

routine (b)

acquirelock(L,);
/[ critical section.
releasdock(L,);

routine (a)

Figure 51: Example of Nested Spin Locks

Priority Inversion Problem in Nested Spin Locks

Priority inversion in the context of spin locks is the phenomenon that a higher priority
processor is forced to wait for the execution of a lower priority processor. Because priority
inversion cannot be avoided unless a higher priority processor can steal the lock held by
a lower priority one, how to minimize its duration is a concern. When the maximum
duration of a priority inversion cannot be determined, it is called uncontrolled.

When priority-ordered spin locks are used for nested spin locks, uncontrolled priority
inversions can occur. A typical case is described as follows.

Example 1 (uncontrolled priority inversion)

We assume thaP,, P,, P3, and P, are processors arranged in descending order of
priority with P, having the highest priority, and thay and L, are locks. These
processors repeatedly execute one of the two routines presented in Figure 51.
Suppose the case that whEnbegins executing routine (b) and tries to acquire the
lock L1, P, is holding L; and is waiting for the other lock, in routine (b). If P,

and P; repeatedly execute routine (a) in this situatidh,and P; can acquirel,
alternately andP; must wait for L, all the while. Becausé’; must also wait for

the executions of’, and P;, this duration is a priority inversion. Obviously, the
maximum duration of this priority inversion cannot be determined.

Spin Lock with Priority Inheritance

In order to solve this problem of uncontrolled priority inversions, we introduce the priority
inheritance scheme to spin locks. The fundamental concept of priority inheritance scheme
is that when a processor makes some higher priority processors wait, its priority should
be raised to the level of the highest priority processor among the waiting ones. In other
words, the processor inherits the priority of the highest priority processor blocked by it.
Also, priority inheritance must be transitive. For example, supposéthat, andP; are

three processors in descending order of priority. WRemakesP; wait and P; makes

P> wait, P; should inherit the priority of?;.

98



With the basic priority inheritance scheme, which is the naive realization of the
concept, the uncontrolled priority inversion problem illustrated in Example 1 is solved
as follows. WhenpP; tries to acquirel; and begins waiting for itP,;, which is holding
L4, inherits the priority ofP; becauseP; is forced to wait byP,. Because the inherited
priority is higher than the priorities af, and P;, P, can acquird., with precedence over
P, and P;. As the result,P; need not wait for the alternate executions of routine (a) by
P, and P, and the maximum duration of the priority inversion can be bounded.

When a processor releases one of the locks, its priority is necessary to be re-calculated
in general. Specifically, its priority is changed to the highest one of its original priority
and the priorities of the processors that is waiting for the locks held by the former one.
When the processor releases the last lock it is holding, its priority is recovered to its
original level.

This re-calculation can be omitted under the following two assumptions. The first
assumption is that the inherited priority is used only for spin locks, and not used for
task scheduling. In more specific, the inherited priority is used only when the processor
tries to acquire another lock. The second assumption is that the two-phase protocol is
adopted. In other words, once a processor releases a lock, it cannot acquire another lock
until it releases all the locks it is holding. In the following sections, we assume that these
two conditions are satisfied and propose priority inheritance spin lock algorithms. Under
these two assumptions, once the priority of a processor is raised, it need not be lowered
until it releases all the locks. These assumptions can be removed by adding re-calculation
routines to the algorithms proposed in Section 5.2 at the cost of some runtime overhead.

With the two assumptions described above, the required behavior of priority inheritance
spin locks can be summarized as follows.

1. Processors acquire a lock in the order of their priorities.

2. When a processdar; begins waiting for a lock, and when its priority is higher than
the priority of the processar, that is holding the lock, the priority aP; is raised
to that of P;.

3. When the priority of a processét is raised while waiting for a lock, and when its
new priority is higher than the priority of the procesggrthat is holding the lock,
the priority of P, is raised to the new priority aP;.
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// global shared variables.
shared varL1, L2: Lock;

I/ local variables (allocated for each processor).

var 11, 12: Node;

var my_prio: integer;

var my_notify: boolean;

Il my_notify is necessary only in the second algorithm.

Il initialize my.prio.
acquirefirst_lock(&L1, &I1);
acquiresecondlock(&L2, &I2, &L1);
// critical section.

releasdock(&L2, &12);
releaselock(&L1, &I1);

Figure 52: Usage of Priority Inheritance Spin Locks

5.2 Priority Inheritance Spin Lock Algorithms

In this section, we present two algorithms of priority inheritance spin locks, which are
based on the single-linked queue version of the Markatos’ lock algorithm presented in
Figure 21 and 22. With the Markatos’ algorithm, processors trying to acquire a lock are
linked to the waiting queue in a FIFO order. In releasing the lock, a processor searches
the highest priority processor in the waiting queue and passes the lock to it.

The first algorithm is a straightforward extension of the Markatos’ lock algorithm. A
new variable that indicates the highest priority of the processors that is waiting for the
lock is prepared for each lock. The processor holding the pamtls the variable while it
is waiting for another lock. When the processor detects that the highest priority is raised,
it inherits the priority. Because any processor can poll this highest priority variable for
each lock, pollings on the variable are remote memory accesses and severely increase the
interconnection network traffic with a multiprocessor system without a coherent cache.
The second algorithm is to avoid this non-local spinning and is expected to have higher
performance without a coherent cache.

In order to avoid unnecessary complexity, this section presents the pseudo-codes of
the algorithms when a processor acquires at most two locks at the same time. With this
simplification, we prepares two lock acquisition routinasqguirefirst lock for acquiring
the outer lock andicquiresecondlock for acquiring the inner lock. A typical usage of
the routines is illustrated in Figure 52. The third argumer&cjuiresecondlockis the
pointer to the lock that the processor is holding.

In Figure 52, themy prio variable is to store the current priority of the processor,
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type Node =record
next: pointer to Node;
locked: (Released, Locked);
prio: integer

end;

type Lock =record

last: pointer to Node;

maxprio: integer;

notifyp: pointer to boolean
end;
/I notifypis necessary only in the second algorithm.
/I lastand notifyp fields should be initialized teVULL .
/I maxpriofield should be initialized ta//IN_PRIQ

type NodePtr =pointer to Node;
type LockPtr =pointer to Lock;

Figure 53: Data Structures for Priority Inheritance Spin Locks

and must be initialized before the processor tries to acquire the outermost lock. With
a multiprocessor without a coherent cache, the local variables should be placed on the
processor’s locally accessible shared memory.

The First Algorithm

Figure 53 and 54 present the common data structures and subroutines for both algorithms
(some of them are necessary only in the second algorithm).L®b&record should be
prepared for each lock in the system. atgxpriofield is the highest priority variable for
the lock. When the lock is empty (in other words, no processor holds the locklgghe
field of its Lock record isNULL and its maxpriofield is MIN_PRIQ which designates
the minimum priority value. ANoderecord is necessary for each nested lock for each
processor.

Figure 55 and 56 present the pseudo-code of the first algorithm. Compared to the
Markatos’ algorithm, two invocations of th@/sepriority procedure, which is to update
the maxpriofield of Jock when it is lower than the@ewprioparameter, are added to the
acquirefirst lock procedure and thacquiresecondlock procedure in Figure 55. The
first invocation (marked with #1") is to raise maxpriofor priority inheritance, when
the processor begins waiting for the lock. The second one (marked wth) Is to
set maxprig when the processor succeeds to acquire the lock without waiting. In the
acquiresecondlock procedure, the processor must check thexpriofield of /ockl,
which is the lock being held by the processor, while waiting fmrk. When maxprio
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procedureraisepriority(lock: LockPtr, newprio: integer): boolean;
var prio: integer;
begin
retry:
prio := lock—maxprio;
if newprio> prio then
if compareand.swap(&(lock—maxprio), prio, newpriojhen
return TRUE
end;
gotoretry
end
return FALSE
end;

procedure raisepriority_notify(lock: LockPtr, newprio: integer);
/I necessary only in the second algorithm.
var notifyp: pointer to boolean;
begin
if raisepriority(lock, newprio)then
notifyp := lock—notifyp;
if notifyp # NULL then
/I set the notification flag.
xnotifyp := TRUE
end
end
end;

procedure moveto_top(lock: LockPtr, entry, pred, oldtop: NodePtr);
/I move entryto the top of the waiting queue éfck.
Il predis the predecessor ehtry
Il oldtopis the top of the queue before the move.
var succ: NodePtr;
begin
succ := entry-next;
if succ = NULLthen
pred—next := NULL,;
if compareand.swap(&(lock—last), entry, predihen
entry—next ;= oldtop;
return
end
repeatsucc := entry~nextuntil succ# NULL
end;
pred—next ;= succ;
entry—next := oldtop
end

Figure 54: Subroutines for Priority Inheritance Spin Locks
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procedure acquirefirst_lock(lock, LockPtr, me: NodePtr);
/I try to acquirelock.
var pred: NodePtr;
begin
me—next := NULL;
/I enqueue myself.
pred := fetchand store(&(lock—last), me);
if pred# NULL then
/[ when the queue is not empty.
me—locked := Locked;
me—prio := my_prio;
pred—next ;= me;

x1 raisepriority(lock, my_prio);
repeat until me—locked = Released
else
I/l succeed to acquire the lock without waiting.
*2 raisepriority(lock, my_prio)
end
end;

procedure acquiresecondlock(lock: LockPtr, me: NodePtr, lockl: LockPtr);
/I try to acquirelock.
var pred: NodePtr;
begin
me—next := NULL;
/Il enqueue myself.
pred := fetchand store(&(lock—last), me);
if pred# NULL then
/ when the queue is not empty
me—locked := Locked;
me—prio := my_prio;
pred—next := me;

x1 raisepriority(lock, my_prio);
repeat
*3 if lockl—maxprio> my_prio then

Il lockl— maxpriois non-local access.
my_prio := lockl—maxprio;
me—prio := my_prio;
raisepriority(lock, my_prio)
end
until me—locked = Released
else
I/l succeed to acquire the lock without waiting.
*2 raisepriority(lock, my_prio)
end
end;

Figure 55: The First Algorithm (Part 1)
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procedurereleasdock(lock: LockPtr, me: NodePtr);
/I try to releasdock.
var top, entry, pred: NodePtr;
var hentry, hpred: NodePtr;
begin
x4 lock—maxprio = MIN_PRIO;
top := me—next;
if top = NULL then
if compareand swap(&(lock—last), me, NULL)then
I/l the queue becomes empty.

return
end
repeattop := me—nextuntil top # NULL
end;
[/l search for the higest priority processor.
hentry ;= top;
pred ;= top;

entry := pred-next;
while entry# NULL do
if (entry—prio > hentry—prio) then
hentry .= entry;
hpred := pred;
end
pred := entry;
entry := pred-next
end,
Il now, hentryis the higest priority processor.
if hentry+ topthen
moveto_top(lock, hentry, hpred, top)

end;
*5 raisepriority(lock, hentry—prio);
hentry—locked = Released
end;

Figure 56: The First Algorithm (Part 2)

becomes higher than the priority of the processor (flstatement marked with«3”), it
inherits maxprioof lock1and updatesmaxprioof lockfor transitive priority inheritance.

The only difference of theeleaselock procedure in Figure 56 with that of the
Markatos’ algorithm is the necessity of updating thaxpriofield (two lines marked with
“x4” and “«5”). Assigning MIN_PRIOto the maxpriofield at first is necessary to avoid
some racing conditions.

This algorithm can be easily generalized to the case that a processor acquires more
than two locks at the same time with the following method. The list of locks held by a
processor should be maintained using an array or a linked list. In the generalized version
of the acquirelock procedure, thenaxpriofields of all the locks in the list should be
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checked while waiting for another lock. If some of them are higher than the priority of
the processor, it inherits the highest priority among them.

Avoiding Non-Local Spinning

While a processor is waiting for a lock in tlaequiresecondlock procedure of the first
algorithm, themaxpriofield of the holding lock is accessed repeatedly (marked with
“x3”). This accesses cause a heavy traffic on the interconnection network without a
coherent cache.

With the second algorithm presented in Figure 57 and Figure 58, this problemis solved
by introducing a flag to notify that theaxpridfield is modified. This notification flag (the
my._notify variable in Figure 52) is prepared for each processor on its locally accessible
shared memory. A processor waiting for a lock in #equiresecondlock procedure
in Figure 57 reads thenaxpriofield only when the notification flag of the processor is
set (the/f statement marked with«6”). Thus the non-local spinning can be avoided.

It also checks thenaxpriofield when it begins waiting for a lock (by assignifgRUE

to my notify). Introducing the notification flag is also advantageous when a processor
acquires more than two locks at the same time, because only one memory location (i.e.
the notification flag) is necessary to be checked in the waiting loop. Maintaining the list
of locks held by a processor is still necessary in this case.

Also, the raisepriority_notify procedure is used instead @isepriority (three
lines marked with %£7”) in Figure 57. After updating thenaxpriofield of /ock, the
raisepriority_notify procedure sets the notification flag of the processor holding the lock.
In order to locate the notification flag of the lock holder, a new freddfypwhich points
to the notification flag is introduced in tHeockrecord. Thenotifypfield of a lock is set
when a processor succeeds to acquire the lock (two lines marked:8ith The field is
also necessary to be cleared\t/LL at the top of theeleaseockprocedure in Figure 58
(marked with %9”).

There is a slight chance that the notification flag of a wrong processor is set.
Specifically, suppose the case that the processor holding a lock passes the lock to another
one and itshotifypfield is changed, after yet another processor readadié/p field of
the lock in theraisepriority_notify procedure and before it writeBRUE on xnotifyp. In
this case, the notification flag of the processor that has already passed the lock to another
is set. Although this difficulty can increase the interconnection network traffic a little, it
does not cause wrong behavior.
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procedure acquirefirst_lock(lock: LockPtr, me: NodePtr);
var pred: NodePtr;
begin
me—next := NULL;
/I enqueue myself.
pred := fetchand store(&(lock—last), me);
if pred# NULL then
/[ when the queue is not empty.
me—locked := Locked;
me—prio := my_prio;
pred—next ;= me;

*7 raisepriority_notify(lock, my_prio);
repeat until me—locked = Released
else

I/l succeed to acquire the lock without waiting.
raisepriority(lock, my_prio)
end
*8 lock—notifyp := &my_notify
end;

procedure acquiresecondlock(lock: LockPtr, me: NodePtr, lockl: LockPtr);
var pred: NodePtr;
begin
me—next := NULL;
pred := fetchand store(&(lock—last), me);
if pred# NULL then
me—locked := Locked;
me—prio := my_prio;
pred—next := me;

*7 raise priority_notify(lock, my prio);
my_notify := TRUE;
repeat
Il check if a priority inheritance is notified.
*6 if my_notify then

my_notify ;= FALSE;

if lockl—maxprio> my_prio then
my_prio := lockl—maxprio;
me—prio := my_prio;

*7 raisepriority_notify(lock, my_prio)
end
end
until me—locked = Released
else
raisepriority(lock, my_prio)
end
*8 lock—notifyp := &my_notify
end;

Figure 57: The Second Algorithm (Part 1)
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procedurereleasdock(lock: LockPtr, me: NodePtr);
var top, entry, pred: NodePtr;
var hentry, hpred: NodePtr;

begin
lock—maxprio := MIN.PRIO;
*9 lock—notifyp := NULL;

top := me—next;
if top = NULL then
if compareand swap(&(lock—last), me, NULL)then
I/l the queue becomes empty.

return
end
repeattop := me—nextuntil top # NULL
end;
[/l search for the higest priority processor.
hentry ;= top;
pred ;= top;

entry := pred-next;
while entry# NULL do
if (entry—prio > hentry—prio) then
hentry .= entry;
hpred := pred
end
pred := entry;
entry := pred-next
end;
Il now, hentryis the higest priority processor.
if hentry+ topthen
moveto_top(lock, hentry, hpred, top)
end;
raisepriority(lock, hentry—prio);
hentry—locked := Released
end;

Figure 58: The Second Algorithm (Part 2)

5.3 Performance Evaluation

In this section, the effectiveness of the priority inheritance spin lock algorithms proposed
in the previous section is examined through performance evaluation. Their performance

is compared with the simple priority-ordered spin locks without supporting priority
inheritance scheme. We have used the single-linked queue version of the Markatos’ lock

algorithm for this purpose.

Evaluation Method

We have used one to eight processors for the evaluation. The original (or assigned)
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acquirelock(L,);

/I critical section.

releaselock(L,);

routine (a)

acquirelock(L});
acquirelock(L,);

/I critical section.

releaselock(L,);
releaselock(L));

routine (c)

acquirelock(L,);
acquirelock(L,);
I/ critical section.
releasdock(L,);
releasdock(L,);

routine (b)

acquirelock(L?);
acquirelock(L,);
// critical section.
releasdock(L,);
releaselock(LY);

routine (d)

Figure 59: Evaluation Routines

priority of processor is fixed to its ID number. Each processor repeatedly executes one
of the four routines presented in Figure 59 in random order. Routines (c) and (d) are
introduced in order to expose the problem of non-local spinning with the first algoftithm.
The execution time of each routine is measured for each execution, and their distributions
are obtained. Inside the critical section, a processor accesses the shared bus several
number of times and waits for a while using empty loops. In case of routines (b), (c), and
(d), shared bus accesses and an empty loop are also inserted batgesgefirst lock
andacquiresecondlock. Without spin locks, the execution time of each routine is about

30 us, including the overhead for measuring execution times. Each processor also waits
for a random time after each execution of the routines.

Because our evaluation system has no coherent cache, the simple implementation of
the first algorithm causes heavy shared-bus traffic. In order to avoid shared-bus saturation,
the frequency to read theaxpriofield in the acquiresecondlockroutine is reduced. In
more concretemaxpriois checked only once for every four checkingsmé— locked

Evaluation Results

Figure 60 presents the 99.99%-reliable execution times th&ighestpriority processor
executes routine (b). When the number of processors is large, the execution time with
Markatos’ locks, which can not be bounded inherently, is much slower than those with
our algorithms due to uncontrolled priority inversions. When the number of processors
is small, our algorithms are slower because of the overhead for maintainimgakyerio

field of each lock. Our second algorithm is a bit faster than the first one when the number

8With routines (a) and (b) only, the effect of shared-bus traffic is not revealed, because at most one
processor spins on non-local memory at the same time.
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Figure 60: 99.99%-Reliable Execution Times of Routine (b)
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Figure 62: Average Execution Times of Routine (b)

of processors is more than six, but the difference is very small. Though it is not measured
in our experiments, the shared-bus traffic is expected to be much larger with the first
algorithm.

Figure 61 presents the 99.99%-reliable execution times that the highest priority
processor executes routine (a). As easily imagined, there are little difference in the
behavior of routine (a) with three algorithms. This graph confirms the conjecture.

Finally, in order to examine the average performance of the algorithms, we present the
average execution times of routine (b) in Figure 62. From this graph, our algorithms are
slower than Markatos’ lock in average performance. We can say that priority inheritance
spin locks are not appropriate when improving average performance is the primary
concern.

6 Summary

In this part, we have proposed various spin lock algorithms with the properties required
to implement scalable real-time kernels, and have evaluated their effectiveness through
performance measurements. Before describing the algorithms, Section 1 has presented a
brief survey on spin lock algorithms and has shown the pseudo-codes of some important
algorithms on which our proposed algorithms are based.

In Section 2, we have proposed two algorithms of queueing spin lock with preemption
that can give practical upper bounds on the times to acquire and release an inter-
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processor lock while realizing constant response to interrupt requests, in order to make
the two important requirements for scalable real-time systems on function-distributed
multiprocessors compatible. The first algorithm, which supports the simple preemption
scheme, has a drawback that the interrupt service overhead depends on the number of
contending processors. In order to solve the problem, we have proposed the second
algorithm which adopts the improved preemption scheme. Their performance evaluation
through experiments has confirmed that the algorithms have the required properties. We
have also described a combined algorithm which supports both preemption schemes.

In Section 3, we have presented an efficient algorithm of spin lock with local
precedence, which is required to make the worst-case execution times of intra-processor
synchronizations independent of the number of contending processors.

In Section 4, real-time scalability of nested spin locks has been discussed. An
algorithm with which the maximum execution times of critical sections@fe) when
the maximum nesting level of locks in the system is two has been proposed, and its
effectiveness is demonstrated with performance evaluation. By introducing the priority
inheritance scheme to the algorithm, it can be applied to the system in which the maximum
nesting level is more than two.

Though the section has focused on bounded spin locks (in other words, on the cases
when each processor equally contends for nested spin locks ignoring the priority of the
task it is executing), the results are also applicable to priority-ordered spin locks (the
cases when each processor has its priority determined from the job it is executing). In
concrete, when processors with the same priority should execute critical sections in a
FIFO order, our proposed method should be utilized. In this case, a pair of the native (or
assigned) priority of the processor and the time stamp obtained before trying to acquire
the outermost lock should be used as the priority for acquiring inner locks.

In Section 5, we have discussed on priority inheritance spin locks. At first, we
have pointed out the problem that the simple application of a priority-ordered spin lock
algorithm to nested spin locks causes uncontrolled priority inversions, which are very
harmful for satisfying the timing constraints imposed on real-time tasks. In order to
solve the problem, we have incorporated the basic priority inheritance scheme to spin
locks. Two algorithms of priority inheritance spin locks have been proposed based on the
Markatos’ spin lock algorithm: one for coherent cache multiprocessors and the other for
multiprocessor systems without coherent cache. Performance evaluation to demonstrate
their effectiveness has been conducted, and some affirmative results have been obtained.

In Section 4 and 5, we have adopted the Markatos’ priority-ordered spin lock algorithm
for the evaluations and for the base algorithm to which the basic priority inheritance
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scheme is incorporated. Doing the same thing with the PR-lock [26] remains as future
work. Another important work remaining to be done is to combine the result of Section 2

and 5, in other words, to incorporate a preemption scheme to priority inheritance spin
locks.
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Part IV

Conclusion and Future Work
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1 Conclusion

In this dissertation, we have discussed the specification and implementation issues of a
scalable real-time kernel on function-distributed shared-memory multiprocessor systems.
A scalable real-time kernel is the basic software module that facilitates the realization
of scalable application systems. If a real-time system has the property of real-time
scalability, even when a part of the system is modified or when some processors are added
to the system, changes in the worst-case timing behavior of the unmodified part of the
system are minimized, leading to the reduction of the maintenance cost of the system.
Though many researchers have investigated on real-time kernels for shared-memory
multiprocessors, none of them has focused on the issues of real-time scalability.

When a real-time system is realized on a function-distributed multiprocessor archi-
tecture, external devices and tasks handling them are allocated to processors so that the
number of inter-processor synchronizations and communications is minimized and that
as many time-critical tasks as possible are closed within a processor. Therefore, it is
advantageous to reduce the maintenance cost of the system that changes in the worst-case
timing behavior of the processings that can be done within a processor are minimized.

In this dissertation, we have clarified the required properties of a scalable real-
time kernel for function-distributed multiprocessors and investigated on their realization
methods. After describing the implementation approaches of a real-time kernel on shared-
memory multiprocessors, two problems which are the obstacles for a straightforward
implementation method to satisfy the required properties have been pointed out, and the
solutions of the problems have been proposed when task-independent synchronization
and communication objects are not supported. In order to solve the first problem that the
worst-case execution times of synchronizations within a processor depend on the number
of contending processors, spin lock with local precedence is adopted. For the second
problem that predictable inter-processor synchronization and constant interrupt response
are incompatible, bounded spin lock with preemption is devised. We have presented
the algorithms of these two kind of spin locks assuming that processors support atomic
read-modify-write operations on a single word of shared memory.

We have also proposed the approach to classify kernel resources into classes with
different characteristics to improve the performance of intra-processor synchronization.
In the concrete, tasks are classified into the isolated tasks, the private tasks, and the local
tasks of each processor. Task-independent synchronization and communication objects
are also classified into three classes: the isolated objects, the private objects, and the
shared objects.
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In order to demonstrate the effectiveness of our proposals, we have conducted
performance measurements using an existing shared-bus multiprocessor system without
coherent cache. The underlying inter-processor synchronization is realized with software-
implemented spin locks. Although the hardware and the synchronization mechanism do
not have the properties that is necessary to strictly satisfy the required properties of a
scalable real-time kernel, the performance measurements have confirmed that the required
properties are practically satisfied with our proposals, while they cannot be met with other
methods.

In order to support task-independent synchronization and communication objects,
nested spin locks are necessary. We have discussed on the scalability issues on nested
spin locks and proposed the scheme for reducing the maximum execution times of nested
spin locks toO(n - ™), wheren is the number of contending processors ands the
maximum nesting level of locks. Even though the scheme is adopted, however, the
interrupt service overhead depends on the number of contending processors, and it is not
possible to satisfy the required properties of a scalable real-time kernel.

2 Future Work

There are pretty much work to be tackled. The most pressing one is to realize a scalable
real-time kernel that supports task-independent synchronization and communication
objects by solving (or avoiding) the difficulty described in Section 11.7. One of the possible
approaches is to incorporate the notion of block-free or wait-free synchronizations to
our real-time kernel implementation and to avoid nested spin locks. More precisely, the
processings which needs the outer lock should be realized in a block-free or wait-free
fashion [17, 37]. Because the manipulations of the TCBs and the ready queues are too
complicated to realize in block-free or wait-free with reasonable performance, we think
that the inner lock should be used even with this approach. This kind of mixed block-free
and lock-based synchronization is a new research topic that has not been studied. Another
promising approach is to adopt the realization concept of wait-free synchronization in
acquring an inner lock. More precisely, the operation within the inner lock is posted to
the waiting queue for the lock and is executed by another processor during an interrupt
service.

Another important work to do is to extend our kernel model further to support global
tasks which can migrate among processors. We will describe it in the next section
(Section 2.1). There are some problems to be solved in implementing global tasks without
degrading the performance of the other tasks [81].
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Other future work includes the hardware implementation of the spin locks with
which the maximum execution time can be determined independently of the number of
contending processors, and further extensions of the spin lock algorithms which have
been described in Section 111.6. It is also necessary to extend our study to upper layers.
For example, the design guidelines of scalable application systems on a scalable real-time
kernel should be investigated on. The software development environment for our real-
time kernel model, especially a tool that supports the fitting of the kernel resources to
appropriate classes integrated with a schedulability analyzer, is also an important research
topic.

Finally, applying our scalable real-time kernel to real applications and evaluating it
in real-world environments are the most challenging work remaining to be done. To this
end, we plan to port our scalable real-time kernel for shared-memory multiprocessors to
other off-the-shelf hardware environments and distribute it in free.

2.1 Global Tasks

One of the advantages of shared-memory multiprocessors is that task migrations can be
easily implemented. As described in Section 11.2, time-critical tasks should be bound
to a processor in function-distributed multiprocessor systems. On the other hand, task
migrations are useful for background jobs without severe timing constraints. We call the
class of tasks that can execute on any processors in the system and that can migrate to
other processors during their executiorgésbal tasks

One of the most import issues on global tasks is their scheduling method. Because
global tasks are introduced to support background jobs without severe timing constraints,
we handle the priorities of global tasks always lower than those of local tasks.

Two shared task queues are prepared for global tasks: the ready queue that includes
all global tasks that are ready to execute but are not being executed, and the run queue
that includes all global tasks that are being executed. When no task of the other classes is
ready to execute on a processor, the task dispatcher on the processor removes the highest
priority task from the ready queue for the global tasks, and moves it to the run queue.
When a processor makes a global taskeady to execute, it first finds the lowest priority
taskr, in the run queue. If; has a higher priority than,, the processor moves to the
ready queue and insertgto the run queue instead. Then, it requests the processor that is
executingr, to switch the executing task using an inter-processor interrupt.

Here, a difficulty occurs when a private (or isolated) task becomes ready to execute
with an external event on a procesderthat is executing a global task. In this case,
the global task is preempted and should migrate to another processor that is executing
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accessing &
task %4

P,-isolated task | OK | OK | OK | NA| NA| NA| NA| NA | NA | NA [ NA| NA
P,-private task | OK| OK| OK | OK| *1 | NA| NA| NA | NA | NA| NA| NA
P;-local task OK| *2 | OK|OK|OK|[OK|OK| *1 | NA| NA | NA| NA
global task NA|[ NA| NA| NA| *1 | OK|OK| *1 | NA| NA | NA| NA

Table 10: Accessibility of Kernel Resources (Full Set)

a lower priority task or is idle. Because the maximum processing timécior the
migration unavoidably depends on the number of contending processors, the maximum
response time of the private (or isolated) task becomes long as the number of contending
processors is increased. In order to avoid this problem, we allow the situation that a
global task is bound to a processor while it is executing a private (or isolated) task, just
like when it is executing an interrupt handler. When the execution times of private tasks
are relatively short compared to the deadlines of global tasks, this restriction is considered
to be reasonable.

The accessibility of kernel resources with global tasks are summarized in Table 10.
Because the control blocks of isolated and private resources on a processor cannot be
accessed from other processors, a global task, which can be executed on any processor,
cannot operate on them. A global task cannot acces$-lacal task with special
operations, because the global task cannot access the control blo¢k-pfigate object
on which the local task may be waiting.

Another possible extension is to support the class of tasks that can be executed on
a predefined set of processors. For example, suppose a heterogeneous multiprocessor
architecture, in which some general-purpose microprocessors and some special-purpose
processors (e.g. DSPs) are adopted. It is very natural to support the class of tasks that
can be executed only on the general-purpose microprocessors. Note here that it is not
necessary to implement all the resource classes in a kernel. It is also a possible approach
that some of the classes are removed from a full-set kernel when they are not used.
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Appendix A

Implementation Detalls of our
Real-Time Kernel

In this appendix, we present the implementation details of our real-time kernel, which is
used for the evaluation in Section I1.6. We have extended lji$]RON3.0-specification
real-time kernel described in Section I1.1.4, to support shared-memory multiprocessors.
We call the extended version of Itls as ItIs/MP in this appendix.

1 Management of Classes

The largest difference between Itls and ItIs/MP is that ItiIs/MP supports the classification

of kernel resources. In order to manage the classelasa control blocks prepared for

each class of resources. Though the classification of tasks and that of task-independent
synchronization and communication objects have a bit difference, we have prepared
four type of classes in which both tasks and task-independent objects are included: the
isolated classes, the private classes, the local classes, and the global class. In the current
implementation, only the private classes and the local classes are realized.

As described in Section 11.5.4, the ID of a kernel resource is divided into the field
indicating the class ID to which the resource belongs and the field identifying the resource
within the class (Figure 63). The actual assignment of class IDs is also presented in
Figure 63. The class ID 0 designates the same class with the task that uses the ID. For
example, if aP;-local task operates on the object with the ID number 0x00000052, it
designates #;-local object whose identification number within the class is 0x52.

When a task operates on a kernel resource with its resource ID, the task first extracts
the class ID field within the resource ID and finds the address of its class control block.
The class control block includes the range of valid identification numbers of each resource
type within the class, and the address of the control block table of each resource type
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resource ID structure:

MSB LSB
31 16 15 0
identification of the class identification of the resource
which the resource belongs to within the class

class ID assignment:

- 2 (Oxfffe) the isolated class of the processor executing the issuing task
- 1 (Oxffff) the private class of the processor executing the issuing task

0 the same class with the issuing task
1-n the local classes of each processor
n+1 the global class

n : the maximum number of processors

Figure 63. The Structure of Resource ID

(Figure 64). The address of the ready queue of the class and that of the timer event queue
are also included in the class control block. A class control block also includel®tko
objects one of which guards the TCBs of the class and the other guards the control blocks
of task-independent synchronization and communication objects. Using the information,
the task can find the address of the control block of the kernel resource and operate on it.
Though it is possible to prepare one set of class control blocks and share it by all
the processors, we adopt another approach with which each processor has its own set
of control blocks in order to reduce the shared-bus traffic (remember that our evaluation
environment has no coherent cache). The class control blocks for each processor are
initialized from theshared class control blocK&igure 64). When the class control blocks
are initialized, each processor customizes their contents.

2 Initialization Procedure

Booting up a multiprocessor system is a bit complicated procedure. We follow the
following three initialization steps to boot up the system.

1. At first, the kernel program code is downloaded to the master proceasor,s
started execution on the master processor. The master processor clears the shared
class control blocks and other globally shared variables. Then, it distribute the
kernel code to each processor and makes it start with an inter-processor interrupt.
If the local memory of a processor cannot be accessed, the master processor judges
that the processor is not available in the system.

LIn the current implementation, we assume that each processor executes the same kernel code.
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Figure 64. Class Control Blocks and Shared Class Control Blocks

2. Each processor (including the master processor) initializes its local and private
variables, such as the control blocks of its local and private resources and the ready
gueues for its local and private tasks. It also initializes the shared class control
block of its local class.

When a processor finishes this step, it notifies the master processor of it via a

shared variable and begins waiting. The master processor repeatedly checks if
other processors finish this step. When all the processors finish this step, the master
processor signals the other processors to proceed to the next step via a shared
variable.
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3. Each processor reads the shared class control blocks and initializes its own class
control blocks. It also initializes the class control block for its private claBken,
it starts executing tasks if some of the tasks are ready to execute.

3 Spin Locks Used in the Implementation

In the current implementation of our real-time kernel, a combined algorithm of the
queueing spin lock with improved preemption scheme presented in Figure 28-30 and
the spin lock with local precedence presented in Figure 38-39 is used with some
improvements.

One of the improvements is that the processor trying to acquire the lock begins
executing the critical section when its state becoPegueueing If it remains to be
Dequeueingvhen the processor tries to release the lock, it waits until the state becomes
ReleasedAnother improvement is that the global lock has now three states: the state in
which the global lock is released, the state in which the global lock is not released and a
processor must repeatedly check the global lock, and the state in which the global lock is
not released and a processor need not check the global lock.

Pseudo-code for the combined algorithm is presented in Figure 65, 66, 67, 68, and 69.
In the pseudo-codeVYADR designates a special pointer value that has a different value
with the other pointers, just liIk&/ULL. NADR is used withVULL to distinguish the new
state introduced in the global lock. Actually, O is assigned/té. L and—1 to NADR in
our implementation.

A processor should usacquiremy local lock and releasemy local lock to ac-
quire/release its local lock, and should egguirelockandreleasdockto acquire/release
the local locks of other processors. Taequirelockandacquiremy_local lockfunctions
must be called with the interrupt request disabled. They ref&®@&/Ewhen they succeed
to acquire the lock and returBALSE when an interrupt is requested while waiting for
the lock. WhenFALSE is returned from these functions, the processor must enable
interrupt request, service the interrupt request, and re-execute the function. In the
acquiremy local lock function, the exponential backoff scheme is not adopted because
the glockfield of the lock is located on the local memory of the processor that issues the
function.

The lock object, which is included in the class control block, includes the pointer to
the Lockrecord, the memory area for its queue node (tmelerecord), and the pointers
to the functions with which the lock should be acquired/released.

2Actually, we include this initialization in the second step.
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type Node =record

next: pointer to Node;

prev: pointer to Node;

locked: (Released, Locked, Preempted, Dequeueing)
end;
I/l The lockedfield must be intialized tavULL.

type Lock =record
last: pointer to Node;
glock: pointer to Node;
prec: pointer to Node
end;

shared varL: Lock;
Il L.last L.glock, andL.precare initialized toNVULL .

procedure moveto_top(lock: pointer to Lock,
entry, pred, oldtoppointer to Node);
/I moveentryto the top of the waiting queue dick.
I predis the predecessor @htry
Il oldtopis the top of the queue before the move.
var succ: pointer to Node;
begin
succ = entry-next;
if succ = NULLthen
/Il whensuccis at the tail of the waiting queue.
pred—next := NULL;
if compareand swap(&(lock—last), entry, preddhen
entry—next ;= oldtop;
return
end;
repeatsucc := entry-nextuntil succ# NULL
end;
pred—next ;= succ;
succ—prev ;= pred;
entry—next := oldtop
end;

Figure 65: The Spin Lock Used in the Implementation (Part 1)
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procedure acquirelock(lock: LockPtr, me: NodePtr): boolean;
var pred, succ: NodePtr;
var interval, i: integer;
begin
if me—locked = Preemptethen
me—locked := Locked;
gotospin
end,
me—next := NULL;
pred := fetchandstore(&(lock—last), me);
if pred = NULLthen
return TRUE
end,
me—prev ;= pred,;
me—locked := Locked;
pred—next ;= me;
spin:
i=1;
interval :=q;
while (me—locked = Lockeddo
if interrupt.requestedand
compareand swap(&(me—locked), Locked, Preemptett)en
return FALSE
end,
i=i-1;
if i=0then
top := lock—glock;
if top = NULL then
i =00 Il never expires.
else iftop # NADR
and compareand swap(&(lock—glock), top, NULL)then
if top # methen
moveto_top(lock, me, me=prev, top)
end,
me—locked := Released;
return TRUE

else
i :=interval;
interval := intervalx
end
end
end
end;

Figure 66: The Spin Lock Used in the Implementation (Part 2)
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procedure acquiremy_local lock(lock: LockPtr, me: NodePtr): boolean;
var pred, succ: NodePtr;
var checkglock: boolean;
begin
if me—locked = Preemptethen
me—locked := Locked:;
gotospin
end
me—next := NULL;
pred := fetchandstore(&(lock—last), me);
if pred = NULLthen
return TRUE
end
me—prev := pred,;
me—locked := Locked;
pred—next ;= me;
spin:
lock—prec = me;
checkglock = TRUE;
while (me—locked = Lockeddo
if interrupt.requestedand
compareand swap(&(me—locked), Locked, Preemptett)en
lock—prec = NULL;
return FALSE
end,
if checkglockthen
top := lock—glock;
if top = NULL then
checkglock = FALSE
else iftop # NADR
and compareand swap(&(lock—glock), top, NULL)then
if top # methen
moveto_top(lock, me, me-prev, top)
end;
me—locked := Released;
lock—prec = NULL,;
return TRUE
end
end
end
end

Figure 67: The Spin Lock Used in the Implementation (Part 3)
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procedurereleasdock(lock: LockPtr, me: NodePtr);
var top, entry, pred: NodePtr;
begin
repeat until me—locked = Released,;
top := me—next;
if top = NULL then
if compareandswap(&(lock—last), me, NULL)then
return
end;
repeattop := me—nextuntil top # NULL
end;
entry := lock—prec;
if entry# NULL
and compareandswap(&(entry—locked), Locked, Dequeueingf)en
if entry+£ topthen
moveto_top(lock, entry, entry=prev, top)
end;
entry—locked := Released,;
return
end,
repeat until lock—glock = NULL;
lock—glock := NADR;
if compareand swap(&(top—locked), Locked, Releasethen
lock—glock := NULL;
return
end,
pred :=top;
entry := pred-next;
while entry# NULL then
if compareand swap(&(entry—locked), Locked, Dequeueintfen
lock—glock := NULL;
moveto_top(lock, entry, pred, top);
entry—locked := Released,;
return
end;
pred := entry;
entry ;= pred-next
end;
lock—glock :=top
end;

Figure 68: The Spin Lock Used in the Implementation (Part 4)
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procedure releasemy_locallock(lock: LockPtr, me: NodePtr);
var top, entry, pred: NodePtr;
begin
repeat until me—locked = Released;
top := me—next;
if top = NULL then
if compareandswap(&(lock—last), me, NULL)then
return
end;
repeattop := me—nextuntil top # NULL
end;
repeat until lock—glock = NULL;
lock—glock := NADR;
if compareand swap(&(top—locked), Locked, Releasethen
lock—glock := NULL;
return
end,
pred :=top;
entry := pred-next;
while entry# NULL then
if compareand swap(&(entry—locked), Locked, Dequeueintfen
lock—glock := NULL;
moveto_top(lock, entry, pred, top);
entry—locked := Released;
return
end,
pred := entry;
entry := pred-next
end;
lock—glock :=top
end

Figure 69: The Spin Lock Used in the Implementation (Part 5)

134



Appendix B

Proofs on the Queueing Spin Lock
Algorithm with Simple Preemption
Scheme

In this appendix, we show that the queueing spin lock algorithm with the simple
preemption scheme described in Section 1ll.2 realizes mutual exclusion and deadlock
freedom.

We first show that the algorithm in Figure 70 and 71 realizes mutual exclusion. The
difference between the algorithm and the one in Figure 26 and 27 is (1) the initial value
of the lockedfield is determined to b&eleasednd (2) compareand swap operations are
used in assigningeleasetb the /lockedfield of queue nodes (in the lines marked with
and{8). Next, we show that the algorithm is deadlock free. Once mutual exclusion and
deadlock freedom are proved, the equivalence of these two algorithms is straightforward.

At first, the state of a processor is classified into nineteen states by the execution point
of the processor, which is presented in Figure 70 and 7@ag9. A state transition
occurs when the processor accesses a shared data, with which the processor interacts
with others. For example, the transition fra@) to (2) occurs when the processor reads
l.next Similarly, the transition fron{2) to (3) or (9) occurs when the processor executes
the fetchand store operation. Whether the processor move@tor (9 is fixed at this
moment. The only exception is the transition fraf to €2 which occurs when the
processor modifies its private varialdecc

The state of a processor is also classified by the value obtiiedfield of its queue
node into the released state (R state, in short), the locked state (L state), the preempted
state (P state), and the canceled state. The canceled state is further classified into two
states: the state that the varialdles kept nonANVULL after Canceleds assigned to the
lockedfield (C state), and the state aftebecomesVULL (C’ state).
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type Node =record

next: pointer to Node;

locked: (Released, Locked, Preempted, Canceled)
end;
type Lock = pointer to Node;

shared varL: Lock;
/I L is initialized toNULL.

var |: Node;
Il 1.lockedis initialized to Released
var pred, succ, snpointer to Node;

/I try to acquire the loch.
retry:
@ l.next := NULL;
disableinterrupts
/I enqueue myself.
@ pred := fetchand store(&L, &l);
if pred# NULL then
/ when the queue is not empty.
® l.locked := Locked;
@ pred—next = &l;
® while (I.locked# Releasedjlo
if interrupt.requestedand
® compareandswap(&(l.locked), Locked, Preempteittien
enableinterrupts
Il interrupt service.
disableinterrupts
@ if =compareandswap(&(l.locked), Preempted, Lockeithen
enableinterrupts
repeat while I.locked# Released;
gotoretry
end
end
end
end;
1l
@© // critical section.
1l

Figure 70: The Queueing Lock with Simple Preemption Scheme (Part 1)
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I
@ // critical section.
I
Il try to release the lock.
succ := l.next;
if succ = NULLthen
@ if compareandswap(&L, &I, NULL) then
// the queue becomes empty.
goto exit
end;
@ repeatsucc ;= l.nexuntil succ# NULL
end;
/I try to pass the lock to the successor.
@ while —compareand swap(&(suce-~locked), Locked, Releasedp
/I when the successor is servicing interrupts.
@ if compareandswap(&(suce~locked), Preempted, Canceldaten
/I dequeue the successor from the waiting queue.
@ sn .= suce-next;
if sn = NULL then
@ if compareandswap(&L, succ, NULL)then
/l the queue becomes empty.
@ compareandswap(&(suce-locked), Canceled, Released);
goto exit
end,
@ repeatsn := suce-nextuntil sn# NULL
end,
@ compareandswap(&(suce~locked), Canceled, Released);
@9 succ :=sn
end
end,
exit:
enableinterrupts

Figure 71. The Queueing Lock with Simple Preemption Scheme (Part 2)

The state transition diagram of a processor presented in Figure 72 can be obtained
from these two classifications and some observations of the code in Figure 70 and 71
such as the fact that a processor assifjoskedto the lockedfield of its queue node
with the transition from@) to (@), the fact that a processor changes ibekedfield of
another processor only frodockeato Releasedrom Preemptetb Cancelegand from
Canceledo Releasedand the fact that the transition from C’ state to C state does not
exist by definitiont The transitions marked with«" in the diagram are caused by other
processors, and the transition with ‘occurs only when an interrupt request is raised on
the processor.

Following discussions reveal two other facts that a processor never becomes 4R state and that the
transition from 7P to 7C’ does not occur.

137



Figure 72: The State Transition Diagram of a Processor
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A processor is called to be in thexclusive region(ER, in short), when its state is
included in ER in Figure 72. In the following, we call tHeckedand nextfields of
the queue node of a processor simply as Mwkedand nextfields of the processor,
respectively.

Lemma 1 WhenL is NULL, no processor is in ER. Whehis not NULL, there is one

(and only one) processor that is in ER.

Proof: In the initial state, the condition is satisfied becatss initialized to NULL and

the state of each processor is 1R. Then, the lemma can be proved by showing that for
each transition, if the condition is satisfied before the transition, it is preserved with the
transition. We may safely check only the transitions with which a processor enters/leaves
ER orL is modified.

e 2R—9R (The processor enters ER ahis modified.)

This transition occurs only wheh is NULL, and changes it to noMULL. There
are no processor in ER before the transition sidces NULL. Therefore, the
condition is preserved.

e 4L—4R, 5L—5R, 6L—6R (The processor enters ER.)

These transitions occur only when another processor changdsdhedfield to
Locked in other words, it makes the transition from 12R to 1R. In this case, a
processor enters ER while another leaves ER.LAs not modified with these
transitions, the condition is preserved.

e 12R—1R (The processor leaves ER.)

A processor making this transition changes tbekedfield of another processor
from Lockedto Releasedin other words, it causes a transition from 4L/5L/6L to
4R/5R/6R on another processor. This is the same situation with the above.

¢ 10R—1R, 15R~16R (The processor leaves ER and modified.)

These transitions occur only whéns not VULL and change it t&WULL. Therefore,
the condition is preserved.

¢ 2R—3R (L is modified.)

L is kept nonAVULL with this transition. Therefore, the condition is preserved.

Theorem 2 (Mutual Exclusion) There is at most one processor which is in 9R state.
Proof: This directly follows from Lemma 1. a
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In the following, the processor in ER is called tloek holder(LH, in short), if any. A
processor is called to be designated by a pointer variable when its queue node is pointed
to by the pointer.

Next, we define théock queu®Ve do not use the word “waiting queue” because the
lock holder can be included in the queue. which is an ordered list of processors. The last
processor of the lock queue is defined to be the one designatedWwhenL is NULL,
the lock queue is defined to be empty. The predecessor of a processor in the lock queue
is the one designated by itgedvariable. WherL is not NULL, the first processor of the
queue is defined according as the state of LH (which exists from Lemma 1) as follows.

(1) When LH is in 4R, 5R, 6R, 9R, 10R, or 11R, LH is the first processor of the lock
queue.

(2) When LH is in 12R, 13R, 14R, 15R, 17R, or 18R, the processor designated by the
succvariable of LH is the first one of the lock queue.

(3) When LH is in 19R, the processor designated bygheariable of LH is the first
one of the lock queue.

In the next lemma, we show that the lock queue is well-structured and handled
focusing only on the lock queue operations. We need the following assumption for further
discussion.

Assumption 3 Any processor has not been included in the lock queue when itis in 1R
state. O

In the initial state, this assumption is satisfied because all processors are in 1R and
because the lock queue is empty. To show that the assumption always holds, itis necessary
to prove that a processor is not included in the lock queue when it returns to 1R state. The
algorithm in Figure 70 and 71 realizes this property by introducing the transient status in
which thelockedfield is Canceled

In the following, we suppose that this assumption alway holds. It is proved that
a processor is not included in the lock queue when it returns to 1R state in Lemma 7
after the discussions which take the valudarfkedfields into consideration. This result
shows that the assumption is preserved if it is satisfied in the initial state. Therefore, the
assumption is proved inductively using Lemma 7.

Lemma 4 Following two conditions hold under Assumption 3.
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(1) A processor modifies the lock queue with only two kind of operations: (a) inserting
itself at the end of the lock queue when it is not included in the queue and (b)
removing the first processor of the lock queue from the queue.

(2) When thenextfield of a processor included in the lock queue is A@YLL, it
designates the successor of the processor in the lock queue.

Proof: In the initial state, the conditions are satisfied because no operation has been done
on the lock queue and because the lock queue is empty. Then, the lemma can be proved
by showing that for each transition, if the conditions are satisfied before the transition,
they are preserved with the transition. We may safely check only the transitions with
which the lock queue is changed or with which thextfield of a processor included in

the lock queue is modified. The lock queue is modified in the following four cases: (a)

L is changed, (b) th@redvariable of a processor in the lock queue is changed, (c) LH

is changed, and (d) LH makes a transition beyond the boundaries with which the first
processor of the lock queue is defined.

e 2R—3R, 2R-9R (L is changed and theredvariable is changed.)

A processor making one of these transitions becomes the last processor of the lock
queue after the transition. In case of-2RR, the last processor before the transition

is designated by thpredvariable. The first processor of the lock queue remains
unchanged. In case of 2ROR, the lock queue is empty before the transition and
includes only the processor making the transition after the transition. In both cases,
the processor making the transition is inserted at the end of the lock queue.

Because a processor in 1R is not included in the lock queue from Assumption 3
and because a processor is not inserted to the lock queue by another processor from
Condition (1), a processor in 2R is not included in the lock queue.

Since thenextfield of a processor is modified only when it is designated byottee/
variable of another processor, thextfield of the processor which is not included

in the lock queue or is at the end of the lock queue is not modified by another
processor. Because the processor making the transitien3HER9R is not included

in the lock queue before the transition and is at the end of the lock queue after the
transition, thenextfield of the processor is not modified for the while. Therefore,
the nextfield of the processor i8/ULL immediately after the transition.

From the above discussions, if the conditions are satisfied before one of the
transitions, they are preserved after the transition.
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10R—1R, 15R-16R (L is changed.)

Before these transitions, the lock queue includes only one processor (LH in case
of 10R—1R, and the processor designated by sivecvariable of LH in case of
15R—16R) because the first processor of the lock queue is designatedAster

the transitions, the lock queue becomes empty. Therefore, the transitions remove
the unique processor (witch is the first processor obviously) in the lock queue from
the queue, and the conditions are preserved with the transitions.

4L—4R, 5L—5R, 6L—6R (LH is changed.)

These transitions occur only when another processor makes the transition from
12R to 1R. Before the transitions, the first processor of the lock queue is the one
designated by theuccvariable of the latter processor, which is the former processor
obviously. After the transitions, the former processor is the first one. Consequently,
the lock queue is not modified with these transitions and the conditions are preserved.

12R—1R (LH is changed.)

A processor making this transition causes a transition from 4L/5L/6L to 4R/5R/6R
on another processor. This is the same situation with the above.

9R—12R, 11R-12R (LH makes a transition beyond the boundaries.)

The first processor of the lock queue is changed from LH to the one designated
by the succvariable of LH with these transitions. Tls/ccvariable of LH equals

to /.nextand designates the successor of LH in the lock queue. Therefore, the
transitions remove LH, which is the first processor of the lock queue, from the

queue, and the conditions are preserved.

18R—19R (LH makes a transition beyond the boundaries.)

The first processor of the lock queue is changed from the one designated by the
succvariable of LH (F,) to the one designated by tlemvariable (P;) with this
transition. Thesnvariable of LH equals tauce— nextand designates the successor

of P, in the lock queue. Therefore, the transitions reméyewhich is the first
processor of the lock queue, from the queue, and the conditions are preserved.

19R—12R (LH makes a transition beyond the boundaries.)

The first processor of the lock queue is changed from the one designated by the
snvariable of LH to the one designated by thaccvariable with this transition
from the definition. Because thg/ccvariable after the transition equals to the
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variable before the transition, the first processor is not changed in actual and the
conditions are preserved.

e 4L—5L, 4R—5R (Thenextfield is modified.)

The processor making one of these transitions makegak#ield of the processor
designated by itpredvariable designate itself. Therefore, thextfield designates

the successor in the lock queue, and Condition (2) is shown to be preserved with the
transitions. Since the lock queue is not modified with the transitions, Condition (1)
is preserved obviously. O

Lemma 5 Following conditions hold under Assumption 3.

(1) WhenLHisin14R, 15R, 17R, or 18R, the processor designated sy/ttugariable
of LH is in C state. Conversely, a processor in C state is designated ksutize
variable of another processor in 14R, 15R, 17R, or 18R.

(2) When a processor is in 16R, the processor designated bydtariable is in C’
state. Conversely, a processor in C’ state is designated bgubevariable of
another processor in 16R.

Proof: First, we prove that the following condition is satisfied under Assumption 3.

(0) When a processorisin 14R, 15R, 16R, 17R, or 18R (we call the process@Gs in
in the following), the/ockedfield of the processor designated by steccvariable
is Canceled Conversely, a processor whaosekedfield is Canceleds designated
by the succvariable of another processor in SC.

Since this condition obviously holds in the initial state, it is proved to be satisfied
by showing that every transition preserves the condition. We may safely check only the
transitions with which a processor enters/leaves SC and the ones with whititkiee/
field of a processor is changed from@anceledo/from another.

e 13R—-14R

With this transition, LH enters SC an@anceleds assigned to théockedfield of
the processor designated by theccvariable of LH. Therefore, if Condition (0) is
satisfied before the transition, it is also satisfied after the transition.

e 18R—-19R

With this transition, LH leaves SC anfdeleaseds assigned to théockedfield of
the processor designated by theccvariable of LH. Therefore, Condition (0) is
preserved.
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e 16R—1R

From the proof of Lemma 4, the processor designated bysdleevariable (%) is

not included in the lock queue immediately after the transition from 15R to 16R.
Since the Condition (0) is assumed to be satisfied before the transitich 1IBRthe
lockedfield of P, is kept to beCanceledBecause a new processor is added to the
lock queue only with the transition from 2R to 3R/9R (from the proof of Lemma 4),
the processorf,, whoselockedfield is kept to beCanceledis not inserted to the
lock queue. Consequently, the processor designated tsuttwariable of another
processor in 16R is proved to be notincluded in the lock queue. Since the processor
designated by theuccvariable of another processor in 14R, 15R, 17R, or 18R
is the first one in the lock queue by definition, it is never designated bdine
variable of any processor in 16R.

Suppose the case that more than two processors are in 16R state. Because these
processors have made the transition from 15R and becausestioeirariables are

not modified for the while, theuccvariables of each two of them never designate

the same processor.

From the above discussions, the transition 26HR does not change the states
of the processors designated by theaccvariables of other processors in SC and
preserves Condition (0).

SinceL does not becom&ULL while LH exists from Lemma 1/ is kept nonAVULL
while a processorisin 14R, 15R, 17R, or 18R. Therefore, the processor designated by the
succvariable of LH is in C state for the while. As a processor assiyb4 L to L with
the transition from 15R to 16R, the processor designated [syitevariable becomes C’
state after the transition. Condition (1) and (2) follow from the above discussiond

Lemma 6 Following conditions hold under Assumption 3.
(1) The transition 13R-14R (and only the transition) causes the transitior-7C

(not 7P—7C’) on the processor designated by thecvariable.

(2) The transition 15R-16R (and only the transition) causes the transitior=7/AC’ or
8C—8C’ on the processor designated by gigecvariable.

(3) The transition 16R-1R (and only the transition) causes the transition#CR
or 8C'—8R (not 7C-7R or 8C—8R) on the processor designated by #&c
variable.
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(4) The transition 18R+19R causes (and only the transition) the transition—=7/AR
or 8C—8R (not 7C—7R or 8C—8R) on the processor designated by Hiec
variable.

Proof: Because the processor designated byshecvariable of another processor in
14R is in C state from Lemma 6, the transition 13R4R causes the transition #F/C

(not 7RP—7C’) on the former processor. Since there are no other transitions which change
the lockedfield from Preemptetb CanceledCondition (1) is shown to be satisfied.

They are also shown from Lemma 6 that the transition-£@R causes a transition
from C’ state to R state on another processor and that1B#R causes a transition from
C state to R state. Since there are no other transitions which chankpekieefield from
Canceledo ReleasegCondition (3) and (4) are shown to be satisfied.

Similarly, the transition 15R-16R causes a transition from C state to C’ state on the
processor designated by thaccvariable from Lemma 6.

There are two transitions 15R16R and 10R-1R which makeL to NULL. As a
processor making the transition from 10R to 1R is LH before the transition, there are
no other processor in 14R, 15R, 17R, or 18R. Therefore, if there are some processors
whose lockedfields are Canceledthey are proved to be in C' state from Lemma 6.
Consequently, the transition 16RLR does not cause a transition from C state to C’ state
on another processor, and Condition (2) is proved to be satisfied. O

Lemma 7 The state of the processor linked to the lock queue is included in LQ in
Figure 72. The processor whose state is included in LQ is linked to the lock queue.
Proof: In the initial state, the condition is satisfied becaligs initialized to VULL and

the state of each processor is 1R. Then, the lemma can be proved by showing that for
each transition, if the condition is satisfied before the transition, it is preserved with the
transition. We may safely check only the transitions with which a processor enters/leaves
LQ or the lock queue is modified.

¢ 2R—3R, 2R—-9R (The processor enters LQ and the lock queue is modified.)

The processor making one of these transitions is added at the end of the lock queue
(from the proof of Lemma 4). Therefore, the condition is preserved.

¢ 10R—1R (The processor leaves LQ and the lock queue is modified.)

This transition occurs when only the processor making the transition is included in
the lock queue, and the lock queue becomes empty after the transition. Therefore,
the condition is preserved.
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9R—12R, 11R-~12R (The processor leaves LQ and the lock queue is modified.)

The processor making one of these transitions is removed from the lock queue
(from the proof of Lemma 4). Therefore, the condition is preserved.

7C—7C’, 8C—8C’ (The processor leaves LQ.)

These transitions occur only when LH makes the transition from 15R to 16R
from Lemma 6 (2). Since the processor making one of these transitions, which
is designated by thesuccvariable of LH, is removed from the lock queue, the
condition is satisfied after the transition.

15R—16R (The lock queue is modified.)

This transition causes the transition from 7C/8C to 7C’/8C’ on the processor
designated by thsuccvariable from Lemma 6 (2). This is the same situation with
the above.

7C—T7R, 8C—8R (The processor leaves LQ.)

These transitions occur only when LH makes the transition from 18R to 19R
from Lemma 6 (4). Since the processor making one of these transitions, which
Is designated by theuccvariable of LH, is removed from the lock queue, the
condition is satisfied after the transitions.

18R—19R (The lock queue is modified.)

This transition causes the transition from 7C/8C to 7R/8R on the processor
designated by thesuccvariable from Lemma 6 (4). This is the same situation with
the above.

7P—7C’ (The processor leaves LQ.)

The only transition which changes the state of another processor from P state to
C/C’ state is 13R+14R. Because it is shown that the transition :3RIR changes

the state of another processor from P state to C state from Lemma 6 (1), the
transition from 7P to 7C’ never occurs.

None of the transitions 4b4R, 5L—5R, 6L—6R, 12R-1R, and 19R-12R actually

changes the lock queue from the proof of Lemma 4. a

From this lemma, it is proved that a processor is not included in the lock queue when

it returns to 1R, and Assumption 3 can be proved by induction.

To prove deadlock freedom of the algorithm, we assume that each processor makes
the next transition in finite duration of time. First, we show that tletfield is written
non-VULL value in finite duration of time.
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Lemma 8 If a processor included in the lock queue is not the last one in the queue, its
nextfield becomes noWULL in finite duration of time under the assumption that each
processor makes the next transition in finite duration of time.

Proof. Suppose the case that a processor makes the transition from 2R to 3R and inserts
itself at the end of the lock queue. From the assumption, the processor makesxthe

field of its predecessor designate itself, makes the fieldMbL in other words, within

finite duration of time after the transition. From the other point of view, niegtfield

of the processor which is included in the lock queue but not the last one in the queue
becomes nomMVULL in finite duration of time. O

The deadlock freedom of the algorithm can be derived as the following theorems.

Theorem 9 (Deadlock Freedom (1))When no processor holds a lock and some proces-
sors try to acquire the lock, one of them can acquire the lock within finite duration of
time.

Proof: When no processor holds the lock (or is in ER)js NULL from Lemma 1.
Therefore, the lock queue is empty by definition and there is no processor whose state is
in LQ from Lemma 7. Then, all of the processors trying to acquire the lock are in 7C’,
8C’, 7R, 8R, 1R, or 2R.

A processor in 8C’ moves to 8R in finite duration of time because the state 8C’
is a result of the transition 15R16R on another processor and because the transition
16R—1R occurs in finite duration of time on the processor. Similarly, a processor in 7C’
moves to 7R or 8C’ in finite duration of time.

Therefore, every processor trying to acquire the lock reaches 2R in finite duration of
time. The first processor trying the transition from 2R moves to 9R dirresnains to be
NULL and succeeds in acquiring the lock. a

Theorem 10 (Deadlock Freedom (2))A processor trying to release a lock finishes to
release the lock within finite duration of time, if the number of interrupt requests raised
on other processors during the release operation is bounded.

Proof. There are four loops in the lock releasing routine: HRIR, 17R-17R,
12R—13R—12R, and 12R- - - - —19R—12R. This theorem can be proved by showing
that a processor trying to release a lock finishes these loops in finite duration of time under
the condition that the number that other processors make the transition from 6L to 7P is
bounded.

1. 11R-11R, 17R=17R

A processor finishes these loops in finite duration of time from Lemma 8.
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2. 12R—-13R—12R

When LH is in 12R or 13Rsuce—lockednever becomeReleasedr Canceledt
never become®&eleasedbecause the processor designatedsbycis included in
the lock queue and is not LH. It never becont@siceledrom Lemma 5.

Consequently, the transition 13RL2R occurs only whesuce— lockedis modified

from Preemptedo Lockedwhile LH is in 13R. From the assumption that the
number of interrupt requests raised on other processors during the release operation
is bounded, the number of the transition from 6L to 7P, which is the only transition
changing thdockedfield to Preempteds bounded, and the execution of this loop

is finished in finite duration of time.

3. 12R— --- —-19R—12R

When LH makes the transition from 18R to 19R, the first processor of the lock
queue is removed from the queue. Therefore, the length of the lock queue becomes
shorter as the processor executes this loop. From the assumption that the number
of interrupt requests raised on other processors during the release operation is
bounded, the maximum number of processors which are included in the lock queue
when release operation is started and the processors which are inserted to the queue
afterwards is bounded. Therefore, the maximum execution number of this loop is
bounded. O

Finally, we show the equivalence of the algorithm in Figure 26 and 27 and the one
in Figure 70 and 71. When a processor is in 16R or 18f¢—/ockedis fixed to
be Canceledrom Lemma 5. Therefore, the compaaadswap operations in the lines
marked withdg and@8 in Figure 71 are equivalent to simple assignments.

A processor refers to théockedfield of another processor only when the latter
processor is designated by thextfield of LH or other processors in the lock queue.
In other words, thelockedfield of a processor is referred to only when the processor
is included in the lock queue and is not LH, and after it makesribgtfield of its
predecessor designate itself. In short, it is referred only when the process@)isS@n
@, or(®. Consequently, its initial value is never referred to.
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