
Studies on Scalable Real-Time Kernels
for Function-Distributed

Multiprocessors

Hiroaki Takada

Doctor Dissertation

T
Department of Information Science

Graduate School of Science
University of Tokyo

October 1996

Abstract

Recent advances in microprocessor technologies have led to extensive use of computer

systems in real world. Because many of these systems require some real-time properties,

importance of real-time computing technologies is rapidly increasing. Demands for

large-scale and high-performance real-time systems are also growing, and multiprocessor

systems, especiallyfunction-distributed multiprocessors, are often adopted to meet the

demands.

In order to reduce the maintenance cost of a multiprocessor real-time system, even

when a part of the system is modified or when some processors are added to the system,

changes in the worst-case timing behavior of the unmodified part of the system should be

minimized. We call this property asscalability. Ideally, the worst-case execution time

of each routine executed on a processor is determined independently of the number of

processors in the system and of the activities of other processors. However, the worst-case

execution time of a routine that exclusively accesses a shared resource is unavoidably

prolonged, as the number of contending processors is increased.

When a real-time system is realized on a function-distributed multiprocessor, external

devices and tasks handling them are allocated to processors so that the number of

inter-processor synchronizations is minimized and that as many time-critical tasks as

possible are closed within a processor. Therefore, it is advantageous that the worst-case

timing behavior of the processings that can be done within a processor is determined

independently of the number of processors in the system and of the other processors’

activities.

In this dissertation, we discuss the specification and implementation issues of a

real-time kernel that facilitate to realize scalable application systems on existing shared-

memory multiprocessor system. In order to realize scalable systems, the real-time

kernel itself must also be scalable. Though real-time kernels running on shared-memory

multiprocessors have been actively studied, none of the studies has focused on the

scalability of worst-case behavior.

At first, we clarify the desired properties of ascalable real-time kernelfor function-

distributed multiprocessors, and summarize them in four required properties. Implemen-

i

tation approaches of a real-time kernel on shared-memory multiprocessors are discussed,

and two obstacles for satisfying the required properties are pointed out; lack of scalability

in local operations, and incompatibility of predictable inter-processor synchronization

and constant interrupt response. Then, we propose their solutions when task-independent

synchronization and communication objects, such as semaphores and eventflags, are

not supported. With the proposed method, the four required properties are satisfied,

and the execution time and the response time of each kernel service have reasonable

upper bounds. In these discussions, we assume that the underlying inter-processor

synchronization mechanism and hardware architecture have some necessary properties.

We also propose the approach to classify kernel resources into classes with different

characteristics to improve the performance of local operations. Among them, a task

belonging to the private class satisfies the condition that its maximum execution time

is independent of the number of contending processors, but the task cannot directly

synchronize or communicate with other processors.

Effectiveness of our proposed methods are demonstrated through performance mea-

surements using an existing multiprocessor system. Though the evaluation environment

dose not satisfy the assumption on underlying inter-processor synchronization and hard-

ware, it is confirmed through the measurements that the four required properties of a

scalable real-time kernel are practically satisfied with our proposals, while they cannot be

met at the same time with other methods.

In the second half of this dissertation, we investigate on spin lock algorithms for use

in scalable real-time kernels for function-distributed multiprocessors. We propose two

kind of spin lock algorithms, queueingspin lock with preemptionandspin lock with local

precedence, which are combined to use in our implementation of a scalable real-time

kernel. We also discuss the scalability issues onnested spin locks, and propose the

scheme to make nested spin locks scalable and the algorithms ofpriority inheritance spin

locks. The effectiveness of these algorithms is also demonstrated through performance

evaluations.

ii

Acknowledgment

This work is owing to the support, guidance, and encouragement of many people. At first,

I would like to express my highest appreciation to my supervisor, Professor Ken Sakamura

of University of Tokyo. He has taught me a great deal about doing research on computer

science. His research philosophies have always guided my research to theproperdirection

in these eight years. He has also given me a prominent research environment: the goal

of the TRON Project which is the essential background of this study, good working

environment, excellent colleagues, connections with many researchers in the industries,

and so on.

Next, I would like to express my gratitude to the former and current members of

Sakamura Laboratory for their comments to this work and encouragement. Especially, I

would like to acknowledge Dr. Noboru Koshizuka and Mr. Hirohisa Mori for their useful

suggestions and discussions. Also, I would like to thank my co-workers, the members

of the real-time system group of our laboratory, including Mr. Cai-Dong Wang and Mr.

Nobuo Sakiyama. I also thank Ms. Kaori Shiomi, the secretary of Prof. Sakamura, for

her assistance and care to my daily working environment. Mr. Nobuhiko Nishio and Mr.

Yasushi Saito have made much contribution to the initial stages of the development of ItIs

(ITRON Implementation by Sakamura Lab). Thanks also go to Mr. Hideki Yoshida, Mr.

Yasuharu Sasaki, and Mr. Tomonori Usaka who have done much effort to port the GNU

software development environment for TRON-specification microprocessors.

I also would like to thank the members of the ITRON Technical Committee of TRON

Association, especially Dr. Kiichiro Tamaru of Toshiba Corp., Mr. Kenji Kudou of Fujitsu

Device Inc., and Mr. Tsuyoshi Shimizu of Hitachi, Ltd., for their fruitful discussions

on the current issues of the real-time operating systems for embedded systems. Special

thanks go to Mr. Hideo Tsubota of Mitsubishi Electric Corp., because the discussion

with him has given me an initial motivation of this work. I also thank to other people

engaged in the TRON Project including Mr. Akira Matsui of Personal Media Corp. and

Mr. Toshikazu Okubo of NTT.

I am owing much to other researchers of the real-time system community in Japan

and foreign countries, especially Dr. Kenji Toda of ETL, Dr. Morikazu Takegaki and

iii

Mr. Hiro Kanamaru of Mitsubishi Electric Corp., Prof. Heonshik Shin of Seoul National

Univ., Prof. Hideyuki Tokuda of Keio Univ. and CMU, and Prof. Tatsuo Nakajima of

JAIST, for their valuable comments on my research. Also, I would like to appreciate Prof.

Theodore Johnson of Univ. of Florida and Mr. Travis S. Craig of Univ. of Washington for

their discussions and suggestions on spin lock algorithms for real-time systems. I also

would like to thank the anonymous reviews of our papers presented in various journals

and symposiums.

In these seven years, I have also engaged in the work to construct the Internet in Japan.

I am owing much to the researchers of the Internet community in Japan for their support

and encouragement, though they have little direct relation with this study. Among them,

special thanks go to Prof. Masaki Hirabaru of Nara Inst. of Science and Technology, Prof.

Tsuneyoshi Kamae of Univ. of Tokyo, Mr. Koki Higashida of Science Univ. of Tokyo,

Prof. Shigeki Goto of Waseda Univ., Ms. Atsuko Oka of NTT, Mr. Ikuo Kojima of JPNIC,

Prof. Naomasa Maruyama of The Inst. of Statistical Mathematics, and Prof. Jun Murai of

Keio Univ.

Finally, my deepest appreciation is reserved for my beloved wife, Yoshino, for her

support, moderate encouragement, and patience that made this work possible. Thanks

also go to my son, Yasufumi, and my daughter, Haruka, for their innocent smiles.

iv

Contents

I Introduction 1

1 Real-Time Systems and Real-Time Kernel 2

2 Function-Distributed Multiprocessors 3

3 Real-Time Scalability 4

4 Objectives of This Study 5

5 Outline of This Dissertation 7

6 Evaluation Environment and Performance Metric 10

6.1 Evaluation Environment: 10

6.2 Performance Metric: 13

II Scalable Real-Time Kernels for Function-Distributed Multipro-
cessors 16

1 ITRON Specifications and ITRON-MP 17

1.1 TRON Project and ITRON: 17

1.2 Design Principles of the ITRON Specifications: : : : : : : : : : : : : : 18

1.3 History and Current Status of the ITRON Specifications: : : : : : : : : : 20

1.4 Overview of ItIs : 21

1.5 Design Goals and Approaches of ITRON-MP: : : : : : : : : : : : : : : 24

2 Basic Kernel Model 25

2.1 Basic Kernel Model for Function-Distributed Multiprocessors: : : : : : 25

2.2 Direct Access Method and Remote Invocation Method: : : : : : : : : : 26

2.3 Drawbacks of the Remote Invocation Method: : : : : : : : : : : : : : : 28

2.4 Kernel Data Structures and Lock Granularity: : : : : : : : : : : : : : : 29

v

3 Requirements and Problems 33

3.1 Scalability of Intra-Processor Synchronization: : : : : : : : : : : : : : : 33

3.2 Predictable Inter-Processor Synchronization and Interrupt Response: : : 33

3.3 Required Properties: 34

4 Proposed Solutions 35

4.1 Spin Lock with Local Precedence: 36

4.2 Spin Lock with Preemption: 36

4.3 Assumptions on Underlying Synchronization Mechanism and Hardware: 38

5 Classification of Kernel Resources 39

5.1 Private Tasks: 40

5.2 Classification of Task-Independent Synchronization and Communication

Objects: 41

5.3 Isolated Tasks and Interrupt Handlers: : : : : : : : : : : : : : : : : : : 42

5.4 Kernel Interface : 44

6 Performance Measurements 44

6.1 Measurement Method: 44

6.2 Measurement Results: 46

7 Difficulty To Be Solved 49

7.1 Necessity of Nested Spin Locks: 50

7.2 Candidate Implementation Methods: 51

8 Summary 53

III Spin Lock Algorithms for Scalable Real-Time Kernels 56

1 A Brief Survey on Spin Lock Algorithms 57

1.1 Hardware Primitives and Spin Locks: : : : : : : : : : : : : : : : : : : 57

1.2 Notations Used in Pseudo-Codes: 58

1.3 Basic Spin Lock Algorithms: 59

1.4 Priority-Ordered Spin Locks: 62

2 Bounded Spin Lock with Preemption 66

2.1 Spin Locks and Interrupt Latency: 66

2.2 Spin Locks with Preemption: 67

2.3 Queueing Lock with Simple Preemption Scheme: : : : : : : : : : : : : 68

vi

2.4 Queueing Lock with Improved Preemption Scheme: : : : : : : : : : : : 72

2.5 Performance Evaluation: 76

2.6 Combination of the Two Preemption Schemes: : : : : : : : : : : : : : : 79

3 Spin Lock with Local Precedence 82

4 Scalability of Nested Spin Locks 82

4.1 Assumptions and Notations: 85

4.2 Nesting in Two Levels: 86

4.3 Performance Evaluation: 90

4.4 Nesting in Three or More Levels: 94

5 Priority Inheritance Spin Locks 97

5.1 Priority Inversion and Priority Inheritance: : : : : : : : : : : : : : : : : 97

5.2 Priority Inheritance Spin Lock Algorithms: : : : : : : : : : : : : : : : : 100

5.3 Performance Evaluation: 107

6 Summary 110

IV Conclusion and Future Work 113

1 Conclusion 114

2 Future Work 115

2.1 Global Tasks: 116

Bibliography 118

A Implementation Details of our Real-Time Kernel 126

1 Management of Classes 126

2 Initialization Procedure 127

3 Spin Locks Used in the Implementation 129

B Proofs on the Queueing Spin Lock Algorithm with Simple
Preemption Scheme 135

vii

List of Figures

1 An Example Use of Function-Distributed Multiprocessors: : : : : : : : 4

2 The Front Panel of TRONBOX: 10

3 A Processor Board of TRONBOX: 11

4 Evaluation Environment: 11

5 Distributions of Execution Times: 14

6 P -reliable Execution Times: 15

7 Basic Kernel Model : 26

8 Kernel Model with Private Tasks: 40

9 Kernel Model with Private Tasks and Objects: : : : : : : : : : : : : : : 42

10 The First Workload : 45

11 The Second Workload: 46

12 Execution Times of Local Operation: 47

13 Execution Times of Remote Operation: : : : : : : : : : : : : : : : : : : 48

14 Interrupt Response Times: 48

15 Interrupt Service Overheads: 49

16 Acquiring Nested Spin Locks: 50

17 Acquiring Nested Spin Locks with Preemption: : : : : : : : : : : : : : 52

18 The MCS Lock: 61

19 Behavior of the MCS Lock : 62

20 Behavior of the Markatos’ Lock: 63

21 The Markatos’ Algorithm (Definition Part): : : : : : : : : : : : : : : : 64

22 The Markatos’ Algorithm (Main Part): : : : : : : : : : : : : : : : : : : 65

23 Acquiring a Lock Precedes Disabling Interrupts: : : : : : : : : : : : : : 67

24 Disabling Interrupts Precedes Acquiring a Lock: : : : : : : : : : : : : : 67

25 The Test&Set Lock with Preemption: 68

26 The Queueing Lock with Simple Preemption Scheme (Part 1): : : : : : : 69

27 The Queueing Lock with Simple Preemption Scheme (Part 2): : : : : : : 70

viii

28 The Queueing Lock with Improved Preemption Scheme (Part 1): : : : : 73

29 The Queueing Lock with Improved Preemption Scheme (Part 2): : : : : 74

30 The Queueing Lock with Improved Preemption Scheme (Part 3): : : : : 75

31 Measurement Program Skeleton: 76

32 99.99%-Reliable Execution Times of Critical Region: : : : : : : : : : : 78

33 99.99%-Reliable Execution Times of Critical Region: : : : : : : : : : : 78

34 99.99%-Reliable Interrupt Latency Times: : : : : : : : : : : : : : : : : 79

35 99.99%-Reliable Execution Times of Critical Region: : : : : : : : : : : 80

36 Average Execution Times of Critical Region: : : : : : : : : : : : : : : : 80

37 State Transition of the Combined Algorithm: : : : : : : : : : : : : : : : 81

38 The Spin Lock with Local Precedence (Part 1): : : : : : : : : : : : : : : 83

39 The Spin Lock with Local Precedence (Part 2): : : : : : : : : : : : : : : 84

40 Example of Nested Locks: 85

41 Nesting in Two Levels: 86

42 Nesting in Two Levels (cont.): 86

43 Worst-Case Scenario of the Simple Method: : : : : : : : : : : : : : : : 87

44 Measurement Routines with TF: 91

45 99.99%-Reliable Execution Times of Routine (c): : : : : : : : : : : : : 92

46 99.99%-Reliable Execution Times of Routine (a): : : : : : : : : : : : : 92

47 99.99%-Reliable Execution Times of Routine (a): : : : : : : : : : : : : 93

48 Average Execution Times of Routine (c): : : : : : : : : : : : : : : : : : 93

49 Average Execution Times of Routine (a): : : : : : : : : : : : : : : : : : 94

50 Nesting in Three Levels: 95

51 Example of Nested Spin Locks: 98

52 Usage of Priority Inheritance Spin Locks: : : : : : : : : : : : : : : : : 100

53 Data Structures for Priority Inheritance Spin Locks: : : : : : : : : : : : 101

54 Subroutines for Priority Inheritance Spin Locks: : : : : : : : : : : : : : 102

55 The First Algorithm (Part 1): 103

56 The First Algorithm (Part 2): 104

57 The Second Algorithm (Part 1): 106

58 The Second Algorithm (Part 2): 107

59 Evaluation Routines: 108

60 99.99%-Reliable Execution Times of Routine (b): : : : : : : : : : : : : 109

61 99.99%-Reliable Execution Times of Routine (a): : : : : : : : : : : : : 109

62 Average Execution Times of Routine (b): : : : : : : : : : : : : : : : : : 110

63 The Structure of Resource ID: 127

ix

64 Class Control Blocks and Shared Class Control Blocks: : : : : : : : : : 128

65 The Spin Lock Used in the Implementation (Part 1): : : : : : : : : : : : 130

66 The Spin Lock Used in the Implementation (Part 2): : : : : : : : : : : : 131

67 The Spin Lock Used in the Implementation (Part 3): : : : : : : : : : : : 132

68 The Spin Lock Used in the Implementation (Part 4): : : : : : : : : : : : 133

69 The Spin Lock Used in the Implementation (Part 5): : : : : : : : : : : : 134

70 The Queueing Lock with Simple Preemption Scheme (Part 1): : : : : : : 136

71 The Queueing Lock with Simple Preemption Scheme (Part 2): : : : : : : 137

72 The State Transition Diagram of a Processor: : : : : : : : : : : : : : : : 138

x

List of Tables

1 Timing Behavior of a Uniprocessor Real-Time Kernel: : : : : : : : : : : 6

2 Levels in�ITRON3.0 Specification: 20

3 Typical ITRON-specification Kernel Applications: : : : : : : : : : : : : 21

4 Main Functions Supported in the�ITRON3.0-specification Kernel: : : : 22

5 Classification of System Calls: 31

6 Required Timing Behavior: 35

7 Timing Behavior of the Proposed Method: : : : : : : : : : : : : : : : : 38

8 Accessibility of Kernel Resources: 42

9 Accessibility of Kernel Resources with Isolated Classes: : : : : : : : : : 43

10 Accessibility of Kernel Resources (Full Set): : : : : : : : : : : : : : : : 117

xi

Part I

Introduction

1

1 Real-Time Systems and Real-Time Kernel

A real-time systemis a system in which the correctness of the system depends not only

on the logical results of the computation, but also on the time at which the results are

produced [64, 62].1 In other words, a real-time system is required to satisfy a set of

timing constraints. In ahard real-time system, severe consequences can result if a timing

constraint is not satisfied.

Timing constraints on a real-time system always come from the external environment.

Therefore, a real-time system has some relations to its external environment. From

another point of view, a real-time system is considered to be embedded in a larger

environment, and thus is also called anembedded system[15].

In [15], four fundamental requirements on real-time systems are listed:timeliness,

simultaneity, predictability, anddependability. The first two of them are user requirements.

Timeliness means that a system must satisfy the given timing constraints, which are

typically described in the form that the result of the computation must be produced within

the predefined and predictable time-bound, called thedeadline. Consequently, not the

average but the worst-case timing behavior, i.e. the worst-case execution times and the

worst-case response times, are primary concern in real-time systems. The worst-case

execution (or response) times usually correspond to the maximum execution (or response)

times.2 Simultaneity means that real-time systems must provide parallel processing

capabilities to cope with the native simultaneity of the external environment.

Predictability and dependability are supplementary requirements to the former two

requirements. Predictability means that the functional and timing behavior of a system

should be as deterministic as necessary to satisfy system specification [62]. More

precisely, “predictability means that it should be possible to show, demonstrate, or prove

that requirements are met subject to any assumptions made, for example, concerning

failures and workloads” [65].

A real-time kernel, also called as a real-time monitor or a real-time executive, is the

basic software module around which a real-time system is realized. The essential role of

a real-time kernel is to support multitasking facility for the requirement of simultaneity.

It should also support inter-task synchronization and communication functions and basic

memory management functions. On the other hand, it is not necessary for a real-time

kernel to handle various external (or input/output) devices directly. One of the reasons

1This definition is one of the many definitions of a real-time system (or computing). We consider
that this statement is appropriate for the definition of a (general) real-time system, though Stankovic and
Ramamritham defined ahard real-time system with this statement in [64].

2If the result of a computation is obtained too early, it is usually possible to wait until the appropriate
time.

2

is that the external devices should be handled by tasks running on a real-time kernel,

because their response times are generally very long compared to the response times of

the core components of a computer system (such as processors and memories). Another

reason is that there is a great variety of external devices attached to deeply embedded

systems, and that efficient and uniform handling of them is very difficult.

The role of a real-time kernel can be paraphrased in contrast to the role of an operating

system as follows. Supporting the construction of an application system through the

virtualization of hardware resources of a computer system is an essential role of an

operating system. A real-time kernel is a core module of an operating system that

virtualizes only processors and memories.

2 Function-Distributed Multiprocessors

As the application areas of real-time systems expand, requirements for large-scale and

high-performance real-time systems are increasing. Areas of rapid growth include large-

scale control systems (plant- and aircraft-control systems), transaction processing (on-line

banking and seat reservation systems), and communication processing (network routers

and switches).

In these application areas, a large number of external devices such as sensors, actuators,

and network controllers are connected to a system, and the system is required to respond

to the external events from the devices within predefined and usually short time-bounds.

It is usually the case that such a system also requires large computational power. To meet

these requirements, multiprocessor systems are often adopted to real-time systems.

Because the required processing time for each external device can be estimated

beforehand in most real-time systems, it is preferable that each device is handled by a

fixed processor (or a fixed set of processors) and that the interface with the device is

connected to the local bus of the processor. A distributed shared-memory architecture is

also adopted, in which memory modules are connected to the local buses of processors

(Figure 1). In this kind offunction-distributed(or asymmetric)multiprocessors, because

the code and data areas of the program that handles an external device are placed in the

local memory of its host processor, the number of shared-bus (or interconnection network)

transactions can be reduced compared to symmetric multiprocessors. This is profitable

not only because the high-performance shared bus and expensive cache mechanisms can

be omitted, but also because the predictability of the system can be improved through the

reduction of access conflicts on the shared bus.

As a general rule, when a real-time system is realized on a function-distributed

3

Global
Memory

Local
Memory

I/O MPU

Local
Memory

I/O MPU

Local
Memory

I/O MPU

I/OI/FnetworkAA

sensors actuator

external
storage

Figure 1: An Example Use of Function-Distributed Multiprocessors

multiprocessor, external devices and tasks handling them are allocated to processors so

that the following goals are satisfied; (1) the number of inter-processor synchronizations

and communications is minimized and (2) as many time-critical tasks as possible are

closed within a processor. Consequently, in well-designed systems on function-distributed

multiprocessors, many tasks, including most of the time-critical tasks in the system, can

be processed without synchronizing or communicating with other processors. In other

words, tasks on a processor are fairly independent with tasks on other processors.

Multiprocessor systems discussed in this dissertation are those consisting of several

or around ten processors. Massively parallel systems are outside the scope of this study.

3 Real-Time Scalability

It is often the case that functional or performance requirements on a system are changed

during its life-time. It is also a frequent situation that the system is required to support

some additional devices. In order to reduce the maintenance cost of the system in such

situations, it is advantageous that modifications of a part of the system do not affect the

timing behavior of the unmodified parts of the system. When the computational resources

of the system are insufficient for the new requirements, the measure is often adopted with

a function-distributed multiprocessor system that one or more processors are added to the

system. The maintenance cost of the system can be greatly reduced, if the changes in

timing behavior of the unmodified parts of the system are very small in this situation. We

call this property asscalability3 or modularity in time domain.

Because the worst-case behavior is the primary concern in real-time systems, the timing

3We use the word “scalability” with stress on the case that processors are added to the system.

4

behavior mentioned above should be the worst-case timing behavior. Consequently, the

above requirements can be summarized as follows. Even when a part of the system is

modified (including the case that some processors are added to the system), the extension

of the worst-case execution times and response times of the unmodified parts of the system

should be minimized. This property is calledreal-time scalability, or simplyscalability,

in this dissertation.

Real-time scalability also facilitates the reuse of a module consisting of a processor,

local memory, external devices, and the software handling them, i.e. the reuse in the unit

of a board in Figure 1. With real-time scalability (or modularity in time domain), timing

constraints imposed on the tasks executed within the module are kept satisfied no matter

what kind of system the module is reused for.

It goes without saying that scalability is also an important issue when the number of

processors is very large, though we do not investigate on massively parallel systems in

this study.

4 Objectives of This Study

The objectives of this study is to clarify the desired properties of a real-time kernel

for function-distributedshared-memorymultiprocessors that facilitates to realize scalable

real-time systems, and to propose its realization methods in both specification and

implementation aspects. In order to realize scalable real-time systems, the real-time

kernel itself must also have the property of real-time scalability.

Real-time kernels running on shared-memory multiprocessor systems have been

actively studied and implemented. Famous examples include Spring Kernel [63, 43, 66],

Chaos [59, 1], Chorus [49], Harmony [12], and Chimera [67]. However, none of the

studies has focused on real-time scalability. In other research areas including real-time

algorithms for multiprocessor systems, little attention has been paid to real-time scalability

either.

As described in Section 1, predictability is a fundamental requirement in real-time

systems. In case of a real-time kernel, predictability means that the maximum execution

time and response time of each kernel service are bounded and known beforehand. This

is because real-time scheduling algorithms and synchronization protocols are usually

implemented within or upon the kernel layer, and because the service times of a real-

time kernel itself are treated asconstantscheduling overheads and cannot be scheduled

as variableswith most real-time scheduling algorithms and synchronization protocols

[4, 47, 29].

5

system call worst-case
name function execution times

cre tsk create a task Tcre tsk

.
sustsk suspend executing a task Tsus tsk

(with a task switch) T 0

sus tsk

rsm tsk resume executing a task Trsm tsk

(with a task switch) T 0

rsm tsk

.
vsnd tmb send a message to a task Tvsnd tmb

(with a task switch) T 0

vsnd tmb

vrcv tmb receive a message sent to meTvrcv tmb

(with a task switch) T 0

vrcv tmb

.

maximum interrupt response time Tint

Table 1: Timing Behavior of a Uniprocessor Real-Time Kernel

The worst-case behavior of a real-time kernel is usually represented using a table. For

example, the maximum execution time of each system call and the maximum interrupt

response time of a real-time kernel for single processor systems can be presented like

Table 1, whereTxxx designates a constant value that is determined for each target

hardware.

In case of a multiprocessor real-time kernel, it is ideal that the worst-case execution

time and response time of each kernel service are determined independently of the

number of processors in the system and of the activities of other processors. However,

the worst-case execution time of a routine that exclusively accesses a shared resource4 is

prolonged, as the number of contending processors is increased, at least with its linear

order. This is because concurrent executions of the routine must be serialized.5

In executing a system call of a real-time kernel, a task usually needs to access some

of the kernel data structures exclusively,6 such as the control blocks of kernel resources

(tasks and task-independent synchronization and communication objects) and the ready

queue(s).7 Because these data structures are also accessed from other processors and

should be accessed exclusively, the maximum execution time of such system call is

4In strict, a shared resource that is fairly accessible from each processor.
5This limitation cannot be removed with the techniques of wait-free or block-free synchronizations

[17, 37].
6With message passings or remote invocations, processors can synchronize without using a shared re-

source exclusively. In function-distributed shared-memory multiprocessors, however, this synchronization
method has some drawbacks. We will describe the drawbacks in Section II.2.3.

7A ready queue includes all the tasks that are ready to execute on the processor. The task scheduler
utilize it to find the next task to be executed efficiently. In our basic kernel model described in Section II. 2,
a ready queue is prepared for each processor.

6

prolonged as the number of contending processors is increased.

On the other hand, the worst-case timing behavior of the processings that can be

done within a processor is desired to be determined independently of the number of

contending processors and of the other processors’ activities. Processings that can be

done within a processor include synchronizations and communications with another task

on the same processor and interrupt services requested by the external devices. This

property is especially advantageous in function-distributed multiprocessors, because most

of the time-critical tasks can be processed without synchronizing or communicating with

other processors in well-designed systems. It is also desirable that modifications in some

processings that can be done within a processor do not affect the timing behavior of the

processings on other processors.

However, these properties cannot be obtained straightforwardly. In this dissertation,

we propose a realization method of a scalable real-time kernel with these properties without

task-independent synchronization and communication objects (such as semaphores and

eventflags), and point out the difficulty of supporting task-independent synchronization

and communication objects. In order to realize a scalable real-time kernel on an existing

multiprocessor system, we investigate on spin lock algorithms for use in scalable real-time

kernels for function-distributed multiprocessors.

5 Outline of This Dissertation

The organization of this dissertation is described in this section. We have presented

the main contributions of this dissertation in various journals and symposiums. Each

reference cited in this section shows the paper in which the contribution is presented.

In the rest of Part I, we introduce the evaluation environment with which the

performance of our proposed realization methods of real-time kernels and underlying

algorithms is measured. The evaluation metric used in the following parts is also

described.

Part II discusses the realization methods of a scalable real-time kernel for function-

distributed multiprocessors. At first, Section 1 presents the overview of the ITRON8

specifications, a series of standard real-time kernel specifications for embedded systems.

The ITRON-MP9 project, which is to extend the ITRON specifications to support

shared-memory multiprocessors, is also outlined [72]. In Section 2, the basic real-time

kernel model for function-distributed multiprocessors is described and its implementation

8ITRON is an abbreviation of “Industrial TRON” and TRON is an abbreviation of “The Real-time
Operating system Nucleus.”

9“MP” stands for MultiProcessor.

7

approaches are discussed [71]. Two implementation approaches, direct access method

and remote invocation method, are introduced and some drawbacks of the latter method

are pointed out [82]. The section also discusses the issue on lock granularity.

In Section 3, two problems in implementing a scalable real-time kernel are described;

the problem that the worst-case execution times of synchronizations within a processor

depend on the number of contending processors [83], and the problem that predictable

inter-processor synchronization and constant interrupt response are incompatible [76].

The section also summarizes the required properties of a scalable real-time kernel.

Then, our proposed solutions to these problems when task-independent synchroniza-

tion and communication objects are not supported are presented in Section 4 [83]. With

the proposed methods, each worst-case service time that is necessary for schedulability

analyses can be bounded, on the assumption that underlying inter-processor synchroniza-

tion mechanism and hardware architecture satisfy the necessary properties, which are also

described in this section.

In Section 5, we propose a new kernel model in which tasks and task-independent

synchronization and communication objects are classified into some classes with different

characteristics [82]. For example, there exists a class of tasks whose maximum execution

times are independent of the number of contending processors, but the tasks of this

class cannot synchronize or communicate with the tasks executed on other processors.

Another class of tasks can synchronize with the tasks on other processors, but their worst

execution times depend on the number of contending processors. The kernel resources

belonging to the class having the appropriate properties for a processing should be used

for implementing the processing.

In Section 6, the effectiveness of our proposed methods is investigated through perfor-

mance measurements. In the measurements, underlying inter-processor synchronization

is realized with spin locks implemented with software, which do not have the necessary

properties described in Section 4. The hardware platform used for the measurements

does not have the necessary properties, either. In spite of the missing properties in our

evaluation environments, the advantage of our proposals over other methods is confirmed

through the measurements.

In Section 7, the difficulty of realizing a scalable real-time kernel that supports

task-independent synchronization and communication objects is discussed [84]. In the

system calls that operate on a task-independent synchronization object, both the lock

guarding the control block of the synchronization object and the lock guarding the control

block of the task must be acquired one by one. This kind ofnested locksare the obstacle

for satisfying the required properties of a scalable real-time kernel. Finally, the main

8

contributions of Part II are summarized in Section 8.

Part III discusses spin lock algorithms for use in scalable real-time kernels. Spin

lock is a fundamental synchronization primitive for exclusive access to shared resources

on shared-memory multiprocessors. In realizing a scalable real-time kernel described

in the previous part, the characteristics of underlying mutual exclusion mechanisms, i.e.

spin locks, have great importance. In this study, we assume that processors support

atomic read-modify-write operations on a single word (or aligned contiguous words) of

shared memory and propose some extensions to existing spin lock algorithms. Typical

examples of the read-modify-write operations are testandset, fetchandstore (swap),

fetch andadd, and compareandswap. A brief survey on spin lock algorithms using

these operations is presented in Section 1.

In Section 2, we propose two algorithms of queueing spin lock with preemption. We

point out that conventional spin lock algorithms cannot satisfy two important requirements

on scalable real-time systems, namely, predictable inter-processor synchronization and

constant interrupt response, at the same time, and present two spin lock algorithms to

solve this problem [76, 79]. These algorithms, which are extensions of queueing spin

locks modified to be preemptable for servicing interrupts, can give upper bounds on the

times to acquire and release an inter-processor lock, while achieving constant response

to interrupt requests. We also demonstrate that the algorithms have required properties

through performance measurements in this section.

Section 3 presents an algorithm of spin lock with local precedence, which is necessary

to make the worst-case execution times of intra-processor synchronizations independent

of the number of contending processors. Though spin lock with local precedence can

be realized using a priority-ordered spin lock algorithm, the overhead of priority-ordered

spin locks is generally quite large. We propose a more efficient algorithm in this section.

Section 4 and Section 5 discuss two issues on nested spin locks, which are necessary

to implement task-independent synchronization and communication objects. In Section 4,

the scalability issue of the maximum execution times of critical sections guarded by nested

spin locks is discussed. With the simplest method, the maximum execution times become

O(nm), wheren is the number of contending processors andm is the maximum nesting

level of locks. In this section, we propose an algorithm with which this order can be

reduced toO(n � em) and demonstrate its effectiveness whenm = 2 through performance

measurements [80]. The proposed method requirespriority inheritance spin lock, a spin

lock algorithm that are enhanced with the priority inheritance scheme, whenm > 2.

In Section 5, we present two algorithms of priority inheritance spin locks and

demonstrate their effectiveness through performance measurements. This section also

9

Figure 2: The Front Panel of TRONBOX

illustrates the problem of uncontrolled priority inversions in the context of spin locks.

Finally, the contributions of Part III are summarized in Section 6.

Part IV summarizes the overall contributions of this dissertation and describes the

future work. The most important future work to do is to solve the difficulty described in

Section II.7 for supporting task-independent synchronization and communication objects.

Others include the support of the global class of tasks that can be executed on multiple

(or all) processors in the system and migrate between them [82].

After the bibliography, Appendix A presents the implementation details of our real-

time kernel for multiprocessor systems. Especially, data structures managing the resource

classes are discussed. In Appendix B, we present the correctness proofs on the queueing

spin lock algorithm with the simple preemption scheme described in Section III.2. We

show that the algorithm realizes mutual exclusion and deadlock freedom in this appendix

[74].

6 Evaluation Environment and Performance Met-
ric

6.1 Evaluation Environment

In this dissertation, we present the results of some performance measurements of real-

time kernels and spin lock algorithms. For the measurements, we use a shared-bus

multiprocessor system named the TRONBOX [87] (Figure 2 and 3).

The system consists of nine processor boards and a global memory board which are

connected with a shared backplane bus conforming to the VMEbus specification [21]

10

Figure 3: A Processor Board of TRONBOX

Processor P9

GMICRO
/200

Local
Memory

GMICRO
/200

Local
Memory

GMICRO
/200

Local
Memory

GMICRO
/200

Local
Memory

GMICRO
/200

Local
Memory

GMICRO
/200

Local
Memory

GMICRO
/200

Local
Memory

GMICRO
/200

Local
Memory

VMEbus

Processor P1

GMICRO
/200

Local
Memory

Processor P2

Global
Memory

Figure 4: Evaluation Environment

(Figure 4). Each processor board consists of a GMICRO/200 microprocessor [86, 23],

1 MB of local memory, and some I/O interfaces. The GMICRO/200 is the first TRON-

specification microprocessor and rated approximately at 10 MIPS with a 20 MHz clock.

The local memory can be accessed from other processors through the shared bus. No

coherent cache is equipped on the board. Accessing a local memory on another processor

board takes nearly 1�s and is a relatively slow operation compared with the performance

of the processor. In our experiments, the data area necessary for each processor and all

the program code area are placed in the local memory of the processor. Data requiring

only one instance in the system is placed in the local memoryP1 of the master processor

or in the global memory.

TRON-specification microprocessors support three read-modify-write instructions:

11

bit testandset (BSETI), bittestandclear (BCLRI), and compareandswap (CSI) [53].

Since the fetchandstore operation which is used in many spin lock algorithms presented

in Part III is not supported, it is emulated using the compareandswap instruction and a

retry loop. The evaluation programs are written in C programming language, with some

inline assembler code for special instructions including the read-modify-write instructions.

There is some overhead in passing data between code written in C and code in assembler.

This hardware platform has some problems as our evaluation environment. The

problems and our measures to them are as the followings.

1. Because the VMEbus has only four pairs of bus request/grant lines, the round-robin

scheme can be applied to at most four bus masters [21]. Therefore, the access

time of the local memory of another processor has no upper bound. The maximum

execution time of a routine in which a remote memory is accessed cannot be

bounded either.

In our evaluation environment, processors are classified into four classes by the

bus request line they use. The round-robin arbitration scheme is adopted among

classes and the static priority scheme is applied among processors belonging to a

same class.

2. The local memory of each processor board can be accessed from its host processor

with the addresses 0x00000000 – 0x000fffff, and can be accessed from other

processors with the addresses 0x00n00000 – 0x00nfffff wheren is the ID number

of the board (1� n � 9). This configuration makes it possible to use the same

program code on all processors. Because a processor on boardn cannot access

its own local memory with the addresses 0x00n00000 – 0x00nfffff, however, an

address conversion is necessary to follow a pointer between the local memories

of different processor boards. This address conversion causes some overhead in

pointer operations.

In evaluating spin lock algorithms, because the case in which this kind of address

conversion is necessary is very rare, we convert the address with software when

necessary. In implementing a real-time kernel, we convert the address using the

MMU (Memory Management Unit) because too many conversions are necessary.

In other words, the local memory of a processor is also mapped to the addresses

0x00n00000 – 0x00nfffff. The MMU is used only for this address conversion.

3. The processor board causes a bus error under the following condition. If a processor

Pj tries to access the local memory of another processorPi whenPi initiates a

12

read-modify-write operation on a remote memory, a kind of deadlock occurs in

whichPi cannot acquire the shared bus becausePj is using the shared bus, andPj

cannot acquire the local bus ofPi becausePi is using the local bus. This problem

occurs because the processor is directly attached to the local bus (no line buffer is

used between them), and because the processor would not release the bus once it

initiates a read-modify-write operation. To solve this deadlock, the processor board

raises a bus error onPi. When a bus error occurs,Pi should retry the operation

with software. This retry overhead is quite large and degrade the preciseness of

performance measurements.

In our performance measurements, we record the occurrences of bus errors and

subtract the overhead from the measured time if possible. When the estimation of

the overhead is very difficult, we discard the measurement time when a bus error

occurs.

In spite of these problems, the advantage of our proposals over other methods can be

confirmed through the performance measurements.

6.2 Performance Metric

In real-time systems, the effectiveness of implementation methods or algorithms should

not be evaluated with their average performance but with their worst-case execution (or

response) times. In our performance evaluations, however, adopting worst-case times as

performance metric has following difficulties.

1. Worst-case times cannot be measured through experiments because of unavoidable

non-determinism in asynchronous multiprocessor systems.

2. With our evaluation environment, the execution time of a routine in which a remote

memory is accessed has no upper bound. Therefore, the worst-case execution times

of such routines cannot be determined inherently.

3. It is often possible to give apractical upper bound on the execution time of a

routine, even if the routine does not have the maximum execution time inherently.

For example, if a fetchandadd operation is emulated with a compareandswap

and a retry loop, the maximum execution time of the fetchandadd operation cannot

be bounded theoretically.

13

0.00001

0.0001

0.001

0.01

0.1

1

0 100 200 300 400 500 600

Pr
ob

ab
ili

ty

Execution Time (micro sec.)

QL/P1
T&S/P

Figure 5: Distributions of Execution Times

4. Adopting the maximum execution (or response) time appeared during a mea-

surement is not appropriate, because the maximum time widely varies for each

measurement.

In order to illustrate this situation, we present in Figure 5 the distributions of the

execution times of the critical region10 with the first algorithm of queueing spin lock with

preemption (represented as QL/P1) and the test&set lock with preemption (represented as

T&S/P), which are described in Section III.2. In this figure, the vertical axis represents the

probability that the execution isnotfinished within the specified time in logarithmic scale.

We can say that if the probability is rapidly decreasing with the increase of the execution

time, a practical upper bound on the execution time can be determined. Consequently,

this figure indicates that the execution time with QL/P1 has a practical upper bound, while

it is not the case with T&S/P. This demonstrates that T&S/P is not suitable for real-time

systems.

From this observation, in place of a worst-case time, we have adopted ap-reliable

time, the time within which a processor finishes to execute (or responds) with probability

p, as the performance metric. In other words, when ap-reliable time is determined to be

the deadline, the probability that the deadline is kept isp, or the deadline miss ratio is

1� p.

10In strict, this figure presents the distributions of the execution times of the critical region, when no
interrupt request is serviced while waiting for a lock. Four processors are executing spin locks. Refer to
Section III.2.5 for the details.

14

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8

E
xe

cu
tio

n
T

im
e

(m
ic

ro
 s

ec
.)

Number of Processors

99%-reliable
99.9%-reliable

99.99%-reliable
maximum appeared

Figure 6:P -reliable Execution Times

In this dissertation, we use the 99.99%-reliable execution (or response) times as the

performance metric. Figure 6 presentsp-reliable execution times of the critical region

with QL/P1 whenp = 99%, 99:9%, and 99:99%, and its maximum execution times

appeared during the measurements, when the number of contending processors is changed

from one to eight. Although the absolute times are different, the same evaluation results

can be derived from each performance metric. In order to check the adequacy of the other

evaluation results usingp-reliable times, we have also confirmed that the same evaluation

results can be derived from the maximum times appeared during the measurements.

This performance metric is also justified from application requirements. It is obvious

that the failure rate of any system cannot be zero. Even with the hardest real-time

system, the system specification cannot require that the failure rate is zero, but that

the (estimated) failure rate is below the permissible value determined in design time.

The deadline miss ratio of each software component should be as low as necessary that

the system as a whole can satisfy the specification. It should be noted that a deadline

miss ratio always depends on system workloads. Therefore, ap-reliable time that is

obtained through our performance measurements does not correspond to ap-reliable time

in application systems. Generally speaking, because we evaluate the performance of

implementation methods or algorithms under a very heavy workloads, ap-reliable time

with our performance measurements has much higher reliability in application systems.

15

Part II

Scalable Real-Time Kernels for
Function-Distributed Multiprocessors

16

1 ITRON Specifications and ITRON-MP

In this section, we present the overview of the ITRON specifications, a series of standard

real-time kernel specifications for embedded systems in Section 1.2 and 1.3, after a

short introduction of the TRON Project in Section 1.1. Then, the overview of ItIs

(ITRON Implementation by Sakamura Laboratory), which we extend to support shared-

memory multiprocessors, is presented in Section 1.4. We describe the design goals and

approaches of ITRON-MP, which is an extension of the ITRON specifications to support

shared-memory multiprocessors in Section 1.5.

1.1 TRON Project and ITRON

Recent advances in microprocessor technologies have made every kind of electric and

electronic equipment around our daily life embedded with microcomputers and offer

higher functions to the users. In the next decade, most kind of equipment, appliances,

tools, and other objects making up our living environments will be augmented with

embedded computers, be connected with networks, and cooperate each other to provide

better living environments for human beings. In other words, these objects and networks

constitute a large distributed computing system and support human activities on many

aspects. We call this kind of system as ahighly functionally distributed system (HFDS)

and have been conducting a research and development project, called the TRON Project,

for its realization [51, 55, 77].

In HFDS environments, a large number of embedded systems are developed and

utilized. We have been investigating on standard real-time operating system specifications

for embedded systems, called the ITRON specifications, and have published a series of

kernel specifications [50, 45, 73, 78]. The reason for centering these studies on kernel

specifications is that only the kernel functions are used in most deeply embedded systems.

We will describe the overview of the ITRON kernel specifications in the following

sections.

The TRON Project is going ahead on various subprojects including the ITRON

subproject. The BTRON subproject aims to design an operating system specification

for personal computers and workstations. CTRON is an OS interface specifications for

communication and information processing. MTRON is an attached OS architecture

for connecting various systems in HFDS. CHIP subproject aims to design a VLSI

microprocessor architecture for use in these operating systems. HMI subproject designs

standard human-machine interface guidelines. Application subprojects, including the

TRON-concept Computer Augmented Building subproject, are proceeded to find problems

17

in actual applications of HFDS.

1.2 Design Principles of the ITRON Specifications

Requirements on a standard real-time kernel for embedded systems can be summarized

as follows [85, 78].

� Deriving maximum hardware performance.

� Software productivity improvement.

� Uniform application to various processor scales and types.

In order to satisfy these requirements, the following design principles are established

in designing the ITRON specifications [78].

� Avoiding excessive hardware virtualization.

To derive the maximum performance from hardware and achieve high real-time

performance, we must limit the amount of hardware virtualization. Although

intended for a variety of processors, the ITRON kernel specifications assume each

implementation will possess processor-specific aspects.

To this end, we divided the specification into aspects that are standardized across

all processors and implementation-dependent aspects. Standardized items include

task scheduling rules; system call names and functions; parameter names, sequence

and meanings; and error code names and meanings.

On the other hand, we did not strictly standardize those aspects that need to

be decided separately for each implementation based on runtime performance

considerations. Examples are parameter bit size, the method of invoking interrupt

handlers, and exception handlings.

� Permitting adaptation to application.

Modifying the kernel specification and internal implementation method, based on

the kernel functions and performance required by a particular application, increases

system performance. For embedded systems, the kernel object code is generated

for each application, making this adaptation especially effective.

Specifically, the specification was designed so as to make the kernel functions

independent of each other to the extent possible, so that each application can use

just the functions it needs. In fact, many ITRON-specification kernels are provided

18

in the form of libraries, and are designed so that only the necessary modules

are loaded when the kernel is linked to the application. Also, each system call

provides a single function, making it easy to select out the necessary functions for

an application.

� Permitting adaptation to hardware.

Modifying the kernel specification and internal implementation method, based on

the characteristics of the hardware and its performance, also increases system

performance. For example, the method of invoking interrupt handlers is left

unspecified in the ITRON specifications. In fact, it is a usual approach to invoke

a user-defined interrupt handler when an external interrupt occurs without going

through the operating system. The overhead required here is practically zero. The

user must, instead, save the registers used in the interrupt handler.

� Easing training.

A primary aim of standardization in the ITRON specifications is to facilitate learning

by and training of software engineers, so that once they learn something they will

be able to apply that knowledge broadly. To archive this, for example, the use of

terminology in the specification, and things like the way system calls are named,

are made as consistent as possible. Consistent concepts and terminology also leads

to the improved communication among software engineers.

� Creating a specification series and/or level divisions.

Specifications are issued in series and divided into levels to make them applicable to a

wide variety of hardware. Of the specifications developed in the past, the�ITRON

specification (Ver. 2.0) was designed mainly for 8-bit MCUs (Micro-Controller

Units) and other smaller-scale systems, while the ITRON2 specification was geared

to large-scale systems including 32-bit processors. Moreover, each specification

divides functions into different levels based on their degree of necessity. The latest

specification,�ITRON3.0, uses a level-division of system calls to enable this one

specification to cover the range from small-scale to high-performance processors

(Table 2).

� Making available a full range of functions.

Rather than limiting the number of primitives provided by the kernel, the approach

is taken of making available a wide variety of primitives with different functions.

The idea is to enable implementors to raise the runtime performance and improve

19

Level R (Required)
Functions required in all�ITRON3.0-specification kernels.

Level S (Standard)
Functions to be provided in a standard�ITRON3.0-specification kernel.

Level E (Extended)
Advanced or additional functions.

Level C (CPU dependent)
Functions dependent on the processor, hardware configuration, or im-
plementation.

Level X (option)
Extended functions that may be introduced as part of system call
functions.

Table 2: Levels in�ITRON3.0 Specification

ease of programming by using primitives suitable for the particular hardware and

application.

A concept common to many of these design principles is that ofloose standardization.

This means setting uniform standards only to the extent that performance will not suffer,

rather than trying to force all systems into one rigid mold, and leaving room to decide

matters depending on the processor or application.

1.3 History and Current Status of the ITRON Specifica-
tions

The first ITRON kernel specification was released in 1987 as ITRON1. Thereafter

studies were carried out on a reduced-function specification called�ITRON (Ver. 2.0) for

smaller-scale 8- and 16-bit MCUs [52], and on the ITRON2 specification for larger-scale

systems with 32-bit processors [54]. Both of these were released in 1989.

Of these, the�ITRON specification offered very realistic performance even on an

MCU with only very limited processing and memory resources, and has therefore been

implemented on many different MCUs. Its application has even widened to various 16-bit

MCUs as well as 32-bit processors. Just counting the�ITRON-specification products

that have been registered officially, there are around thirty implementations for more than

twenty processors. In addition to them, the�ITRON-specification kernel, with its small

size and relative ease of implementation, has been used in numerous developments for

in-house systems. There are also several�ITRON-specification kernels that have been

20

Consumer Applications

TVs, VCRs, audio components, air-conditioners, washing machines,
microwave ovens, rice cookers, lighting

OA Applications

printers, copiers, image scanners, word processors, optical filing sys-
tems

Communications

answer phones, ISDN telephones, cellular phones, FAX, broadcasting
equipment, wireless systems, antenna controllers, satellite controllers,
ATM switches

FA and Other Applications

PDAs, game gear, automobiles, vending machines, electronic musical
instruments, digital cameras, FA computers, industrial robots

Table 3: Typical ITRON-specification Kernel Applications

made available as free software.

It goes without saying that the reason for this large number of ITRON-specification

kernel implementations is the wide range of application fields and numerous application

examples. Table 3 lists some of the applications in which ITRON-specification kernels

are used.

As the�ITRON-specification kernel has come to be applied to a wide range of fields,

a clearer picture has emerged as to the necessity of each function and the performance

demands. Also, as noted above, the�ITRON-specification kernel has in some instances

been implemented for 32-bit processors, something we did not originally anticipate. It

was therefore decided to reexamine the existing ITRON specifications, resulting in the

release in 1993 of the third-generation ITRON specification, called�ITRON3.0 [56]. The

main functions in the�ITRON3.0 kernel are listed in Table 4.

1.4 Overview of ItIs

ItIs (ITRON Implementation by Sakamura Laboratory) is a real-time kernel developed

for research and educational purposes by the members of Sakamura Laboratory [69]. It

conforms to the�ITRON3.0 specification and runs on TRON-specification microproces-

sors. The current version implements all the functions in the�ITRON3.0 specification

up to level E (Extended level), as well as all level X (optional) functions. It also

has some original extended functions. The target microprocessors presently supported

21

Task management

� Direct manipulation and referencing of task status

Task-dependent synchronization

� Task synchronization functions in the task itself

Synchronization and communication

� Three task-independent synchronization and communication functions:
semaphores, eventflags, and mailboxes

Extended synchronization and communication

� Two advanced task-independent synchronization and communication func-
tions: message buffers and rendezvous

Interrupt management

� Function for defining a handler for external interrupts

� Function for disabling and enabling external interrupts

Memory pool management

� Functions for software management of memory pools and memory block
allocation

Time management

� Functions for system clock setting and reference

� Task delay function

� Timer handler functions, for time-triggered starting

System management

� Functions for setting and referencing the system environment as a whole

Network management

� Management and support functions for a loosely coupled network

Table 4: Main Functions Supported in the�ITRON3.0-specification Kernel

22

are GMICRO/200 [86, 23] and GMICRO/300 [24]. It is designed to be easily ported to

other target systems based on TRON-specification microprocessors. Porting to other

microprocessors is also possible.

Main features of ItIs are as follows.

� Emphasizing ease of extension and maintenance.

Development of ItIs is aimed mainly at research and educational use. For this reason,

the implementation emphasizes such factors as ease of understanding, modification,

and maintenance over run-time performance. For example, C language is used

throughout, with assembly language use kept to a bare minimum.

ItIs implements all the functions in the�ITRON3.0 specification and can be

reconfigured as needed by means of compile options, as the amount of kernel

coding is approximately 8,000 lines, including the generation script and definition

files (but not including blank lines or comments).

� Supporting two system call interfaces.

The�ITRON3.0 specification defines two different interfaces for invoking system

calls, one using a software interrupt with a function number set in a register, and the

other making use of an ordinary subroutine call. ItIs allows both of these methods

to be used in the same system. Accordingly, in a large-scale system, subroutine

calls can be used in system tasks providing basic services for the system, while

other user tasks are able to make use of a software interrupt.

� Providing original extended functions.

ItIs supports some original extended functions, including functions for automatic

ID assignment, debugging support functions, and priority inheritance semaphores

[75].

� Taking advantage of the TRON-specification microprocessor architecture.

ItIs takes full advantage of the high-level instructions, delayed interrupt, and

other features of the TRON-specification microprocessor architecture. Because of

the policy of minimizing assembly language use, the functions using high-level

instructions are written in an inline assembler, which is called by a C language

routine. The same functions are also provided as C language routines to facilitate

porting to other microprocessors.

� Designed for flexible reconfiguration.

23

Changes in the kernel configuration are generated from the source code, enabling

flexible reconfiguration.

� Available as free software.

ItIs also supports a simulation environment running on BSD UNIX. Multiple tasks are

switched and run in a UNIX process, an approach that makes it usable as a prototyping

environment for system development on an ITRON-specification kernel. Use as a thread

library on UNIX is also possible, and this environment has the potential for effective use

in education and training regarding the ITRON specifications [70].

1.5 Design Goals and Approaches of ITRON-MP

ITRON-MP is an extension of the ITRON kernel specifications to support shared-memory

multiprocessors. The design goals of the ITRON-MP specification are as follows.

� ITRON-MP should be implementable with satisfying the required properties of a

scalable real-time kernel, which will be described in Section 3.

� ITRON-MP should be valid for various multiprocessor architectures. Namely, it

has the adaptability to an architecture.

� The kernel code for an application system can be generated to be optimal for the

nature of its application. Namely, it has the adaptability to an application.

� An ITRON-MP based kernel must not degrade the native performance of a machine

or an architecture.

� Programmer can easily grasp the real-time natures of the system developed on an

ITRON-MP based kernel.

� ITRON-MP should be applicable to applications requiring fault-tolerance.

� The ITRON-MP specification should be easy to learn.

The first goal is the main theme of this dissertation and is discussed in the rest of

Part II.

The second goal means that a real-time kernel based on the ITRON-MP specification

can be used for various multiprocessor architectures in spite of the differences among

them, such as the kind and the number of processors, how to connect processors each

other, and the accessibility of hardware resources from each processor. In order to achieve

24

this property, a standard set of kernel interface which can be adapted to wide varieties

of multiprocessor architectures is defined in the specification, and a tuned kernel code,

which is generated from the description of the architecture and the kernel constitution, is

used for the construction of application systems.

The sixth goal comes from the fact that fault-tolerance is another important feature

for almost all real-time systems. The adoption of multiprocessor architecture to a fault-

tolerant system is a promising approach and has been studied for a long period [19].

Because the actual mechanism to achieve fault-tolerance varies for each system, ITRON-

MP should serve as a basis for the construction of fault-tolerant systems. Therefore, we

include some kernel functions necessary for the realization of fault-tolerant feature in

the ITRON-MP specification. For example, ITRON-MP has a set of system calls which

enable user programs to take a snapshot of a task and to resume the task from the snapshot.

In other words, ITRON-MP should have the adaptability to a fault-tolerant architecture.

The other goals of the ITRON-MP specification are inherited from the ITRON

specifications. The same approaches with ITRON are also valid for ITRON-MP.

2 Basic Kernel Model

In this section, the basic real-time kernel model for function-distributed multiprocessors

is presented (Section 2.1) and its implementation approaches are discussed. Two

implementation approaches, direct access method and remote invocation method, are

introduced in Section 2.2 and some drawbacks of the latter method are pointed out in

Section 2.3. We also discuss the issue on lock granularity in Section 2.4.

2.1 Basic Kernel Model for Function-Distributed Multi-
processors

When a hard real-time system is realized on a function-distributed multiprocessor,

the method is often adopted as a realistic approach that a real-time kernel for single

processor is used on each processor, and that synchronizations and communications

among processors are implemented with application-level programs. However, this

method has a drawback that when the configuration of the system is modified due to

the change of the requirements for example, and when the allocation of the tasks to the

processors is changed, a large part of the application program is necessary to be modified.

This is because the synchronization and communication interface with tasks on the same

processor and that with tasks on other processors are different.

25

Local
Memory

I/O MPU

Local
Memory

I/O MPU

: local task

AA
A
A
AA
AA AA

AA
AA
AA
AA

task-independent
synchronization objectA

(semaphore, eventflag, mailbox)

:

Figure 7: Basic Kernel Model

To remedy this problem, a real-time kernel is required with which a task can

synchronize and communicate with tasks on other processors with the same interface

with tasks on the same processor. In other words, a task can operate on any task with

the same set of system calls. In this dissertation, we call this kernel model as the basic

model of real-time kernels for function-distributed multiprocessors, or the basic kernel

model in short (Figure 7). In the basic kernel model, each task has its host processor on

which it is executed, and is called alocal taskof the processor. A ready queue is prepared

for each processor in which all the local tasks that are ready to execute are included

in the descending order of their priorities. Each task-independent synchronization and

communication object (called as synchronization objects or simply as objects in this part),

such as a semaphore and an eventflag, also has its host processor and can be accessed

from any task in the system. In other words, each kernel resource is classified into the

local resource of its host processor.

2.2 Direct Access Method and Remote Invocation Method

There are two approaches to implementing an operating system kernel on function-

distributed shared-memory multiprocessors: the direct access method and the remote

invocation method [6, 7].

With the direct access method, when a task operates on a kernel resource on another

processor, it directly accesses the control block of the resource located on the local memory

of the processor. Therefore, some mutual exclusion mechanism among processors is

necessary for the access control of the control blocks. In implementing a real-time kernel,

26

because the execution time of each primitive operation is very short, spin locks are usually

used for this exclusive control.

With the remote invocation method, which is also applicable to multiprocessors

without shared memory, when a task operates on a kernel resource on another processor,

it sends a message to the processor requesting the operation and receives the result. The

requesting processor spins until the requested processor completes the operation.

Below, we will illustrate the behavior with these two approaches when a task�1

on processorP1 invokes a system call to resume the execution of a task�2 on another

processorP2. We denote the resume task operations asrsm tsk after the system call

name in�ITRON3.0 specification [56].

Direct Access Method

At first, �1 finds the address of�2’s task control block (TCB) and then tries to lock

the lock unit guarding the TCB. When�1 succeeds to acquire the lock, it accesses

the TCB and changes the status of�2. Because�2 becomes ready to execute with the

operation,�1 acquires the lock unit guarding the ready queue ofP2
1 and enqueues

�2 to the ready queue. If (and only if)P2 executes lower priority task than�2 (the

priority of the currently executed task must be stored on a shared memory),�1

requests�2 to switch the executing task using an inter-processor interrupt.

Remote Invocation Method

At first, �1 checks some kind of parameter errors which can be detected statically.

Then, it enqueues arequest information blockinto the request queue ofP2. The

request information block includes the kind of operation (rsm tsk , in this case),

the parameters passed to it (the identification of�2), and an empty field to which the

requested processor writes the result. Then,�1 asksP2 to process the request using

an inter-processor interrupt and spins until the result of the operation is written

in the request information block. WhenP2 accepts the interrupt, it dequeues the

request information block, executes the requested operation, and writes the result

in the block.

Which method of them is appropriate is determined by the characteristics of the

underlying hardware (e.g. remote memory access cost) and the performance requirements

of the application.

1This is necessary, only when the ready queue ofP2 is included in a different lock unit with�2’s TCB.

27

2.3 Drawbacks of the Remote Invocation Method

From the performance requirements of real-time applications, the direct access method is

usually suitable because the serialization unit of processing is too large with the remote

invocation method. More precisely, the remote invocation method has the following

drawbacks in implementing real-time kernels for function-distributed multiprocessors.

1. With the remote invocation method, because requests come from other processors

asynchronously, any task can be delayed by the processing of the requests. This

makes the schedulability analysis of the system very difficult.

In order to predict the timing behavior of time-critical tasks, it is possible to disable

interrupt services during their executions. With this method, however, a request

that makes a higher priority task executable is also pended. It is also difficult to

predict the maximum time since the time-critical task are completed (or blocked)

until another task starts, because all pended requests are processed at this moment.

It also has a problem that the requesting task must wait for the completion of the

time-critical task.

2. In functional-distributed multiprocessors, interrupt requests from external devices

are raised on each processor. If an external interrupt has a higher priority than the

inter-processor interrupt, the execution of a requested operation can be delayed due

to the service of the external interrupt. This makes it difficult (or even impossible

depending on the situation) to bound the time until the remote invocation is finished.

Otherwise (i.e. if the inter-processor interrupt has a higher priority than an external

interrupt), it is difficult to bound the response time to the external interrupt.

When a requested operation is very simple and its result is not necessary, the re-

questing processor can proceed without waiting for the completion of the operation.

In this case, this problem can be avoided by making the priority of the external

interrupt always higher than that of the inter-processor interrupt. However, the

limitation that the requesting task cannot receive the result of a remote operation at

all is usually too restrictive to realize the access transparency of remote resources.

With these reasons, we adopt the direct access method as the base implementation

method below. We will also refer to the remote invocation method when necessary.

Differences of these methods will be clarified through performance measurements in

Section 6.

28

2.4 Kernel Data Structures and Lock Granularity

In implementing a real-time kernel for shared-memory multiprocessors, the lock granular-

ity of kernel data structures is one of the most important issues. Below, we first describe

the data structures and access patterns on them in a real-time kernel for single processor

systems, and then investigate on the granularity of lock units.

In general, using fine-grained lock units reduces lock contention rate and then improves

concurrency. Conversely, using coarse-grained lock units reduces lock acquisition

overhead and deadlock avoidance overhead. For real-time kernels, making lock units so

small that many locks are necessary to be acquired in some operations is not a suitable

approach. This is because the execution time of each critical section is very short in

real-time kernels and therefore the lock acquisition overhead is relatively large. Another

reason is that the necessity of acquiring multiple locks at the same time has a great impact

on the worst-case behavior, because the maximum execution time of a critical section

guarded by nested spin locks increases with the exponential order of the maximum nesting

level of locks (Refer to Section III.4 for detailed discussions).

The simplest method to avoid nested locks is to enter all kernel data structures in one

lock unit. Another method in which all kernel services are executed on one processor

is essentially the same approach. With these methods, only one kernel service can be

executed at the same time. Therefore, the execution throughput of kernel services cannot

scale well and the methods are thought to be problematic from the viewpoint of scalability.

It is also reported that the computational power of a processor is not sufficient to execute

all the kernel services, when kernel services are heavily used [22, 25]. We consider that

kernel data structures on different processors, at least, should be placed in different lock

units.

In order to determine an appropriate granularity of lock units, we have examined a real-

time kernel implementation for single processors based on the�ITRON3.0 specification.

Major data structures in the kernel are as the followings.

(1) The task control blocks (TCBs).

(2) The (task) ready queue.

(3) The control blocks of each kind of synchronization and communication objects

(including a task queue in which waiting tasks on the object are included).

(4) The timer event queue (a queue which manages various events triggered by the

system timer).

29

As described in Section 2, a ready queue is prepared for each processor in the basic

kernel model for function-distributed multiprocessors. Also, a timer event queue should

be prepared for each processor.

We analyze the access pattern on the data structures of each system call what should

be supported in level S in the�ITRON3.0 specification, which is listed in Table 5. For

example, thesig semsystem call, which returns a resource to the designated semaphore,

first accesses the control block of the semaphore. When a task that is waiting on the

semaphore becomes ready to execute by the system call, it also needs to access the TCB of

the awaked task and the ready queue. Therel wai system call, which forcibly releases

the waiting state of the designated task, accesses the TCB of the task and the ready queue.

When the task is waiting for a synchronization object and is included in its waiting queue,

it also accesses the control block of the object and the TCBs of the tasks that are waiting

for the object.

From these observations, because the ready queue is usually accessed with a TCB,

we have concluded that the TCBs of the local tasks of a processor and the ready queue

for the tasks should be included in the same lock unit. We also conclude that the timer

event queue for the tasks should be included in the same lock unit. Another observation

is that one-writer/many-readers type synchronization primitives are not necessary. This

is because a read access on a data structure is usually followed by a write access.

System calls in Table 5 are classified into the following six categories from their

access patterns on the kernel data structures. We omit the accesses on a timer event

queue, because whenever the ready queue for the task is accessed, the timer event queue

for a task may also be accessed.

(a) Normal operations on a task.

A system call of this category accesses the TCB of the designated task (or issuing

task) and/or the ready queue for the task.

(b) Special operations on a task.

A system call of this category accesses the TCB of the designated task, the ready

queue for the task, and the control block of the synchronization or communication

object on which the task is waiting. In some situations, it also accesses the TCBs

of the other tasks that are waiting on the object and the ready queues for the tasks.

At most one TCB and the ready queue for it must be locked at once.

(c) Simple operations on a synchronization or communication object.

30

Name Function Category
sta tsk start a task (a)
ext tsk exit the issuing task (a)
ter tsk terminate a task (b)
dis dsp disable task dispatch (f)
ena dsp enable task dispatch (f)
chg pri change the priority of a task (a),(b)
rot rdq rotate tasks on a ready queue (a)
rel wai release a task from wait state (b)
get tid get the issuing task identifier (a)
sus tsk suspend executing a task (a)
rsm tsk resume executing a task (a)
slp tsk make the issuing task sleep (a)
wup tsk wakeup a sleeping task (a)
can wup cancel wakeup requests (a)
sig sem signal a semaphore (e)
wai sem wait on a semaphore (d)
preq sem poll and request a semaphore (c)
set flg set an eventflag (e)
clr flg clear an eventflag (c)
wai flg wait for an eventflag (d)
pol flg poll an eventflag (c)
snd msg send a message to a mailbox (e)
rcv msg receive a message from a mailbox (d)
prcv msg poll and receive a message from a mailbox (c)
loc cpu disable interrupt and dispatch (f)
unl cpu enable interrupt and dispatch (f)
ret int return from interrupt handler (f)
set tim set the system clock (f)
get tim get the system clock (f)
dly tsk delay execution of the issuing task (a)
get ver get the version information (f)

Table 5: Classification of System Calls

A system call of this category accesses only the control block of the designated

synchronization or communication object.

(d) Wait operations on a synchronization or communication object.

A system call of this category first accesses the control block of the designated

synchronization or communication object. When the issuing task is blocked, it also

accesses the TCB of the issuing task and the ready queue for the task.

(e) Release operations on a synchronization or communication object.

A system call of this category first accesses the control block of the designated

31

synchronization or communication object. When some tasks that are waiting on the

object are released from the waiting states, it also accesses the TCBs of the tasks

and the ready queues for the tasks. At most one TCB and the ready queue for it

must be locked at once.

(f) Other operations.

A system call of this category does not access these kernel data structures.

Table 5 also presents the category to which each system call is classified. The

chg pri system call, which changes the priority of the designated task, is classified into

both (a) and (b), because its access pattern varies depending on the state of the designated

task.

Another kernel service routine that should be considered here is the timer interrupt

handler, which is periodically executed with constant interval and processes various

time-triggered events. In processing timeouts, a typical time-triggered event, the handler

accesses kernel data structures in the same pattern with the system calls in category (b),

i.e. the handler accesses the TCB of the designated task, the ready queue for the task, and

the control block of the synchronization or communication object on which the task is

waiting.

As the results of these investigations, we conclude that a separate lock unit should be

prepared for the control blocks of synchronization and communication objects on each

processor. As described before, the TCBs and the ready queue on the processor are

included in another lock unit. In order to avoid deadlocks, when both kind of locks are

necessary to be acquired, the lock unit of the synchronization and communication objects

should be acquired first.

In implementing the system calls of category (b), which are special operations on a

task, a deadlock detection and re-execution mechanism must be adopted. Therefore, it is

very difficult to bound the maximum execution times of the system calls of this category.

Because the system calls of this category is rarely used, we give up solving this problem.

In processing timeouts, the synchronization or communication object whose control block

is necessary to be accessed can be determined beforehand. Thus it is possible to acquire

the lock unit of the object first, and the deadlock can be avoided.

On the other hand, when the TCBs and the control blocks of synchronization and

communication objects were included in the same lock unit, two parallel invocations of

system calls of category (e), which are used very frequently, could cause a deadlock.

32

3 Requirements and Problems

This section presents two major problems in implementing a scalable real-time ker-

nel for function-distributed multiprocessors; the degraded scalability of intra-processor

synchronization (Section 3.1), and the incompatibility of predictable inter-processor

synchronization and constant interrupt response (Section 3.2). We also summarize the

required properties of a scalable real-time kernel in Section 3.3.

3.1 Scalability of Intra-Processor Synchronization

The first problem is that the worst-case execution times of inter-task synchronizations

within a processor depend on the number of contending processors in the system. This is

because a task must acquire an inter-processor lock before it accesses the TCB of another

task, even when both tasks are executed on a same processor.

As described in Section I.4, the worst-case timing behavior of the processings that

can be done within a processor is desired to be independent of the number of contending

processors and of the other processors’ activities. Because tasks on each processor are

fairly independent with tasks on other processors in function-distributed multiprocessors,

this property is an essential requirement to reduce the maintenance cost of the system. It

is also a prerequisite to facilitates the reuse of a module consisting of a processor, local

memory, external devices, and the software handling them.

3.2 Predictable Inter-Processor Synchronization and In-
terrupt Response

The second problem is that constant interrupt response is not compatible with predictable

inter-processor synchronization. This problem is similar to the problem with the

remote invocation method on the precedence of external interrupts and inter-processor

synchronizations, which is pointed out in Section 2.3.

In order to bound the time until a processor acquires an inter-processor lock, the

duration that each processor holds the lock must be bounded as well as the number

of contending processors that the processor must wait for. The latter condition can be

met with a bounded spin lock algorithm, such as the ticket locks and the FIFO-ordered

queueing locks [38], with which the turn that a processor acquires a lock is reserved

when it begins waiting for the lock. To satisfy the former condition, the relationship with

interrupt services must be considered.

In function-distributed multiprocessors, interrupt services for external devices are

33

requested for each processor. When multiple devices are connected to a processor,

interrupt requests from them are usually raised independently and the maximum time to

service all of the requests becomes very long or even unbounded. Consequently, in order

to give a practical bound on the duration that a processor holds a lock, interrupt services

should be inhibited for that duration (1).

On the other hand, the worst-case interrupt latency should be given independently of

the number of contending processors. If a processor disables interrupt services before

enqueueing itself to the queue, the interrupt disabled period includes the time to acquire

the lock and its upper bound depends on the number of contending processors. Therefore,

interrupt requests must be serviced while the processor is waiting for a lock (2).

Though the test-and-set locks, which are not suitable for real-time systems, can be

extended to satisfy both (1) and (2) easily, bounded spin lock algorithms, such as the

ticket locks and the queueing locks, cannot be extended similarly. The reason is as

follows. In all bounded spin lock algorithms, a processor modifies some shared variable

and reserves its turn to acquire the lock when it begins waiting for the lock. When its turn

comes, the lock is passed to the processor by another. If the processor simply branches

to an interrupt handler while waiting for the lock, it cannot begin to execute the critical

section immediately after the lock is passed to the processor, and makes the contending

processors wait wastefully until the interrupt service is finished.

When a processor finishes the interrupt request that is serviced while waiting for a

lock, it resumes waiting for the lock. It is usual that the maximum time that the processor

is waiting for the lock is prolonged by the interrupt service. It is also the case with some

spin lock algorithms that some processings are necessary after the interrupt service to

resume waiting for the lock.

When the schedulability of the system is analyzed, all the overhead that is caused

by an interrupt service should be added to the maximum service time of the interrupt

request. We call this overhead asinterrupt service overhead. Because the maximum

frequency of interrupt requests is usually quite high compared with tasks, a little increase

of the interrupt service overhead can severely degrade the schedulability of the system.

Therefore, the interrupt service overhead should also be independent of the number of

contending processors.

3.3 Required Properties

From the above discussions, the properties that a scalable real-time kernel should satisfy

can be summarized as follows.

34

system call intra-processor inter-processor
name function operations operations

cre tsk create a task Tcre tsk n � Twait + T 00

cre tsk

.
sustsk suspend executing a task Tsus tsk n � Twait + T 00

sus tsk

(with a task switch) T 0

sus tsk n � Twait + T 000

sus tsk

rsm tsk resume executing a task Trsm tsk n � Twait + T 00

rsm tsk

(with a task switch) T 0

rsm tsk n � Twait + T 000

rsm tsk

.
vsnd tmb send a message to a task Tvsnd tmb n � Twait + T 00

vsnd tmb

(with a task switch) T 0

vsnd tmb n � Twait + T 000

vsnd tmb

vrcv tmb receive a message sent to meTvrcv tmb —
(with a task switch) T 0

vrcv tmb —
.

maximum interrupt response time Tint
interrupt service overhead Tint overhead

Table 6: Required Timing Behavior

(A) The maximum execution time of a system call that is to synchronize or communicate

with tasks on the same processor can be determined independently of the other

processors’ activities and the number of contending processors.

(B) The maximum execution time of a system call that is to synchronize or communicate

with tasks on other processors can be determined independently of the other

processors’ activities and be bounded with a linear order of the number of

contending processors.

(C) The maximum interrupt response time on each processor can be determined

independently of the other processors’ activities and the number of contending

processors.

(D) The interrupt service overhead can be determined independently of the other

processors’ activities and the number of contending processors.

The required timing behavior is illustrated in Table 6.

4 Proposed Solutions

In Section 4.1 and 4.2, we present our proposed solutions to the two problem described in

the previous section when task-independent synchronization and communication objects

are not supported. With the proposed methods, each worst-case service time that is

35

necessary for schedulability analyses can be bounded, on the assumption that underlying

inter-processor synchronization mechanism and hardware satisfy the required properties,

which are described in Section 4.3.

Because task-independent synchronization and communication objects are not consid-

ered in this section, all shared data structures located on the local memory of a processor

are thought to be included in a single lock unit.

4.1 Spin Lock with Local Precedence

In order to improve the worst-case execution times of an operation on a local task

(called a local operation, in short), the local lock guarding the local data structures

should be obtained with precedence over the other processors. With this approach, the

maximum execution time of a local operation is determined independently of the number

of contending processors. More precisely, a task must wait for at most one critical section

executed by other processors until it acquires its local lock. On the other hand, the

maximum number of critical sections that a processor must wait for until it acquires a

non-local lock is increased. More precisely, when a task tries to acquire a non-local lock,

it must wait forn� 1 critical sections executed by its host processor in addition ton� 2

critical sections executed by the other processors, wheren is the number of contending

processors.

The spin lock algorithms with which the local lock can be acquired with precedence

over the other processors, called spin locks with local precedence, will be described in

Section III.3.

4.2 Spin Lock with Preemption

To satisfy both of the conditions (1) and (2) described in Section 3.2 at the same time, we

adopt FIFO-ordered queueing spin lock algorithms with preemption.

As described in Section 3.2, in a bounded spin lock algorithm, a processor modifies

some shared variable and reserves its turn to acquire the lock. In order not to make the

contending processors wait wastefully, a processor must inform others that it is servicing

interrupts and should not be passed the lock, when it begins to service interrupts while

waiting for the lock. The processor trying to release the lock checks if the succeeding

processor is servicing interrupts. If the succeeding one is found to be servicing interrupts,

the lock is passed to the next in line.

More precisely, when the processor trying to release the lock finds that the succeeding

one is servicing interrupts, the processor is dequeued from the waiting queue for the

36

lock. When the processor finishes the interrupt service, it checks whether it is dequeued

from the waiting queue during the interrupt service or not. If it has been dequeued,

it re-executes the lock acquisition routine from the beginning. Obviously, this simple

preemption scheme has the problem that the interrupt service overhead depends on the

number of contending processors.

In order to solve this problem, we propose an improved preemption scheme, in which

the processor is not dequeued even when its turn to acquire the lock comes during an

interrupt service. Instead, the processor trying to release the lock simply passes the

lock to the next processor in the waiting queue. When the processor returning from

the interrupt service, it resumes waiting for the lock in its original position. With this

improved preemption scheme, the interrupt service overhead can be reduced to a constant

time length, which is independent of the number of contending processors.

One more problematic situation is as follows. Assume the case that a processorP1

services an interrupt request while the task executed onP1 is waiting for a lock. The

problem occurs when the interrupt handler executed byP1 tries to acquire the same lock.

If P1 executes the lock acquisition routine from the beginning, another processorP2 that

has just begun waiting for the same lock must possibly wait for the two executions of

critical sections byP1. As the result, the maximum number of critical sections thatP2

must wait for is increased with an interrupt service executed onP1. This violates the

required property (B) presented in Section 3.3. More precisely, the maximum time until

P2 acquires the lock cannot be bounded with a linear order of the number of contending

processors without some assumptions on the occurrence of interrupt requests.

Our solution to this problem is that the interrupt handler trying to acquire the lock

inherits the turn that the preempted task have reserved to acquire the lock. In this case,

the task must re-execute the lock acquisition routine from the beginning after the interrupt

service, and thus the interrupt service overhead is prolonged. Instead, the interrupt

service time is shortened, because the interrupt handler inherits the turn reserved by the

preempted task. Because the sum of the interrupt service time and the interrupt service

overhead remain unchanged, schedulability of the system is not affected with this method.

The same method can be applied to the situation that another task that becomes ready to

execute by the interrupt service tries to acquire the same lock.

With these methods, all of the required properties described in Section 3.3 are

satisfied, on the assumption that underlying inter-processor synchronization mechanism

and hardware satisfy the properties described in the next section. Timing behavior of

our proposed method is illustrated in Table 7, in whichTcs denotes the maximum time

duration that a processor holds a lock.

37

system call intra-processor inter-processor
name function operations operations

cre tsk create a task Tcre tsk 2 � n � Tcs + T 00

cre tsk

.
sustsk suspend executing a task Tsus tsk 2 � n � Tcs + T 00

sus tsk

(with a task switch) T 0

sus tsk 2 � n � Tcs + T 000

sus tsk

rsm tsk resume executing a task Trsm tsk 2 � n � Tcs + T 00

rsm tsk

(with a task switch) T 0

rsm tsk 2 � n � Tcs + T 000

rsm tsk

.
vsnd tmb send a message to a task Tvsnd tmb 2 � n � Tcs + T 00

vsnd tmb

(with a task switch) T 0

vsnd tmb 2 � n � Tcs + T 000

vsnd tmb

vrcv tmb receive a message sent to meTvrcv tmb —
(with a task switch) T 0

vrcv tmb —
.

maximum interrupt response time Tint
interrupt service overhead Tint overhead

Table 7: Timing Behavior of the Proposed Method

The bounded spin lock algorithms with preemption will be discussed in Section III.2.

4.3 Assumptions on Underlying Synchronization Mecha-
nism and Hardware

In order that our proposed method strictly satisfies the required properties described in

Section 3.3, the following assumptions on underlying inter-processor synchronization

mechanism (i.e. spin lock) and hardware are necessary to be satisfied.

1. The maximum execution time of underlying inter-processor synchronization mech-

anism can be determined independently of the number of contending processors.

2. The maximum access time of a local memory can be determined independently of

the number of contending processors.

3. The maximum access time of a remote memory can be bounded with a linear order

of the number of contending processors.

Because the maximum execution time of our queueing spin lock algorithm with

preemption which will be described in Section III.2 depends on the number of contending

processors, the first assumption is not satisfied. However, the dependency is very small

and can be ignored in usual applications. For very hard real-time applications, the

underlying synchronization mechanism should be implemented with hardware. Because

38

only one lock is necessary for each processor, we think that the cost of the synchronization

hardware can be justified.

In order to satisfy the second assumption, the maximum access time of the local bus of

the processor should be able to be determined independently of the number of contending

processors, or the local memory should be realized using two-port memories. The third

assumption requires that the maximum access time of the shared bus (or interconnection

network) and that of the local bus of another processor are bounded with a linear order of

the number of contending processors.

A hardware architecture in which all these assumption are satisfied with reasonable

cost is as follows. A complete round-robin scheme should be adopted as the arbitration

scheme of the shared bus (or interconnection network). The local bus of a processor

should also be scheduled in a round-robin fashion between its host processor and the

other processors. More precisely, after the local bus is used by its host processor, another

(remote) processor should be able to acquire the bus. After a remote processor uses the

local bus, the host processor of the bus can acquire the bus with higher precedence over

the other processors.

5 Classification of Kernel Resources

In the basic kernel model for function-distributed multiprocessors described in Section 2.1,

each kernel resource is classified into thelocal classof its host processor. Kernel resources

included in eachlocal classhave the same characteristics except that they are located on

the local memory of its host processor and that (in case of local tasks) they are executed

only by its host processor.

In this section, we propose a new kernel model in which kernel resources are classified

into some classes with different characteristics. The kernel resources belonging to the

class having the appropriate property for a processing should be used for implementing

the processing.

At first, we introduce the class of private tasks, whose maximum execution times

are independent of the number of contending processors, but that cannot synchronize or

communicate with the tasks executed on other processors in Section 5.1. Task-independent

synchronization and communication objects are also classified into the private class and

the shared class in Section 5.2. We also introduce the class of isolated tasks in Section 5.3.

Though isolated tasks themselves have little use, the same access restriction with it should

be imposed on interrupt handlers. Finally, we describe the kernel interface with which

resources of different classes are accessed in Section 5.4.

39

Local
Memory

I/O MPU

Local
Memory

I/O MPU

: local task

A
AAA
AA
AAA
AA
AAA
AA
AAA

AA
AAA

: private task

AA
AAA
A
AAA

AA
AAA
AA
AAA

Figure 8: Kernel Model with Private Tasks

5.1 Private Tasks

Though the spin lock with local precedence described in Section 4.1 makes the worst-

case performance of an intra-processor synchronization independent of the number of

contending processors, its performance is quite low compared with a single processor

system. As described in Section I. 2, many of the tasks can be processed within a processor

and need not synchronize or communicate with other processors in well-designed

application system on a function-distributed multiprocessor. The total performance of

the system is expected to be improved, if such tasks can be executed with the same

performance with a single processor system.

To meet this requirement, we propose an approach to classify tasks according as

their characteristics. In the concrete, we classify the tasks that are not operated by tasks

executed on other processors asprivate tasks, which are managed differently from the

other tasks (i.e. local tasks). Because the TCB of a private task is not accessed by other

processors than its host processor, no inter-processor lock is necessary to access its TCB.

A separate ready queue and a timer event queue also accessible without an inter-processor

lock are prepared for the private tasks on each processor. Both the ready queue for the

private tasks and that for the local tasks are checked in determining which task to be

executed. The kernel model with private tasks is illustrated in Figure 8.

A private task on a processor can synchronize or communicate with a local task

on the same processor. When the private task accesses the TCB of the local task, the

maximum time until it acquires the lock guarding the TCB is independent of the number

of contending processors, because the private task, which is on the same processor with

the local task, can acquire the lock with precedence over the other processors.

40

Another motivation to introduce the class of private tasks is as follows. Because the

maximum execution time of an operation on a remote resource (called a remote operation,

in short) is prolonged as the number of contending processors is increased, a task whose

worse-case behavior should not depend on the number of contending processors must

not invoke such operations. Moreover, the same restriction applies to any higher priority

task than the former task in order to bound its response time independently of the number

of contending processors. If this restriction is imposed on each private task, and if the

private tasks are always scheduled with higher priorities than the local tasks on the same

processor, the worst-case behavior of private tasks can be determined independently of

the number of contending processors.

In order to schedule the private tasks with higher priorities than the local tasks, the

task dispatcher (a kernel module which switches the contexts of tasks) first checks the

ready queue for the private tasks, then checks the ready queue for the local tasks only

when the former one is empty, and determines to which task to dispatch.

5.2 Classification of Task-Independent Synchronization
and Communication Objects

In order that local tasks on different processors synchronize and communicate each

other through task-independent objects (such as semaphores and eventflags), a class of

synchronization and communication objects that can be accessed by local tasks on any

processor is necessary. We call this class of objects asshared objects. When the control

blocks of shared objects is located on the local memory of a processor, it is also called

local objectsof the processor. Non-local shared objects are calledglobal objects.

When a task operates on a shared object, it is necessary for the task to access the

TCBs of other tasks that are waiting on the object in addition to the control block of the

object. Because a private task cannot access the TCBs of the tasks on other processors

that can wait on a shared object, a private task cannot operate on the shared object.

Consequently, in order that private tasks and local tasks on a processor synchronize and

communicate each other through task-independent objects, a class of synchronization

and communication objects that can be accessed only from the tasks on the processor is

necessary. We call this class of objects asprivate objects. No inter-processor lock is

necessary to access the control blocks of the private objects (Figure 9).

Table 8 presents the accessibility of each class of kernel resources from each class of

tasks.P1 andP2 in this table represent different processors in the system, andP1-private

(or local) task denotes a private (or local) task on processorP1. “*1” represents that a

41

Local
Memory

I/O MPU

: local task

A
AAA

AA
AAA
AA
AAA
AA
AAA

AA
AAA

: private task

Local
Memory

I/O MPU AA
AAA
AA
AAA
AA
AAA
A
AAA

A
A

AA
AA
A
AAA

AA
AA
A
AA
A
A
A
AA
A
A
A
A
A
A

A
A
A
AA
A
A
AA
AAA
AA
AA
A
AAA

AA
AA
A
A
A
A

A
A
A

Figure 9: Kernel Model with Private Tasks and Objects

OK

P

2 -private task

P

2 -private object

P

2 -local task

shared object

P
1 -local task

P

1 -private task

P1-private task

P1-local task

P

1 -private object

NA

NA

NA

NAOK

OK

OK

*1

OK

NA

OK

NA

*1

accessing
task

accessed resource

Table 8: Accessibility of Kernel Resources

task can access another task with normal operations (the system calls of category (a) in

Section 2.4) but cannot access with special operations (the system calls of category (b)).

When a task tries to operate on an unaccessible resource, the kernel reports an error.

In Table 8, aP1-private task cannot access aP1-local task with special operations,

because the private task cannot access the control block of a shared object on which the

P1-local task may be waiting. AP1-local task cannot access aP2-local task with special

operations, because theP1-local task cannot access the control block of aP2-private

object on which theP2-local task may be waiting.

5.3 Isolated Tasks and Interrupt Handlers

As described in Section 5.1, a private task is necessary to acquire an inter-processor lock

when it synchronizes with a local task on the same processor. Therefore, its maximum

execution time and response time are long compared with a single processor system.

When some deadlines are very short and the same response time with a single processor

system is required, another class of tasks that never use inter-processor locks becomes

42

P1-private task OK

shared object

P

1 -local task

P

1 -private task

P1-isolated task

P

1 -private object

OK

OK

OK

*1

OK

NA

OK

accessing
task

P1-local task

P

1 -isolated task

P

1 -isolated object

OK

OK

OK

OK

*2

OK OK NA NA NA

accessed resource

P

2 -private task

P

2 -private object

P

2 -local task

NA

NA

NA

NA

NA

*1
P

2 -isolated task

P

2 -isolated object
NANANA

NA

NA

NA

NA

NANA

Table 9: Accessibility of Kernel Resources with Isolated Classes

necessary. We call this class of tasks asisolated tasks. Isolated tasks are always scheduled

with higher priorities than the private tasks and the local tasks on the same processor.

Because an isolated task cannot operate on a private object on which a local task may be

waiting, isolated objectsthat can be operated on only by the isolated tasks and the private

tasks are necessary. An isolated task cannot access even the task control block of a local

task because a local task can be accessed from other processors, while a private task can

access it.

The accessibility of kernel resources with isolated classes are summarized in Table 9.

In this table, “*2” represents that a task can access a synchronization object with the

operations of category (c) and (e) but cannot access with the operations of category (d),

that is, the task cannot wait on the object. AP1-local task cannot wait on aP1-isolated

object, because aP1 isolated task, which cannot access the TCB of the local task, must be

able to operate on the object.

In the�ITRON3.0 specification, application programmers can write interrupt handlers.

System calls can be invoked from interrupt handlers, except for the operations that make

the issuing task blocked.2 Because the execution time of an interrupt handler is included

in the maximum response time of isolated tasks, interrupt handlers should not use inter-

processor lock and thus the same access restriction with the isolated tasks should be

applied. When isolated tasks are not used, it is still reasonable that the same access

restriction is applied to interrupt handlers.

A system call that disables interrupt services is prepared in the�ITRON3.0 specifica-

tion. While a task disables interrupt services, both the access restriction on the task and

that on an isolated task on the same processor should be applied to the task.

2This is because an interrupt handler does not have a task context and cannot be blocked.

43

5.4 Kernel Interface

The classification of kernel resources is reflected to the kernel interface through ID

numbers of the resources. In the�ITRON3.0 specification, a kernel resource is accessed

with its ID number. We divide a resource ID into the field indicating to which class the

resource belongs and the field identifying the resource in the class. With this approach,

the system call interface, especially the number of parameters, remains unchanged.

It is usually the case that the ID numbers of kernel resources are represented with

symbols in source code and that the mapping of the symbols to actual numbers is given

within a definition module. With this guideline, when the class of a kernel resource is

changed, only the definition module is necessary to be modified.

6 Performance Measurements

In this section, the effectiveness of our proposals is investigated through performance

measurements. The measurement method is described in Section 6.1, and the measurement

results, which are to see whether the four required properties of a scalable real-time kernel

described in Section 3.3 are satisfied or not, are presented in Section 6.2.

In the measurements, underlying inter-processor synchronization is realized with spin

locks implemented with software, which do not satisfy the required property presented in

Section 4.3. Our evaluation environment described in Section I.6.1, does not satisfy one

of the required properties either. In spite of the missing properties, the advantage of our

proposals over other methods is confirmed through the measurements.

6.1 Measurement Method

We have prepared five versions of real-time kernels for the evaluation: a real-time kernel

using the proposed method (i.e. spin lock with the improved preemption scheme and

local precedence rule; titled “proposed” in the graphs in this section), one using spin

lock with the improved preemption scheme but without local precedence rule (“w/o

local precedence”), one using spin lock with the simple preemption scheme and local

precedence rule (“w/o improved preemption”), one using spin lock without preemption

and with local precedence rule (“w/o preemption”), and one using the remote invocation

method (“remote invocation”).

We have measured the execution times of system calls and the interrupt response

times using two synthetic workloads. The workloads are determined so that worst-case

situations can occur.

44

AA
AAAτ1

AAA
A

τ2

AA
AAA

AAA
A
AAA
A

AA
AAA
AA
AAA
AA
AAA

cyclic interrupt
request

P2P1

AAAmessage

AAA
AA
AAAA
AA
AA

suspend

& resume

AA
AAA

su
sp

en
d

& re
su

m
e

. . . .

cyclic interrupt
request

cyclic interrupt
request

Pn

Figure 10: The First Workload

The first workload is to evaluate the performance of a local operation, or an intra-

processor synchronization. A local task�2 on processorP1 repeatedly invokes a system

call that sends a message to a higher priority local task�1 on the same processor, and

the execution times of the system call (the time since�2 invokes the system call until�1

starts execution) are measured. The execution times when an interrupt request is serviced

during the execution are recorded separately. The execution times of a system call that

sends a message to a private task�1 on the same processor are also measured.

In order to interfere the local operation, local tasks on the other processors alternately

suspend and resume the execution of lower priority tasks onP1 at random intervals. The

average interval is about 500�s. During the measurement, periodic interrupt requests

are also raised on each processor, and the interrupt response times are measured within

the interrupt handler. The interrupt period is around 5 ms and is varied in 0–5% for

each processor in order that the timing of interrupt requests for each processor should

not be synchronized. The execution time of the interrupt handler including the time for

invoking and returning from the handler is about 33�s. Other external interrupt requests

are inhibited during the measurement.3 The relation among tasks in this workload is

illustrated in Figure 10.

The second workload is to evaluate the performance of a remote operation, or an

inter-processor synchronization. A local task�2 on processorP2 repeatedly invokes a

system call that sends a message to a local task�1 on processorP1, and the execution

times of the system call (the time since�2 invokes the system call until the execution of

the system call is finished) are measured. The execution times when an interrupt request

3The inter-processor interrupts should not be inhibited, of course. The word “external” excludes the
inter-processor interrupts.

45

AA
AAA τ1

AAA
A A

AAA

AAA
A
AAA
A

A
AAA
A
AAA
A
AAA

cyclic interrupt
request

P1

AAAA
AAAAmessage

AAAA

suspend

& resume

AA
AAA

suspend

& resume

. . . .

cyclic interrupt
request

Pn

τ2AAAAA

P2

A
AAA

P3

suspend

& resume

Figure 11: The Second Workload

is serviced during the execution are recorded separately.

In order to interfere the remote operation, a task onP1 and tasks on the other processors

alternately suspend and resume the execution of lower priority tasks onP1 at random

intervals. The average interval is same with the first workload. During the measurement,

periodic interrupt requests are also raised on each processor, and the interrupt response

times are measured. The interrupt period and the execution time of the interrupt handler

are same with the first workload. The relation among tasks in this workload is illustrated

in Figure 11.

6.2 Measurement Results

Figure 12 presents the 99.99%-reliable execution times of a system call that sends a

message to a higher priority task under the first workload, when no interrupt request is

serviced during the execution. The number of contending processors (includingP1) is

changed from one (no interference) to nine (eight interfering tasks). With the proposed

method, the execution time is nearly constant when the number of processors is larger

than two. Its slight increase is due to the contentions for the local bus ofP1 and for

the shared bus. Without local precedence scheme, the execution time is prolonged as

the number of contending processors is increased. The execution time with the remote

invocation method, which can not be bounded inherently, is prolonged more rapidly. This

result demonstrates that our proposed method can practically satisfy the required property

(A) in Section 3.3, but other methods cannot.

The execution time of a system call that sends a message to a private task is quite

short because no inter-processor synchronization is necessary to execute the system call.

Moreover, the number of contending processors has only a little influence on the execution

46

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9

E
xe

cu
tio

n
T

im
e

(m
ic

ro
 s

ec
.)

Number of Contending Processors

proposed
w/o local precedence

remote invocation
private task

Figure 12: Execution Times of Local Operation

time. When the number of processors is one, the execution time is about 70�s, which

corresponds to the execution time of the system call in single processor systems. The

execution time with the remote invocation method when the number of processors is one

is almost same with this, because inter-processor synchronization is also unnecessary with

the remote invocation method.

Figure 13 presents the 99.99%-reliable execution times of a system call that sends a

message to a local task on another processor under the second workload, when no external

interrupt request is serviced during the execution. The number of contending processors

(includingP1) is changed from two (an interfering task onP1) to nine (eight interfering

tasks). The proposed method has worse performance than the other methods, because of

the performance penalty imposed on non-local operations. This result demonstrates that

each method satisfies the required property (B) in Section 3.3.

In order to show that our proposed method can satisfy the required property (C), we

present the 99.99%-reliable interrupt response times on processorP2 under the second

workload in Figure 14. The number of contending processors is changed from two to

nine. Under this workload,P2 repeatedly acquires the lock guarding the TCB ofP1-local

tasks. Unless a preemption scheme is adopted, the interrupt response time onP2 includes

the time thatP2 is waiting for the lock and is prolonged as the number of contending

processors is increasing. With either preemption scheme, the interrupt latency becomes

almost independent of the number of contending processors.

Finally, we demonstrate that our proposed method can satisfy the required property

47

0

50

100

150

200

250

300

350

400

2 3 4 5 6 7 8 9

E
xe

cu
tio

n
T

im
e

(m
ic

ro
 s

ec
.)

Number of Contending Processors

proposed
w/o local precedence

remote invocation

Figure 13: Execution Times of Remote Operation

0

50

100

150

200

250

300

2 3 4 5 6 7 8 9

R
es

po
ns

e
T

im
e

(m
ic

ro
 s

ec
.)

Number of Contending Processors

proposed
w/o improved preemption

w/o preemption

Figure 14: Interrupt Response Times

48

0

50

100

150

200

2 3 4 5 6 7 8 9

In
te

rr
up

t S
er

vi
ce

 O
ve

rh
ea

d
(m

ic
ro

 s
ec

.)

Number of Contending Processors

proposed
w/o improved preemption

w/o preemption

Figure 15: Interrupt Service Overheads

(D). Figure 15 presents the differences of the 99.99%-reliable execution times of a remote

operation when an interrupt request is serviced during the execution and those when no

interrupt request is serviced, which represent the measured interrupt service overheads,

under the second workload. With the proposed method, the interrupt service overhead

does not depend on the number of contending processors. With the simple preemption

scheme, the interrupt service overhead becomes long as the number of contending

processors is increased.

From these measurement results, we can say that the proposed method has advantage

over other implementation methods. The four required properties of a scalable real-time

kernel described in Section 3.3 are not satisfied in strict, because the assumptions on the

underlying synchronization mechanism and hardware are not satisfied in our evaluation

environments. However, we found that their effect is quite small and the four properties

can be thought to be satisfied in practice, except for very hard read-time applications.

7 Difficulty To Be Solved

In this section, we discuss the implementation method of a scalable real-time kernel

that satisfies the four required properties presented in Section 3.3 and that supports

task-independent synchronization and communication objects, such as semaphores and

eventflags. As the result, the difficulty for its realization is illustrated. Discussions in this

section are also based on the assumptions on underlying inter-processor synchronization

49

acquirelock(Lock for Objects);
deterimine which lock to acquire;
if (lock is necessary to be acquired) then

acquirelock(Lock for Tasks);
execute the system call;
releaselock(Lock for Tasks)

else
execute the system call

end;
releaselock(Lock for Objects);

Figure 16: Acquiring Nested Spin Locks

and hardware presented in Section 4.3.

7.1 Necessity of Nested Spin Locks

When tasks whose control blocks are guarded by different lock units can wait on a

synchronization object, the control block of the object should be included in a different

lock unit with the TCBs as described in Section 2.4. A system call that operates on a

task-independent synchronization object first acquires the lock guarding its control block.

When a task that has been waiting on the object is released from the blocked state with

the system call, or when the task that issues the system call begins to wait on the object,

the system call also needs to acquire the lock guarding the TCB of the target task. Note

here that which TCB is necessary to be accessed is determined after accessing the control

block of the synchronization object. Consequently, the lock guarding the control block of

the synchronization object must be acquired at first, and after accessing the control block,

the TCB of the target task must be acquired. This kind ofnested locksare the obstacle

for satisfying the required properties of a scalable real-time kernel. Figure 16 illustrates

a skeleton of a routine that executes a system call requiring nested spin locks.

On the other hand, when only the tasks included in a class can wait on a synchronization

object, the control block of the object can be included in the same lock unit with the

TCBs of the tasks. Therefore, this type of synchronization object can be realized with

the method described in Section 4. Its typical example is the task-dependent mailbox4 on

which only its host task can wait. We have used this type of mailbox for the performance

measurements in Section 6.

A private synchronization object can also be realized without nested spin locks. This

is because a private object cannot be accessed from other processors, and because the

4The task-dependent mailbox function is defined in the version 2.0 of the�ITRON specification, but
not defined in the latest�ITRON specification,�ITRON3.0.

50

control block of the object need not be guarded with an inter-processor lock. Another

important feature of a private synchronization object is that the maximum execution time

of an operation on the object does not depend on the number of contending processors.

The reason is as follows. When a task�1 on processorP1 operates on aP1-private

synchronization object, the only inter-processor lock that�1 possibly needs to acquire is

the lock guarding the TCBs ofP1-local tasks. This is because aP1-private object can be

waited on only byP1-local tasks andP1-private tasks. The maximum time to acquire the

lock guarding the TCBs ofP1-local tasks can be bounded independently of the number

of contending processors thanks to the local precedence scheme described in Section 4.1.

As the result, the maximum execution time of an operation on a private synchronization

object can be bounded independently of the number of contending processors. If tasks

within a processor synchronize and communicate using private objects of the processor,

the required property (A) in Section 3.3 can be satisfied.

7.2 Candidate Implementation Methods

Below, we try to satisfy the three other required properties (B), (C), and (D) presented in

Section 3.3. The first method can satisfy the properties (B) and (C), but cannot satisfy

(D). Though we propose the second method for satisfying the required property (D), it

can not satisfy (B) instead.

The First Method

In order to make the required properties (B) and (C) compatible, when an interrupt is

requested to a processor while it is waiting for a lock, the processor must suspend the

spin-waiting and start servicing the interrupt request as discussed in Section 3.2. When

the interrupt request occurs while a processor is waiting for the outer lock (the lock

guarding the control blocks of synchronization objects), the same preemption scheme

with that proposed in Section 4.2 can be applied straightforwardly.

The problem arises when the interrupt request occurs while a processor is waiting

for the inner lock (the lock guarding the TCBs). In this case, in addition to suspend the

spin-waiting for the inner lock, the processor must release the outer lock before servicing

the interrupt request. Otherwise, the maximum duration that the processor holds the lock

includes interrupt service times. The skeleton of the routine supporting preemption is

presented in Figure 17. In this figure, theacquirelock function is assumed to return

false, when an interrupt in requested while waiting for the lock. After returning from

the interrupt service, the processor must re-acquire the outer lock and re-execute the

51

retry:
disable interrupts;

1hif (:acquirelock(Lock for Objects))then
enable interrupts;
interrupt requests are serviced here;
goto retry

end;
2hdeterimine which lock to acquire;

if (lock is necessary to be acquired) then
3hif (:acquirelock(Lock for Tasks))then

releaselock(Lock for Objects);
enable interrupts;
interrupt requests are serviced here;
goto retry

end;
execute the system call;
releaselock(Lock for Tasks)

else
execute the system call

end;
releaselock(Lock for Objects);
enable interrupts;

Figure 17: Acquiring Nested Spin Locks with Preemption

processings to determine which lock to be acquired (the routine between2jand 3j

in Figure 17), because which lock to be acquired may be changed during the interrupt

service. This re-execution overhead should be treated as included in the interrupt service

overhead.

With this preemption scheme, the required properties (B) and (C) are satisfied. The

methods to bound the maximum time to acquire nested spin locks with a linear order of

the number of contending processors will be discussed in Section III.4.

However, the processor must re-execute the lock acquisition routine for the outer

lock from the beginning after it finishes interrupt services. In other words, this method

corresponds to the simple preemption scheme presented in Section 4.2. Therefore, the

interrupt service overhead depends on the number of contending processors and the

required property (D) cannot be satisfied with this method.

The Second Method

In order to satisfy the required property (D), Section 4.2 has proposed the improved

preemption scheme, with which the processor returns to its original position in the waiting

queue instead of enqueues itself at the tail of the queue. We try to apply this policy to this

case.

52

After a processor returns from an interrupt service which is requested while waiting

for the inner lock, the processor should be enqueued to the head of the waiting queue for

the outer lock instead of the tail of it. With this preemption scheme, the interrupt service

overhead can be bounded independently of the number of contending processors, and the

required property (D) can be satisfied.

With this method, however, the property (B) cannot be met with the following reason.

Suppose the case that a processorP1 is holding the outer lockL on which two other

processorsP2 andP3 are waiting. When an interrupt is requested onP1 while it is waiting

for the inner lock,P1 suspends waiting for the inner lock, passes the lockL to P2, and

starts the interrupt service. Assume thatP2 is waiting for the inner lock and is still

holdingL whenP1 returns from the interrupt service. In this case,P1 enqueues itself at

the head of the waiting queue, i.e. in front ofP3. If an interrupt request is raised onP2 at

this moment, it passes the lockL to P1. Again,P2 can return to the head of the waiting

queue, i.e. in front ofP3. This process can continue permanently and violates the required

property (B). More precisely, the maximum time untilP3 acquiresL cannot be bounded

without some assumptions on the occurrence of interrupt requests.

8 Summary

In this part, the required properties of a scalable real-time kernel for function-distributed

multiprocessors have been summarized in four items, and its realization methods have

been discussed. Before the discussions on a scalable real-time kernel, we have presented

the overview of the TRON project, the ITRON specifications, and the ITRON-MP

specification, which constitute the background of this study.

In Section 2, we have presented the basic real-time kernel model for function-

distributed multiprocessors. We have also described the two implementation approaches

of the model, the direct access method and the remote invocation method, and illustrated

that the latter method is not suitable for real-time system. It is one of the reasons why we

focus on shared-memory multiprocessors in this study. The granularity of inter-processor

locks with the direct access method has also been discussed.

In a well-designed application system on a function-distributed multiprocessor ar-

chitecture, many of the tasks can be processed without direct synchronizations or

communications with other processors. Therefore, it is advantageous that the worst-case

timing behavior of such tasks is determined independently of the other processors’ activ-

ities and the number of contending processors. The timing behavior of interrupt handling

should be also independent of the number of contending processors. In Section 3, we

53

have summarized these requirements on a scalable real-time kernel in four properties and

pointed out two problems to realize the properties.

In Section 4, we have proposed the solutions to the problems presented in the previous

section. With the proposed implementation method, a multiprocessor real-time kernel

that does not support task-independent synchronization and communication objects can

be realized with satisfying the four required properties, on the assumption that underlying

inter-processor synchronization mechanism and hardware architecture satisfy the required

properties described in Section 4.3.

In Section 5, we have proposed a new kernel model in which tasks and task-

independent synchronization and communication objects are classified into some classes

with different characteristics. Tasks are classified into the local tasks, the private tasks,

and the isolated tasks of each processor. Task-independent synchronization objects are

also classified into the shared objects, the private objects, and the isolated objects. The

accessibility of each class of kernel resources from each task class has been presented in

a table.

In Section 6, the effectiveness of our proposals in Section 4 and 5 are demonstrated

through performance evaluations. Though underlying inter-processor synchronization

mechanism and hardware architecture do not satisfy the assumptions described in

Section 4.3, the four required properties of a scalable real-time kernel are practically

satisfied with our proposals. They cannot be satisfied at the same time with other methods.

Section 4 has focused on direct operations on tasks and has not considered task-

independent synchronization and communication objects, such as semaphores and event-

flags. Because tasks belonging to different classes can wait on a task-independent object,

the control block of the object should be included in a different lock unit from the

TCBs, and two lock units are necessary to be acquired one by one in some system

calls. Section 7 has shown the difficulty to implement task-independent synchronization

and communication objects while satisfying all of the required properties presented in

Section 3.3.

With the kernel model proposed in this part, the asymmetry of the underlying

architecture is directly reflected to the kernel interface. Here, a criticism is expected that

this approach put a burden on the system designer. We consider that this criticism is

inadequate with the follow reasons.

1. Under the current technologies of real-time computing, it is necessary for a system

designer to be conscious of the underlying execution mechanism of the system in

designing a hard real-time system with severe timing constraints. Therefore, it is

not a good approach that the characteristics of underlying hardware architecture is

54

hidden with an operating system kernel.

2. When a technology is developed with which a system designer need not be conscious

of the underlying hardware architecture in designing a hard real-time system, the

technology should be incorporated to the tools supporting real-time system design

such as schedulability analyzers and the CASE tools, and not to the real-time kernel.

55

Part III

Spin Lock Algorithms for Scalable
Real-Time Kernels

56

1 A Brief Survey on Spin Lock Algorithms

An inter-processorlock is used for exclusive access to shared resources on shared-memory

multiprocessors. When a processor accesses a shared resource, it must acquire the lock

guarding the resource. When the lock is held by another processor, the processor must

wait until the lock is released. In waiting for the lock, two approaches exist; busy-waiting

and blocking.

A spin lockis the mechanism for realizing an inter-processor lock with busy-waiting

approach. When the lock is held by another processor, the processorspinsuntil the lock

is released. Though spin-waiting wastes processor cycles, it is useful in two situations:

when the execution time of the critical section is so short that the expected waiting time

is shorter than the time to block and resume the task, and when there is no other work

to do. In implementing a multiprocessor real-time kernel, spin locks are usually adopted

because the execution time of each critical section is very short.

1.1 Hardware Primitives and Spin Locks

Spin lock algorithms for shared-memory multiprocessors have been intensively studied

under various hardware environments.

The first spin lock algorithm was proposed by Dijkstra in 1965 [10], which assumes

that the hardware supports only (atomic) read and (atomic) write operations. After some

proposals of its improvements [30, 11, 32], an efficient algorithm in the absence of

contention was proposed under the same hardware assumption quite recently [33]. More

recently, the algorithm is improved with the timing-based approach, in which the relative

execution speed of each processor is assumed to be bounded at any moment [35, 2, 41].

Because these algorithms that use only (atomic) read and (atomic) write operations

have quite large overhead, however, most modern shared-memory multiprocessor archi-

tectures provide hardware support for exclusive accesses to shared resources. The most

popular approach is to support atomic read-modify-write operations on a single word of

shared memory. Another approach is to support spin locks with hardware [13, 34].

In this study, we assume that atomic read-modify-write operations on a single word

(or aligned contiguous words) of shared memory are supported with hardware. Typical

examples of the operations are testandset, fetchandstore (swap), fetchandadd, and

compareandswap.

Among the operations, the compareandswap operation is most powerful and is

supported by many microprocessors. With a compareandswap operation and a retry

loop, the other read-modify-write operations can be emulated. Compareandswap is also

57

universal in the sense that a wait-free implementation of any concurrent data object is

possible with the operation, while the other operations listed above are not [16, 17].

Several recent high-performance microprocessors support loadlinked (or loadand reserve)

and storeconditional operations [28, 61, 20]. The loadlinked operation reads the value

of a shared variable to a register. A subsequent storeconditional operation to the shared

variable changes its value only if no other processor has modified the variable since the

last loadlinked operation. The storeconditional operation returns true if it succeeds to

store a new value to the shared variable.

With a pair of loadlinked and storeconditional operations and a retry loop, the

other read-modify-write operations including compareandswap can be emulated [68].

These operations are also universal in principle [18]. In practice, there are some

differences between the pair of loadlinked and storeconditional operations and the

compareandswap operation [42]. Because all compareandswap operations used in

this dissertation can be replaced with these operations, the results of this study are also

applicable to the processors supporting only loadlinked and storeconditional.

1.2 Notations Used in Pseudo-Codes

In the following sections, several pseudo-codes of spin lock algorithms are presented. In

these pseudo-codes, the following notations are used.

In presenting the pseudo-codes, we use our original syntax which is a mixture of

Modula-2 programming language [88] and C programming language. We also use some

non-ASCII characters, such as “!”, “:”, and “6=”, for readability. Lines beginning with

“//” are comments, which we borrow from C++ programming language.

The keywordsharedindicates that only one instance of the variable is allocated and

shared in the system. Other variables are allocated for each processor. The binary

operatorandis assumed to be the conditional-and operation, i.e. the right hand side of the

andoperator is evaluated only if its left hand side is true. When priorities are represented

with numbers, we assume that a larger value represents a higher priority. Therefore, if

prio1> prio2 is satisfied,prio1 represents a higher priority thanprio2.

Fetchandstore reads the shared variable addressed by the first parameter (which

must be a pointer), returns the contents of the variable as its value, and atomically writes

the second parameter to the variable.Compareandswapis a Boolean function with

three parameters. It first reads the shared variable addressed by the first parameter and

compares its contents with the second parameter. If they are equal, the function writes the

third parameter to the variable atomically and returns true. Otherwise, it returns false.1

1The compareandswap instructions of many microprocessors store the contents of the memory to the

58

1.3 Basic Spin Lock Algorithms

On the assumption that atomic read-modify-write operations on a single word (or aligned

contiguous words) of shared memory are supported with hardware, we can classify major

basic spin lock algorithms into following four categories.2 In the following, abounded

spin lockis defined to be a spin lock algorithm with which the maximum time to acquire

a lock can be bounded. Obviously, aFIFO-ordered spin lockis a class of bounded spin

locks.

Test&Set Locks

Each processor trying to acquire a lock repeatedly executes a testandset operation

on a shared Boolean variable indicating the lock status. When it sets the variable,

it succeeds to acquire the lock. It releases the lock by clearing the variable. There

are many variations of this algorithm in how each processor retries to execute a

testandset operation [3].

Because the time until a processor can acquire a lock cannot be bounded with

test&set locks, they are not appropriate for real-time systems.

Ticket Locks

Two shared counters are used in ticket locks: a request counter and a release

counter. A processor trying to acquire a lock increments its request counter using

a fetchandadd operation and obtains the old value of the counter, which indicates

its turn to acquire the lock. Then, it waits until the release counter is equal to the

value. To release the lock, the processor increments the release counter. There

are some variations in how each processor retries to read the release counter [3].

Obviously, processors can acquire a lock in a FIFO order with ticket locks.

FIFO-Ordered Queueing Locks

There are two subclasses of this category of algorithms: array-based FIFO-ordered

queueing locks and list-based FIFO-ordered queueing locks.

In array-based FIFO-ordered queueing locks, a processor trying to acquire a lock is

linked at the tail of an array-based waiting queue for the lock. If the waiting queue

is empty, the processor can acquire the lock at once. Otherwise, the processor spins

on a memory location in the array-based queue on which only the processor spins.

third parameter in this case. This facility is not used in this study.
2On the same assumption, Mellor-Crummey and Scott have classified spin lock algorithms into a bit

different four categories [38].

59

The processor trying to release the lock passes the lock to the next processor in the

waiting queue. If there are no other processors in the queue, the processor makes

the waiting queue empty.

An algorithm using the fetchandadd operation [3] and another using the

fetch andstore operation [14] have been proposed. On cache-coherent multi-

processors, the number of shared-bus transactions is bounded independently of the

number of processors with these algorithms, and the contention problem on the

shared bus (or interconnection network) can be resolved.

In list-based FIFO-ordered queueing locks, a processor trying to acquire a lock is

linked at the tail of a list-based waiting queue. Two famous algorithms in this

class is the MCS lock algorithm [40, 38], which uses the fetchandstore operation

and the compareandswap operation, and the Craig’s FIFO-ordered queueing lock

algorithm [9, 8], which uses only the fetchandstore operation. Another advantage

of the Craig’s algorithm is that the required memory space is as small asO(L+P),

whereL is the number of locks andP is the number of processors, even when spin

locks are nested. With the MCS lock, this becomesO(L + P �D), whereD is the

maximum number of locks that a processor must acquire at the same time.

Other Bounded Locks

With the spin lock algorithms proposed by Burns [5], the maximum time to acquire

a lock can be bounded, but the lock is not passed in a FIFO order. There is also a

trial to improve the efficiency of the algorithm [44].

Because the MCS lock algorithm, the representative FIFO-ordered queueing lock

algorithm, has some good features and is very simple, many extensions of the algorithm

are proposed [39]. We also propose some extensions in the following sections.

Pseudo-code for the MCS lock appears in Figure 18, and its behavior is illustrated in

Figure 19. The queue node of the lock holder (the processor that holds the lock) is at the

head of the waiting queue for the lock, and the queue nodes of the processors waiting for

the lock are linked to the queue in a FIFO order.Lock points to the last node of the queue.

When a processor begins waiting for the lock, it enqueues its queue node at the tail of the

queue. Precisely, it initialize its queue node at first (Figure 19 (a)), and swings theLock

to its queue node with a fetchandstore operation (Figure 19 (b)). After the processor

rewrites thenextfield of its predecessor’s queue node (Figure 19 (c)), it begins spinning

on thelockedfiled of its queue node. When the lock holder releases the lock, it passes

the lock to the next processor in the queue by assigningReleasedto thelockedfield of its

queue node (Figure 19 (d)).

60

type Node =record
next: pointer to Node;
locked: (Released, Locked)

end;
type Lock = pointer to Node;

shared varL: Lock;
// L is initialized toNULL.

var I: Node;
var pred: pointer to Node;

// try to acquire the lockL.
I.next := NULL;
// enqueue myself.
pred := fetchandstore(&L, &I);
if pred 6= NULL then

// when the queue is not empty.
I.locked := Locked;
pred!next := &I;
// spin until the lock is passed.
repeat until I.locked = Released

end;
//
// critical section.
//
// try to release the lockL.
if I.next = NULL then

if compareandswap(&L, &I, NULL) then
// the queue becomes empty.
gotoexit

end;
repeat until I.next 6= NULL

end;
I.next!locked := Released;

exit:

Figure 18: The MCS Lock

61

Lock

Released Locked Locked
lock holder

Pi Pk

NULL
Locked

Pl

NULL

(a)

spinningspinning

Pj

Lock

Released Locked Locked
lock holder

Pi Pk

NULL
Locked

Pl

NULL
AA
AA
AA
AA(b)

Pj

Lock

Released Locked Locked Locked
lock holder

NULL
Pi Pk Pl

(c)

Pj

Lock

Released Locked Locked
lock holder

NULL
Pk Pl

(d)

Pj

Figure 19: Behavior of the MCS Lock

With the MCS lock, if the queue node of each processor (variableI) is located

on its locally-accessible shared memory, the number of shared-bus (or interconnection)

transactions is bounded even on multiprocessors without a coherent cache. A simple proof

of its correctness is presented in [27] (The original proof in [38] is quite complicated).

1.4 Priority-Ordered Spin Locks

It is often the case with a multiprocessor real-time system that a spin lock is desirable to

pass the lock in a priority order. To meet this requirement, somepriority-ordered spin

lock algorithms, in which processors acquire a lock in the order of their priorities, have

been proposed.3

Markatos has extended the MCS lock to realize a priority-ordered spin lock [36]. The

extended algorithm also uses both fetchandstore and compareandswap operations.

3A strict definition of a priority-ordered spin lock is appeared in [36].

62

Lock

Released
10

Locked
12

Locked
5

Locked
2

lock holder

NULL

priority

(a)

highest priority

AAA
AAA
AAA
AAA
AAA
AAA
AAA

A
A
A

A
A

Lock

Released
10

Locked AAA
AAA 5

Locked
2

NULL

(b)

AAA
AAA
AAA

12

lock holder

Locked

Lock

Released
12

Locked
5

Locked
2

NULL

(c)

lock holder

Figure 20: Behavior of the Markatos’ Lock

With the Markatos’ algorithm, processors trying to acquire a lock are linked to the waiting

queue in a FIFO order. The processor trying to release the lock searches for the highest

priority processor in the waiting queue (Figure 20 (a)), moves it to the head of the queue

(Figure 20 (b)), and passes the lock to it (Figure 20 (c)). Therefore, the maximum

execution time of the lock release routine depends on the number of processors in the

system.

The original algorithm proposed by Markatos adopts a double-linked queue structure

for the waiting queue. We found that a single-linked queue structure is sufficient

to implement the algorithm. Pseudo-code for the single-linked queue version of the

Markatos’ algorithm is presented in Figure 21 and 22.

Though there is a non-local spinning (marked with #) in this algorithm, it is limited

to a very short period after another processor writes the pointer to its queue node toL (a

successful execution of the fetchandstore operation marked with1j) and until it writes

non-NULL value to thenext field of its predecessor (marked with2j), and its effect is

very limited.

Craig has also proposed priority-ordered versions of queueing spin locks that require

63

type Node =record
next: pointer to Node;
locked: (Released, Locked);
prio: integer

end;
type Lock = pointer to Node;

shared varL: Lock;
// L is initialized toNULL.

proceduremove to top(lock: pointer to Lock,
entry, pred, oldtop:pointer to Node);

// moveentryto the top of the waiting queue oflock.
// predis the predecessor ofentry.
// oldtopis the top of the queue before the move.

var succ:pointer to Node;
begin

succ := entry!next;
if succ = NULLthen

pred!next := NULL;
if compareandswap(lock, entry, pred)then

entry!next := oldtop;
return

end;
repeatsucc := entry!nextuntil succ6= NULL

end;
pred!next := succ;
entry!next := oldtop

end;

Figure 21: The Markatos’ Algorithm (Definition Part)

only the fetchandstore operation [9, 8]. Similarly to the Markatos’ algorithm, processors

trying to acquire a lock are linked to the waiting queue in a FIFO order. The processor

trying to release the lock finds the highest priority processor and passes the lock to it.

With the PR-lock algorithm on the other hand, processors trying to acquire a lock

are enqueued to the waiting queue in a priority order, and the processor trying to release

the lock passes the lock to the first processor in the waiting queue [26]. Therefore,

the maximum execution time of the lock acquisition routine depends on the number of

processors in the system. This algorithm has an advantage over the previous algorithms

that enqueueing operations, which are the most time-consuming part of the algorithm, can

be done in parallel.

We are also proposing a priority-ordered spin lock named the bubble lock [57], which

adopts another scheme for realizing priority-ordered spin locks.

64

var I: Node;
var top, entry, pred:pointer to Node;
var hentry, hpred:pointer to Node;

// try to acquire the lockL.
I.next := NULL;
// enqueue myself.

1hpred := fetchandstore(&L, &I);
if pred 6= NULL then

// when the queue is not empty.
I.locked := Locked;
I.prio := my priority;

2hpred!next := &I;
repeat until I.locked = Released

end;
//
// critical section.
//
// try to release the lockL.
top := I.next;
if top = NULL then

if compareandswap(&L, &I, NULL) then
// the queue becomes empty.
gotoexit

end;
repeat top := I.nextuntil top 6= NULL

end;
// search for the higest priority processor.
hentry := top;
pred := top;
entry := pred!next;
while entry 6= NULL do

if (entry!prio> hentry!prio) then
// whenentryhas a higher priority thathentry.
hentry := entry;
hpred := pred

end;
pred := entry;
entry := pred!next

end;
// now,hentryis the higest priority processor.
if hentry 6= top then

move to top(&L, hentry, hpred, top)
end;
hentry!locked := Released;

exit:

Figure 22: The Markatos’ Algorithm (Main Part)

65

2 Bounded Spin Lock with Preemption

In this section, we propose two algorithms of queueingspin lock with preemptionand

demonstrate their effectiveness through performance measurements. The necessity of

spin lock with preemption is pointed out in Section II.4.2 and is described in more detail

in this section.

In Section 2.1, the difficulty to satisfy two important requirements on scalable real-

time systems, predictable inter-processor synchronization and constant interrupt response,

at the same time. Section 2.2 describes that the adoption of a preemption scheme to spin

locks can solve the difficulty. Two queueing spin lock algorithms supporting different

preemption schemes are presented in Section 2.3 and 2.4, and their effectiveness is

evaluated through performance measurement in Section 2.5. Finally, in Section 2.6, we

point out the necessity to support two preemption scheme at the same time, and describe

a combined algorithm.

2.1 Spin Locks and Interrupt Latency

When a spin lock is used for a real-time system, the maximum times to acquire and release

a lock should be bounded. In order to bound the time until a processor acquires a lock,

the maximum duration that each processor holds the lock must be bounded, in addition

to bound the number of contending processors that the processor waits for, which can be

satisfied with bounded spin lock algorithms.

In order to bound the maximum duration that a processor holds the lock, the service

time of interrupt requests should be considered. In function-distributed multiprocessor

systems, interrupt services for external devices are requested for each processor. When

multiple devices are connected to a processor, interrupt requests from them are usually

asynchronous and the maximum time to service all of them becomes very long or even

unbounded. Consequently, in order to give a practical upper bound on the duration that a

processor holds a lock, interrupt services should be inhibited for that duration.

On the other hand, fast response to external events is also an important feature for

real-time systems. Because external events are notified to each processor as interrupt

requests as mentioned above, interrupt mask times on each processor should be minimized

to realize a system with fast response. Particularly, when the scalability of the system is

an important issue, the maximum interrupt mask time should be given independently of

the number of processors in the system.

Here a problem arises in deciding whether interrupts should be disabled first or an

inter-processor lock should be acquired first. Figure 23 presents a method in which

66

acquirelock();
disableinterrupts;
//
// critical section.
//
enableinterrupts;
releaselock();

Figure 23: Acquiring a Lock Precedes Disabling Interrupts

disableinterrupts;
acquirelock();
//
// critical section.
//
releaselock();
enableinterrupts;

Figure 24: Disabling Interrupts Precedes Acquiring a Lock

acquiring a lock precedes disabling interrupts. With this method, interrupts are serviced

while the processor holds the lock, and the condition that interrupt services should be

inhibited while a processor holds a lock is not satisfied. Figure 24 presents another method

where acquiring a lock follows disabling interrupts. With this method, the interrupt mask

time includes the time to acquire a lock and its upper bound heavily depends on the

number of processors.

2.2 Spin Locks with Preemption

In order to solve the problem described above, interrupt services must not be inhibited

while a processor waits for an inter-processor lock and must be kept inhibited once the

processor acquires the lock. One of the methods to realize this principle is the following.

While a processor is waiting for a lock, it repeatedly probes interrupt requests. When

interrupt requests are detected, it suspends waiting for the lock and services the requests.

The test&set locks can be extended easily with this method as presented in Figure 25

[58]. The algorithm is not suitable for real-time systems, however, because the time

until a processor acquires a lock cannot be bounded with it. The ticket locks and the

FIFO-ordered queueing locks, on the other hand, cannot be extended similarly.

In the following sections, we present two spin lock algorithms with which a processor

can service interrupts with short latency while satisfying the principle described above.

The algorithms are based on the MCS lock described in Section 1.3.

67

type Lock = (Released, Locked);

shared varL: Lock;
// L is initialized toReleased.

disableinterrupts;
while testandset(L) = Lockeddo

if interrupt requestedthen
enableinterrupts;
// interrupt service.
disableinterrupts

else
delay

end
end;
//
// critical section.
//
L := Released;
enableinterrupts;

Figure 25: The Test&Set Lock with Preemption

2.3 Queueing Lock with Simple Preemption Scheme

In all the spin lock algorithms that can give an upper bound on the time until a processor

acquires a lock, a processor modifies some shared variable and reserves its turn to acquire

the lock when it begins waiting for the lock. If the processor simply branches to an

interrupt service routine while waiting for the lock, it cannot begin the execution of the

critical section immediately when the lock is passed to the processor, and makes the

contending processors wait wastefully until the interrupt service is finished. Therefore,

when a processor begins to service interrupts while waiting for a lock, it must inform

others that it is servicing interrupt requests by modifying some shared variable. The

processor trying to release the lock checks if the succeeding processor is servicing

interrupts. If the succeeding one is found to be servicing interrupts, its turn to acquire the

lock is canceled or deferred, and the lock is passed to the next processor in line.

Pseudo-code of our first algorithm, which is an extension of the MCS lock to enable

interrupt services while waiting for a lock, appears in Figure 26 and 27. In this algorithm,

a processor informs others that it is servicing interrupts by assigning the valuePreempted

to thelockedfield of its queue node (i.e.I.locked).

If the processorP0 that is trying to release a lock finds that the succeeding processor

P1 is servicing interrupts,P0 dequeuesP1 from the waiting queue and tries to pass the

lock to the successor ofP1. During this process, a transient status occurs in whichP1’s

68

type Node =record
next: pointer to Node;
locked: (Released, Locked, Preempted, Canceled)

end;
type Lock = pointer to Node;

shared varL: Lock;
// L is initialized toNULL.

var I: Node;
var pred, succ, sn:pointer to Node;

// try to acquire the lockL.
retry:

I.next := NULL;
disableinterrupts;
// enqueue myself.
pred := fetchandstore(&L, &I);
if pred 6= NULL then

// when the queue is not empty.
I.locked := Locked;
pred!next := &I;
while (I.locked 6= Released)do

if interrupt requestedand
compareandswap(&(I.locked), Locked, Preempted)then

enableinterrupts;
// interrupt service.
disableinterrupts;
if :compareandswap(&(I.locked), Preempted, Locked)then

enableinterrupts;
repeat while I.locked 6= Released;
goto retry

end
end

end
end;
//
// critical section.
//

Figure 26: The Queueing Lock with Simple Preemption Scheme (Part 1)

69

//
// critical section.
//
// try to release the lockL.
succ := I.next;
if succ = NULLthen

if compareandswap(&L, &I, NULL) then
// the queue becomes empty.
gotoexit

end;
repeatsucc := I.nextuntil succ6= NULL

end;
// try to pass the lock to the successor.
while :compareandswap(&(succ!locked), Locked, Released)do

// when the successor is servicing interrupts.
if compareandswap(&(succ!locked), Preempted, Canceled)then

// dequeue the successor from the waiting queue.
sn := succ!next;
if sn = NULL then

if compareandswap(&L, succ, NULL)then
// the queue becomes empty.
succ!locked := Released;
gotoexit

end;
repeatsn := succ!nextuntil sn 6= NULL

end;
succ!locked := Released;
succ := sn

end
end;

exit:
enableinterrupts;

Figure 27: The Queueing Lock with Simple Preemption Scheme (Part 2)

queue node has been dequeued but the node area must not be reused because the value of

its next field is necessary.P0 informsP1 of this transient status by assigning the value

Canceledto thelockedfield of P1’s queue node. When the node becomes reusable,P0

informs P1 of it by changing thelockedfield to Released. WhenP0 finds that all the

waiting processors are servicing interrupts,P0 makes the waiting queue empty.

When the processor that has branched to an interrupt service routine while waiting

for a lock finishes the interrupt service, it reads thelockedfield of its queue node and

checks whether it has been dequeued (during the interrupt service) or not. If it has been

dequeued, it re-executes the lock acquisition routine from the beginning after waiting

until its queue node area becomes reusable. Otherwise, it recovers itslockedfield to the

valueLockedand resumes waiting for the lock.

70

With this algorithm, a processor waiting for a lock can acquire the lock in the order

of the waiting queue if no interrupt request is raised on the processor. In releasing a lock,

the algorithm also gives an upper bound on the number of search loops for identifying

to which processor the releasing processor should pass the lock, unless interrupt services

start and finish repeatedly on the waiting processors.4 As interrupt services are inhibited

while a processor holds a lock, no interrupt service time is included in the lock holding

time. Consequently, both the time until a processor acquires a lock and the time until it

releases the lock can be bounded with this algorithm under the above conditions.

Because a processor repeatedly probes interrupt requests while waiting for a lock, the

upper bound of the interrupt mask time in the lock acquisition routine can be determined

independently of the number of processors. On the other hand, the interrupt mask time

in the lock release routine depends on the number of processors in strict, because the

number of search loops for identifying the processor to which to pass the lock depends

on the number of processors. However, the problem is not severe in practice, because the

processing time of one loop is very short.

The proofs of the important features of this algorithm, mutual exclusion and deadlock

freedom when a certain condition is laid on interrupt occurrence, are presented in

Appendix B.

Wisniewski et al. have proposed a similar algorithm with ours from a different

motivation [89].5 The algorithm by Craig can also support the same preemption scheme.

With this algorithm, when a processor services interrupts while waiting for a lock and

is dequeued from the waiting queue, the processor must re-execute the lock acquisition

routine from thebeginning. Because the processor enqueues itself at the end of the

waiting queue, the maximum number of critical sections executed by other processors

that the processor must wait for is increased. When the schedulability of the system is

analyzed, this re-execution overhead should be added to the interrupt service time and

should be included in the interrupt service overhead described in Section II.3.2.

4A processor can be visited twice in the search loops in the following case. Immediately after the
processor is dequeued from the waiting queue, it finishes the interrupt service and links itself to the end
of the queue. If this case repeatedly occurs until the processor to which to pass the lock is identified, the
number of the loops cannot be not bounded. This case rarely occurs. But, when this problem cannot be
ignored (when the number of processors is large and when interrupts are requested frequently, in general),
the algorithm should be modified so that the assignment ofReleasedto the locked field of dequeued
processors is delayed until the processor to which to pass the lock is determined.

5Their algorithm has a problem that the transient status in which a queue node is not reusable is not
considered, thus the algorithm possibly falls into a deadlock. We have pointed out the problem to them,
and they have acknowledged it [31].

71

2.4 Queueing Lock with Improved Preemption Scheme

With our first algorithm, the interrupt service overhead depends on the number of

contending processors, because a processor possibly has to re-execute the lock acquisition

routine from the beginning after it services an interrupt request. This is problematic when

the algorithm is used for the implementation of a scalable real-time kernel as described in

Section II.4.2.

In order to solve this problem, we propose an improved preemption scheme which

avoids dequeueing a processor from the waiting queue while servicing interrupts. Specif-

ically, the processorP0 trying to release a lock searches for the first processorP2 that is

not servicing interrupts in the waiting queue, movesP2 to the top of the queue (with the

same method used in the Markatos’ priority-ordered queueing spin lock), and passes the

lock toP2. With this algorithm, when a processor finishes interrupt services, it resumes

waiting for the lock in its original position. Therefore, the interrupt service overhead,

which must be added to the interrupt service time in schedulability analysis, is minimized.

When all processors in the waiting queue are servicing interrupts, the difficulty occurs

that there is no processor to which to pass the lock and that the waiting queue should not

be made empty. To handle this situation, a new flag variable called the global lock flag

is introduced. The global lock flag indicates that the lock is released but that the waiting

queue is not empty. If the processor trying to release the lock finds that all processors in

the queue are servicing interrupts, it sets the global lock flag. A processor returning from

interrupt services tries to acquire the global lock with the same method with test&set

locks. If it succeeds in acquiring the global lock, it moves itself to the top of the waiting

queue. Because the processor needs to know the top processor in the queue to move

itself to the top, the processor releasing the global lock must pass the information in some

shared variable. It is also necessary for a processor to check the global lock flag once,

after it links itself at the end of the queue, because it is possible that all the processors in

the queue be servicing interrupts and the global lock be set.

Pseudo-code for the improved algorithm appears in Figure 28, 29, and 30. In this

pseudo-code, a double-linked queue structure is adopted because a processor needs to

know is predecessor when it succeeds to acquire the global lock. Theglock field of L

serves both as the global lock flag and as the variable to pass the top processor of the

waiting queue. Exponential backoff scheme is adopted to get the global lock in this code

to reduce the number of shared-bus transactions. Two constant parameters� and� should

be tuned for each target hardware and application.

With this preemption scheme, a transient status also occurs during the lock release

72

type Node =record
next: pointer to Node;
prev: pointer to Node;
locked: (Released, Locked, Preempted, Dequeueing)

end;
type Lock = record

last: pointer to Node;
glock: pointer to Node

end;

shared varL: Lock;
// L.lastandL.glock are initialized toNULL.

proceduremove to top(lock: pointer to Lock,
entry, pred, oldtop:pointer to Node);

// moveentryto the top of the waiting queue oflock.
// predis the predecessor ofentry.
// oldtopis the top of the queue before the move.

var succ:pointer to Node;
begin

succ := entry!next;
if succ = NULLthen

// whensuccis at the tail of the waiting queue.
pred!next := NULL;
if compareandswap(&(lock!last), entry, pred)then

entry!next := oldtop;
return

end;
repeatsucc := entry!nextuntil succ6= NULL

end;
pred!next := succ;
succ!prev := pred;
entry!next := oldtop

end;

Figure 28: The Queueing Lock with Improved Preemption Scheme (Part 1)

73

var I: Node;
var pred, succ, top:pointer to Node;
var interval, i: integer;

// try to acquire the lockL.
I.next := NULL;
disableinterrupts;
// enqueue myself.
pred := fetchandstore(&(L.last), &I);
if pred = NULL then

gotoacquired
end;
// when the queue is not empty.
I.prev := pred;
I.locked := Locked;
pred!next := &I;
i := 1; // check the global lock once.
interval :=1; // never expires.
while (I.locked 6= Released)do

if interrupt requestedand
compareandswap(&(I.locked), Locked, Preempted)then

enableinterrupts;
// interrupt service.
disableinterrupts;
I.locked := Locked;
i := 1;
interval :=�

end;
i := i – 1;
if i = 0 then

// check the global lock and try to acquire it if it is set.
top := L.glock;
if top 6= NULL and compareandswap(&(L.glock), top, NULL)then

// when succeed to acquire the global lock.
if top 6= &I then

moveto top(&L, &I, I.prev, top);
end;
I.locked := Released
gotoacquired

end;
i := interval;
interval := interval� �

end
end;

acquired:
//
// critical section.
//

Figure 29: The Queueing Lock with Improved Preemption Scheme (Part 2)

74

//
// critical section.
//
// try to release the lockL.
succ := I.next;
if succ = NULLthen

if compareandswap(&(L.last), &I, NULL) then
// the queue becomes empty.
gotoexit

end;
repeatsucc := I.nextuntil succ6= NULL

end;
// try to pass the lock to the successor.
if compareandswap(&(succ!locked), Locked, Released)then

gotoexit
end;
top := succ;
repeat

pred := succ;
succ := pred!next;
if succ = NULLthen

// set the global lock.
L.glock := top;
// check ifpredis really the last processor.
if L.last = predthen

gotoexit
end;
// try to withdraw the global lock.
if :compareandswap(&(L.glock), top, NULL)then

gotoexit
end;
repeatsucc := pred!nextuntil succ6= NULL

end;
until compareandswap(&(succ!locked), Locked, Dequeueing);
// now, the lock is passed tosucc.
move to top(&L, succ, pred, top);
succ!locked := Released;

exit:
enableinterrupts;

Figure 30: The Queueing Lock with Improved Preemption Scheme (Part 3)

75

for i := 1 to NoLoopdo
1hacquire lock and disableinterrupts;

//
// critical section.
//
releaselock;

2henableinterrupts;
randomdelay

end;

Figure 31: Measurement Program Skeleton

process. The time window is after the processorP0 trying to release determines to which

processor to pass the lock (we denote the processor asP2), and beforeP0 passes the

lock by assigningReleasedto thelockedfield of P2’s queue node. When an interrupt is

requested onP2 during this time window, the interrupt request should not be serviced.

Otherwise, the lock may be passed toP2 while it is servicing the interrupt. In this time

window,P2’s queue node should not be reused either. In our algorithm,P0 informsP2 of

this time window by assigningDequeueingto thelockedfield of P2.

2.5 Performance Evaluation

The effectiveness of the two spin lock algorithms presented in the previous sections (called

QL/P1 and QL/P2, respectively, below) are examined through performance measurement.

The performance of the algorithms is compared with the MCS lock without inhibiting

interrupts (QL/ei), the method presented in Figure 24 with the MCS lock (QL/di), and the

test&set lock with preemption presented in Figure 25 (T&S/P). In T&S/P, the intervals

between successive testandset operations (delay in Figure 25) are made constant (the

constant backoff scheme), because it is usually better than the exponential backoff scheme

in real-time systems.

Measurement Method

Each processor executes the code presented in Figure 31 while periodic interrupt requests

are raised on the processor. The execution time of a critical region (the region between

1jand 2jin Figure 31) is measured for each execution, and its distributions when the

processor services no interrupt request during the region and when it services an interrupt

are collected. The interrupt latency is also measured for each interrupt service and its

distribution is obtained.

Inside the critical section, a processor accesses the shared bus some number of times

76

for making the effect of shared-bus contention explicit and waits for a while using an

empty loop. Without spin locks, the execution time of the critical region is about 40�s

including some overhead for measuring the execution time of the region. In order to

change timing conditions, each processor waits for a random time before it re-enters the

critical region (randomdelay in Figure 31). The average time of the random delay is

about 40�s including some overhead for recording the execution time of the critical

region.

Empty loops are also included in the interrupt handler in addition to the routine for

the measurement of the interrupt latency time. The total execution time of the interrupt

handler is about 80�s. The period of interrupt requests is about 5 ms. The exact length

of the period is varied in 0–2% for each processor in order that the timing of interrupt

requests for each processor should not be synchronized. Other interrupt requests are

masked during the measurement.

Evaluation Results

Figure 32 presents the 99.99%-reliable execution times of the critical region (when no

interrupt is serviced on the processor during the region) as the number of processors is

increased from one to eight. With QL/P1 and QL/P2, the execution time of the critical

region increases linearly with the number of processors, and the algorithms are found

to be scalable. QL/ei exhibits poorer performance because processors service interrupt

requests during the critical region. In Figure 33, the relation between the execution time

of the interrupt handler and that of the critical region is presented, when four processors

are executing spin locks. As the execution time of the interrupt handler becomes longer,

the performance of QL/ei becomes even worse (Figure 33). With T&S/P, the execution

time rapidly increases when the number of processor becomes large, and the algorithm

does not scale well.

In Figure 34, the interrupt latency time is almost independent of the number of

processors with QL/P1 and QL/P2. With QL/di on the contrary, the interrupt latency

becomes long as the number of processors increases. With T&S/P, the interrupt latency

slowly increases because the execution time of the code inside the critical section becomes

longer due to the effect of shared-bus contention.

From these observations, it is demonstrated that QL/P1 and QL/P2 can give a practical

upper bound on the time to acquire and release an interprocessor lock while achieving fast

response to interrupt requests. The other algorithms cannot satisfy these two requirements

at the same time.

77

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8

E
xe

cu
tio

n
T

im
e

(m
ic

ro
 s

ec
.)

Number of Processors

QL/P1
QL/P2
QL/ei
QL/di

T&S/P

Figure 32: 99.99%-Reliable Execution Times of Critical Region
(when no interrupt is serviced)

0

50

100

150

200

250

300

350

400

450

500

40 80 120 160 200E
xe

cu
tio

n
T

im
e

of
 C

ri
tic

al
 R

eg
io

n
(m

ic
ro

 s
ec

.)

Execution Time of Interrupt Handler (micro sec.)

QL/P1
QL/P2
QL/ei

Figure 33: 99.99%-Reliable Execution Times of Critical Region
(the execution time of the interrupt handler is changed)

78

0

50

100

150

200

1 2 3 4 5 6 7 8

In
te

rr
up

t L
at

en
cy

 (
m

ic
ro

 s
ec

.)

Number of Processors

QL/P1
QL/P2
QL/ei
QL/di

T&S/P

Figure 34: 99.99%-Reliable Interrupt Latency Times

In order to examine the difference of QL/P2 and QL/P1, we present the the 99.99%-

reliable execution times of the critical region when an interrupt request is serviced while

waiting for the lock in Figure 35. This figure demonstrates that the re-execution overhead

after servicing an interrupt request is smaller with QL/P2 than QL/P1, especially when

the number of processors is large.

Next, in order to evaluate the overhead of the two algorithms, we compare the average

execution times of the critical region (when no interrupt is serviced) with QL/P1, QL/P2,

and T&S/P. In Figure 36, its average execution time with QL/P1 or QL/P2 is about 10%

longer than that with T&S/P, when the number of processors is small. When the number

of processors becomes large, however, T&S/P exhibits poorer performance. This is due

to the effect of shared-bus contention.

Finally, in order to check the adequacy of our evaluation metric, the 99.99%-reliable

execution times of the critical region are compared with 99.9%- and 99.999%-reliable

execution times and the worst execution times appeared during our measurement. As the

result, though the absolute length of the execution times are different, the same evaluation

result with above can be derived from each measurement data.

2.6 Combination of the Two Preemption Schemes

In Section 2.4, a problem of the first algorithm that the interrupt service overhead depends

on the number of processors is pointed out, assuming that the processor continues the trial

79

0

100

200

300

400

500

1 2 3 4 5 6 7 8

E
xe

cu
tio

n
T

im
e

(m
ic

ro
 s

ec
.)

Number of Processors

QL/P1
QL/P2
T&S/P

Figure 35: 99.99%-Reliable Execution Times of Critical Region
(when an interrupt is serviced)

0

50

100

150

200

250

1 2 3 4 5 6 7 8

E
xe

cu
tio

n
T

im
e

(m
ic

ro
 s

ec
.)

Number of Processors

QL/P1
QL/P2
QL/ei
QL/di

T&S/P

Figure 36: Average Execution Times of Critical Region

80

transition by another
processor

Locked
Released
Temporary Preemption
Long-term Preemption
Canceled
Dequeueing

L :
R :
P2 :
P1 :
C :
D :

acquires the lock

releases
the lock

L

R

CP1

P2

D

R

interrupt

task is
terminated

begins to wait
for the lock

another task begins
to wait for the lock

transition by itself

services
starts

Figure 37: State Transition of the Combined Algorithm

to acquire the lock after interrupt services are finished. When the algorithms are applied

to real-time kernels, however, the interrupt service routine can request the preempted

task to terminate. If the preempted task is terminated, the trial to acquire the lock is not

continued.

In our improved preemption scheme, even when a processor ceases waiting for the

lock, its queue node remains in the waiting queue as a garbage. The improved scheme

suffers a larger overhead than the simple scheme, because the processor trying to release

the lock must search the garbage queue node every time. Consequently, when the

preempted task is terminated, its queue node should be removed from the waiting queue.

In other words, the first preemption scheme should be adopted in this case.

For its realization, a combination of the two preemption scheme is necessary. The

state of a queue node is necessary to be extended to distinguish temporary preemption

and long-term preemption, and the processor trying to release the lock should handle

them differently. The state transition of the combined algorithm is presented in Figure 37.

In this figure, “P2” represents temporary preemption (i.e. preemption in the improved

scheme) and “P1” represents long-term preemption (i.e. preemption in the simple scheme).

“C” designates the transient status introduced in the algorithm with the simple preemption

scheme in which a queue node is not reusable, and “D” designates another transient status

that is necessary in the algorithm with the improved scheme.

81

3 Spin Lock with Local Precedence

In this section, we present an efficient algorithm of spin lock with local precedence based

on the MCS lock algorithm described in Section 1.3. The necessity of spin lock with

local precedence is pointed out in Section II.4.1.

It is obvious that a spin lock with local precedence can be realized with a priority-

ordered spin lock algorithm. Specifically, a processor acquires its local lock with a higher

priority and other locks with a lower one. Only two priority levels are necessary to be

used. As described in Section 1.4, the maximum execution time of the lock acquisition

routine or release routine depends on the number of contending processors with every

priority-ordered spin lock algorithm. As the result, the overhead of a priority-ordered

spin lock is generally quite large.

By making use of the fact that a spin lock with local precedence is much simpler than

a priority-ordered spin lock, we can devise a more efficient algorithm of spin lock with

local precedence. A spin lock with local precedence is much simpler in the following two

points: (1) there are only two priority levels required (as described above), and (2) only

one processor (i.e. its host processor) has the higher priority for each lock. Therefore, we

can extend the MCS lock algorithm to support local precedence by preparing a variable

indicating the queue node of the prioritized processor. When the prioritized processor

enqueues itself to the waiting queue, it updates the variable to point to itself. The

processorP0 trying to release the lock can find the prioritized processorP2 using the

variable without searching in the waiting queue. Then,P0 movesP2 to the top of the

queue (with the same method adopted in the Markatos’ priority-ordered queueing spin

lock), and passes the lock toP2. A double-linked queue structure is necessary becauseP0

needs to know the predecessor ofP2 without searching.

Pseudo-code for our algorithm based on the MCS lock is presented in Fig. 38 and

39. In this pseudo-code, theprecfield of theLock record is the variable indicating the

prioritized processor.

4 Scalability of Nested Spin Locks

For real-time systems, two kind of spin locks are used depending on the timing

requirements on them: (1) bounded spin locks, in which the maximum times that

processors acquire and release a lock are bounded, and (2) priority-ordered spin locks, in

which processors acquire a lock in the order of their priorities [9].

In this section, the scalability issue of bounded spin locks is discussed. Because worst-

82

type Node =record
next: pointer to Node;
prev: pointer to Node;
locked: (Released, Locked)

end;
type Lock = record

last: pointer to Node;
prec: pointer to Node

end;

shared varL: Lock;
// L.lastandL.precare initialized toNULL.

proceduremove to top(lock: pointer to Lock,
entry, pred, oldtop:pointer to Node);

// moveentryto the top of the waiting queue oflock.
// predis the predecessor ofentry.
// oldtopis the top of the queue before the move.

var succ:pointer to Node;
begin

succ := entry!next;
if succ = NULLthen

pred!next := NULL;
if compareandswap(&(lock!last), entry, pred)then

entry!next := oldtop;
return

end;
repeatsucc := entry!nextuntil succ6= NULL

end;
pred!next := succ;
succ!prev := pred;
entry!next := oldtop

end;

Figure 38: The Spin Lock with Local Precedence (Part 1)

case behavior has the primary importance in real-time systems, we focus on scalability

of the maximum execution times of critical sections guarded by spin locks, under the

assumption that the maximum processing time within a critical section is bounded.

In general, shared resources that must be accessed exclusively by a processor are

divided into some lock units in order to improve concurrency. When a processor accesses

some shared resources included in different lock units, it must acquire multiple locks one

by one. If FIFO spin locks are used for this kind ofnested spin locks, the maximum

execution times of a whole critical section becomeO(nm), wheren is the number of

contending processors andm is themaximum nesting levelof locks. The strict definition

of the maximum nesting level is presented in Section 4.1.

83

var I: Node;
var top, pred:pointer to Node;

// try to acquire the lockL.
I.next := NULL;
// enqueue myself.
pred := fetchandstore(&(L.last), &I);
if pred 6= NULL then

// when the queue is not empty.
I.prev := pred;
I.locked := Locked;
pred!next := &I;
if L is local to methen

// direct the precedence indicator to me.
L.prec := &I

end;
repeat until I.locked = Released;
if L is local to methen

// clear the precedence indicator.
L.prec := NULL

end
end;
//
// critical section.
//
// try to release the lockL.
top := I.next;
if top = NULL then

if compareandswap(&L, &I, NULL) then
// the queue becomes empty.
gotoexit

end;
repeat top := I.nextuntil top 6= NULL

end;
// check the precedence indicator.
if L is not local to meand L.prec 6= NULL then

// the lock is passed toL.prec.
if L.prec 6= top then

move to top(&L, L.prec, L.prec!prev, top)
end;
L.prec!locked := Released

else
// the lock is passed totop.
top!locked := Released

end;
exit:

Figure 39: The Spin Lock with Local Precedence (Part 2)

84

acquirelock(L3);
acquirelock(L2);
// critical section.
releaselock(L2);
releaselock(L3);

routine (a)

acquirelock(L2);
acquirelock(L1);
// critical section.
releaselock(L3);
releaselock(L1);

routine (b)

Figure 40: Example of Nested Locks

It is obvious that this simple method is not acceptable from the viewpoint of real-time

scalability. In this section, we propose a method in which this order can be reduced to

O(n � em), which is acceptable whenm can be kept small.

In Section 4.1, assumptions and notations adopted in this section are described. An

O(n) algorithm when the maximum nesting level is two is proposed in Section 4.2

and its effectiveness is evaluated through performance measurements in Section 4.3. In

Section 4.4, anO(n � em) algorithm for general case is discussed.

4.1 Assumptions and Notations

A system consists ofn processors supporting atomic read-modify-write operations. Each

processor repeatedly executes critical sections guarded by one or more locks. The

maximum execution time of a critical section except for the waiting time for the locks is

assumed to be bounded.

In order to avoid deadlocks, a partial order� is defined on the set of locks in the

system. A processor must acquire locks following the order. We assume that if and only

if processors possibly acquire a lockLj while holding a lockLi, an orderLi � Lj exists.

The nesting level�i is defined for each lockLi as follows. IfLi is a minimal element

(i.e. there is noLj such thatLi � Lj), �i is defined to be one. Otherwise,�i is defined

to bemaxf�j j Li � Ljg + 1. We callmaxf�ig as the maximum nesting level of locks

in the system. Consider the example that processors in the system execute one of the

two routines presented in Figure 40. In this example,�1 = 1, �2 = 2, �3 = 3, and the

maximum nesting level in the system is three.

A lock whose nesting level isi is denoted asLi below. When there are some locks

with the same nesting level, they are represented asLi, L0

i, L
00

i , � � �.

We also assume that the two-phase protocol is adopted on each processor. In other

words, once a processor releases a lock, it cannot acquire any lock until it releases all the

locks it is holding. This assumption is adopted in order to simplify the evaluation of the

maximum number of the critical sections that a processor must wait for. The estimation

of its order is also valid without the assumption.

85

acquirelock(L1);
// critical section.
releaselock(L1);

routine (a)

acquirelock(L2);
// critical section.
releaselock(L2);

routine (b)

acquirelock(L2);
acquirelock(L1);
// critical section.
releaselock(L1);
releaselock(L2);

routine (c)

Figure 41: Nesting in Two Levels

acquirelock(L0

2);
// critical section.
releaselock(L0

2);

routine (d)

acquirelock(L0

2);
acquirelock(L1);
// critical section.
releaselock(L1);
releaselock(L0

2);

routine (e)

Figure 42: Nesting in Two Levels (cont.)

4.2 Nesting in Two Levels

In this section, we focus on nested spin lock algorithms when the maximum nesting level

is two. We regard them as important because the implementation method of a real-time

kernel described in Section II.2.4 can be realized with the maximum nesting level being

two.

Problems of Simple Methods

As mentioned before, if FIFO spin locks are simply applied to the system in which the

maximum nesting level of locks is two, the maximum execution times of a whole critical

section becomeO(n2), wheren is the number of contending processors.

As an example, consider the case that each processor in the system repeatedly executes

one of the three routines presented in Figure 41 in random order. Below, we illustrate the

case in which the number of the critical sections that a processorP1 must wait for until it

finishes an execution of routine (c) is maximized. Assume that whenP1 tries to acquire

L2 in (c), another processorP2 has just acquired the lock and all the other processors

P3, � � �, Pn are waiting for the lock in routine (c) in this order (Figure 43 (a)). WhenP2

releases the lock,P3 succeeds to acquire the lock. Just beforeP3 tries to acquireL1, P2

can acquire the lock in routine (a). In this case,P3 must wait untilP2 finishes the critical

section and releasesL1, andP1 must wait for two critical sections executed byP2 and

P3 (Figure 43 (b)). Similarly, whenPi�1 releasesL2, Pi succeeds to acquire the lock.

BeforePi tries to acquireL1, P2, � � �, Pi�1 can wait for the lock in (a).Pi must wait

for the executions ofi � 2 critical sections until it succeeds to acquireL1, andP1 must

86

P3

(b)

L1

lock holder

P3 PnP4

NULL

P1

L2

P2

lock holderAAA
AAAAAA
AAA
AA
AA

A
A
A

NULL

(a)

L1

lock holder

P2 PnP3

NULL

P1

L2

AA
AA
AA
AA
AA
AA
AA
AA
A

P2

lock holder

NULL

P3

(d)

L1

lock holder

P1

NULL

L2

P2

lock holder

Pn

NULL

AA
AA
AA
AA
AA
AA
AA
AA
A

P1

(c)

L1

lock holder

Pi Pn

NULL

P1

L2

P2

lock holder AA
AA
AA
AA
AA
AA
A
A
A

Pi-1

NULL

Figure 43: Worst-Case Scenario of the Simple Method

87

wait for i � 1 critical sections untilPi finishes routine (c) (Figure 43 (c)). Finally, after

P1 succeeds to acquireL2, P1 must wait forn� 1 critical sections before it acquiresL1

(Figure 43 (d)). As a result, the maximum number of the critical sections that a processor

P1 must wait for is 1+ 2 + � � � + (n � 1) + (n � 1) = n(n + 1)=2� 1, thusO(n2).

Because the maximum processing time within a critical section has an upper bound, the

order of the maximum execution times of routine (c) isO(n2). That of routine (b) is also

O(n2), while that of routine (a) isO(n).

A simple method to improve this order is that precedence is given to the processor

holding an outer lock. In case of Figure 41, the processor that is waiting forL1 in routine

(c) can acquire the lock with higher priority than other processors. Because the maximum

number of the critical sections that a processor must wait for while trying to acquireL1 in

(c) is reduced to one with this method, the maximum execution times of both (b) and (c)

are improved toO(n). The maximum execution times of routine (a) remain to beO(n),

because a processor never waits forL1 in (c) while another processor holdsL1 in (c), and

because the lock is passed to a processor executing (a) when the processor in (c) releases

the lock.

However, this method has a problem when each processor can also execute the two

routines presented in Figure 42. In this case, a processor executing routine (a) can starve

while waiting forL1. Specifically, a processor trying to acquireL1 in (a) can be passed

by a processor executing (c) and a processor executing (e) by turns, and the maximum

time until it succeeds to acquireL1 cannot be determined.

Another method is that a processor trying to acquire nested locks reserves its turn to

acquire the inner lock by enqueueing itself to the wait queue of the lock, when it begins

waiting for the outermost lock. This method, however, cannot be applied when which

inner lock to be acquired is determined after accessing the shared resource guarded by the

outer lock, which is the case with the implementation of a real-time kernel described in

Section 7.2.

Proposed Method

To solve the problem described above, we propose the following algorithm, which can

make the maximum execution times of each routineO(n).

When a processor begins waiting for the outermost lock, it obtains a time stamp

by reading a real-time clock. Instead of using FIFO spin locks, priority-ordered spin

locks are used with the time stamps as the priorities (an earlier time stamp has a higher

priority).6 With this method, the processor that begins waiting for the outermost lock

6The fact that a FIFO-ordered lock can be realized with a priority-ordered lock using time stamps as

88

earlier can acquire each lock with higher precedence. In other words, the FIFO policy is

applied to the whole critical section.

This method can reduce the order of the maximum execution times of each routine

to O(n) with the following reason. At first, the maximum number of the higher priority

critical sections (the critical sections executed by the processors with higher priorities

thanP1) that a processorP1 must wait for isn� 1. This is because only the processors

obtaining time stamps beforeP1 can acquire locks with precedence overP1, and because

each processor can execute only one critical section with a time stamp.P1 must also wait

for some lower priority critical sections. When a processor tries to acquire an inner lock,

another processor with a lower priority possibly holds the lock. This is a kind of priority

inversion and occurs at most once whenever a processor begins waiting for an inner lock.

Note that this priority inversion does not occur in acquiring an outer lock.

When a processorP2 with a higher priority thanP1 acquires the outer lock on which

P1 is waiting, and whenP2 tries to acquire an inner lock,P2 must possibly wait for a

critical section executed by a lower priority processorP3 due to priority inversion. In this

case, the critical section executed byP3 should be counted in the number of the critical

sections thatP1 must wait for. As a result, an upper bound on the number of the critical

sections thatP1 must wait for is 2(n� 1) + 1 = 2n� 1, thus the order of the maximum

execution times of routine (c) isO(n). Those of the other routines are alsoO(n).

More precisely, the number of the critical sections thatP1 must wait for in routine

(c) in Figure 41 becomes maximum in the following case. Assume that whenP1 tries to

acquireL2 in (c), another processorP2 holds the lock and all the other processorsP3, � � �,

Pn are waiting for the lock in routine (c) in this order. WhenP2 releases the lock,P3

succeeds to acquire the lock. Just beforeP3 tries to acquireL1, P2 can acquire the lock

in routine (a). In this case,P3 must wait untilP2 releasesL1, andP1 must wait for two

critical sections. Similarly, whenPi succeeds to acquireL2 and tries to acquireL1, one

of P2, � � �, Pi�1 possibly holdsL1, andP1 must wait for two critical sections. Finally,

afterP1 succeeds to acquireL2, it possibly needs to wait for a critical section before it

acquiresL1. As a result, the maximum number of the critical sections thatP1 must wait

for is 1+ 2+ � � � + 2+ 1 = 2n � 2. The result of this exact estimation is smaller than

the previous estimation, because the fact thatP2 does not suffer any priority inversions is

counted in.

In implementing this method, following optimizations are possible.

1. In acquiring an outer lock (a lock whose nesting level is two), a FIFO spin lock

algorithm can be used instead of a priority-ordered one.

priorities is pointed out by Craig [9].

89

2. A sequence number that a processor begins waiting for the outermost lock, which

can be implemented with fetchand increment operation, can be used as the time

stamp instead of an absolute time read from a real-time clock.

4.3 Performance Evaluation

In this section, the effectiveness of the algorithm proposed in the previous section (called

TF, in this section) is examined through performance evaluation. Its performance is

compared with the method that FIFO spin locks are simply used for all locks (called SF)

and the method that precedence is given to the processor holding an outer lock (called PI).

Evaluation Method

We have adopted the MCS lock algorithm [38] for the FIFO spin locks and the single-

linked queue version of the Markatos’ algorithm presented in Figure 21 and 22 for

priority-ordered spin locks. The FIFO spin lock with precedence, which is necessary

to implement PI, is realized using the single-linked queue version of the Markatos’

algorithm. In implementing TF, we have used a FIFO spin lock algorithm for the outer

locks and a priority-ordered one for the inner locks. We have also used a sequence number

that a processor begins waiting for the outermost lock instead of a real-time clock.

Evaluation Results

At first, processors in the system repeatedly execute one of the three routines presented in

Figure 41 in random order. The probability that a processor executes routine (a) is made

four times larger that each of other routines. A processor accesses the shared bus several

number of times and waits for a while using empty loops inside the critical section. In

case of routine (c), shared bus accesses and an empty loop are also inserted between

two acquirelock operations. Without spin locks (and the routine for obtaining the

sequence number in case of TF), the execution time of each critical section is about 30�s,

including the overhead for measuring execution times. As an example, pseudo-code of

the measurement routines with TF are presented in Figure 44.

Figure 45 presents the 99.99%-reliable execution times of routine (c). When the

number of processors is large, the execution times of routine (c) is quite slower with

the simplest method (SF) than our proposed method (TF). The execution times with TF

increase a little more thanO(n). This is because the lock release times in the Markatos’

lock become long as the number of processors is increased. This problem is expected

90

t0 := readcurrenttime();
prio := getsequencenumber();
acquirelock markatos(L1, prio);
// some shared bus accesses
// and two empty loops (about 22�sec).
releaselock markatos(L1);
t1 := readcurrenttime();
// measurement result is (t1� t0).

routine (a)

t0 := readcurrenttime();
acquirelock mcs(L2);
// some shared bus accesses
// and two empty loops (about 22�sec).
releaselock mcs(L2);
t1 := readcurrenttime();
// measurement result is (t1� t0).

routine (b)

t0 := readcurrenttime();
prio := getsequencenumber();
acquirelock mcs(L2);
// some shared bus accesses
// and an empty loop (about 11�sec).
acquirelock markatos(L1, prio);
// some shared bus accesses
// and an empty loop (about 11�sec).
releaselock markatos(L1);
releaselock mcs(L2);
t1 := readcurrenttime();
// measurement result is (t1� t0).

routine (c)

for i := 1 to numberof loop do
caserandomnumber()of

1,2,3,4:
execute routine (a);

5:
execute routine (b);

6:
execute routine (c);

end
end

main routine

Figure 44: Measurement Routines with TF

to be relieved with the PR-lock algorithm [26]. The 99.99%-reliable execution times of

routine (b) are almost same with routine (c) except that the absolute times are little shorter.

Figure 46 presents the 99.99%-reliable execution times of routine (a) under the same

condition. Though the execution times of routine (c) are fastest with PI, those of routine

(a) are slowest with the method.

The problem of PI becomes more obvious, when processors repeatedly execute one

of the fives routines in Figure 41 and 42 in random order. Figure 47 presents the

99.99%-reliable execution times of routine (a) under this condition. The probability that

a processor executes routine (a) is made twice larger than each of other routines. In this

figure, the execution times with PI are much slower than the other methods.

From these results, we can see that our proposed method is the most appropriate

algorithm of the three methods from the viewpoint of real-time scalability.

Finally, in order to examine the average performance of the algorithms, we present

the average execution times of routine (c) and (a) in case of three routines in Figure 48

and 49 respectively. Because the difference between SF and TF is very small in routine

(c) (Figure 48), we can say that SF is more appropriate in case that improving average

performance is the primary concern.

91

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8

E
xe

cu
tio

n
T

im
e

(m
ic

ro
 s

ec
.)

Number of Processors

SF
PI

TF

Figure 45: 99.99%-Reliable Execution Times of Routine (c)

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8

E
xe

cu
tio

n
T

im
e

(m
ic

ro
 s

ec
.)

Number of Processors

SF
PI

TF

Figure 46: 99.99%-Reliable Execution Times of Routine (a)

92

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8

E
xe

cu
tio

n
T

im
e

(m
ic

ro
 s

ec
.)

Number of Processors

SF
PI

TF

Figure 47: 99.99%-Reliable Execution Times of Routine (a)

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8

E
xe

cu
tio

n
T

im
e

(m
ic

ro
 s

ec
.)

Number of Processors

SF
PI

TF

Figure 48: Average Execution Times of Routine (c)

93

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8

E
xe

cu
tio

n
T

im
e

(m
ic

ro
 s

ec
.)

Number of Processors

SF
PI

TF

Figure 49: Average Execution Times of Routine (a)

4.4 Nesting in Three or More Levels

If FIFO spin locks are simply used when the maximum nesting level of locks ism,

the maximum execution times of a whole critical section becomeO(nm). An effective

method to improve this order is proposed in this section.

Priority Inversion Problem

When the maximum nesting level of locks is more than or equal to three, the method

proposed in Section 4.2 does not work effectively due to uncontrolled priority inversions.

Consider the example that processors execute one of the three routines in Figure 50 in

random order. Assume the case that a processorP1 holdsL3 and waits forL2 in routine

(c), and that another processorP2 with a lower priority thanP1 holdsL2 and tries to

acquireL1 in (a). Processors with priorities lower thanP1 and higher thanP2 can acquire

L1 with precedence overP2. While P2 is waiting for those processors,P1 must wait

also and the duration of the priority inversion becomes long. As a result, the maximum

execution times of (c) cannot be improved toO(n). Note that this uncontrolled priority

inversions do not occur when the maximum nesting level is two.

Priority inversion problems in the context of spin locks are discussed in Section 5 in

more detail.

94

acquirelock(L2);
acquirelock(L1);
// critical section.
releaselock(L1);
releaselock(L2);

routine (a)

acquirelock(L0

2);
acquirelock(L1);
// critical section.
releaselock(L1);
releaselock(L0

2);

routine (b)

acquirelock(L3);
acquirelock(L2);
acquirelock(L1);
// critical section.
releaselock(L1);
releaselock(L2);
releaselock(L3);

routine (c)

Figure 50: Nesting in Three Levels

Incorporating Priority Inheritance Scheme

We adopt a priority inheritance scheme to solve this problem. With the basic priority

inheritance scheme in which a processor holding some locks inherits the highest priority

of the processors that are waiting for one of the locks, the duration of priority inversions

can be reduced. Since chained priority inversions cannot be avoided with this method,

however, the maximum execution times of a critical section becomeO(n � em) with the

following reason.

At first, we estimate the maximum number of priority inversions that a processorP

encounters while it executes a critical section guarded by a lockLi whose nesting level

is i, under the assumption that there are no higher priority processor thanP . We denote

the maximum number of these critical sections asinv(i) and estimate it with an induction

on i. WhenP tries to acquireLi, another processorP1 which has a lower priority than

P possibly holds the lock andP must wait for the critical section executed byP1. If the

nesting level of the lock is one (i.e.i = 1), no other priority inversions can occur, thus

inv(1) = 1. Wheni > 1, at mostinv(i � 1) priority inversions also occur duringP1 is

executing the critical section becauseP1 may try to acquire another lock whose nesting

level is smaller thani within the critical section. AfterP succeeds to acquireLi, it may

also try to acquire another lock whose nesting level is smaller thani within the critical

section. During its execution, at mostinv(i � 1) priority inversions can occur. As the

result, inv(i) = 2 � inv(i � 1) + 1 theninv(i) = 2i � 1. WhenLm has the maximum

nesting level in the system, the maximum number of critical sections thatP must wait for

until it finishes the execution of a critical section guarded byLm is inv(m�1) = 2m�1�1

under the assumption that there is no higher priority processor thanP .

Next, we consider the case that a processorP1 which has a higher priority thanP is

added, and estimate its effect on the maximum number of critical sections thatP must

wait for until it finishes the execution of a critical section guarded byLm, which has the

maximum nesting level in the system. We estimate the effect with the following two

95

cases.

(a) Suppose the case thatP1 is holding or waiting forLm whenP begins waiting for

Lm. In this case,P1 can encounter at mostinv(m� 1) priority inversions during

its execution of the critical section guarded byLm. BecauseP must also wait for

the critical section ofP1, the maximum number of critical sections thatP must wait

for is increased withinv(m� 1) + 1 = 2m�1.

(b) Suppose the case thatP1 is holding or waiting for another lock whenP begins

waiting forLm. In this case, some lower priority processors thanP can inherit the

priority of P1 and cause additional priority inversions onP . The maximum number

of the lower priority processors that can inherit the priority ofP1 corresponds to

the maximum number of priority inversions thatP1 encounters, i.e.inv(m� 1). In

addition to them,P is necessary to wait for the critical section ofP1, whenP and

P1 try to acquire a same inner lock. As the result, the maximum number of critical

sections thatP must wait for is increased withinv(m� 1) + 1 = 2m�1.

In each case, the maximum number of critical sections thatP must wait for is increased

with 2m�1. Because the outermost lock is acquired in a FIFO order with our method, at

mostn�1 processors have higher priorities thanP . Consequently, the maximum number

of critical sections thatP must wait for until it finishes the execution of a critical section

guarded byLm is (2m�1�1)+ (n�1) �2m�1 = n �2m�1�1. Note that this also includes

some overestimations.

As the result, the order of the maximum execution times of critical sections is shown

to beO(n � em) with the basic priority inheritance scheme. We can say that this method

has real-time scalability on the number of contending processors but not on the maximum

nesting level. Algorithms of spin locks with the basic priority inheritance scheme will be

presented in Section 5.

The priority ceiling policy can also be adopted, when there is prior knowledge on

which locks are acquired in each critical section. In the concrete, when a processor

acquires the outermost lock, the priority ceiling of the other locks that are required (or

possibly required) by the processor within the critical section is set to the priority of the

processor. When the priority ceiling of the lock that a processor tries to acquire is higher

than its priority, the processor must wait with spinning even if the lock is not held by any

processor.7

7Though induced from the same policy, the behavior of “priority ceiling spin lock” is quite different
from those of the priority ceiling protocol [60] or its extension for shared memory multiprocessors [46].

96

In Section 4.2, we have mentioned the method that a processor trying to acquire nested

locks reserves its turn to acquire the inner locks by enqueueing itself to their wait queue

when it begins waiting for the outermost lock. When complete knowledge on all required

locks in each critical section is available, the priority ceiling method is same with this

method. To the contrary, if there is no knowledge on required locks at all, the priority

ceiling method reduced to the situation that all shared resources in the system are guarded

by a single lock, which severely degrades concurrency of the system.

5 Priority Inheritance Spin Locks

As described in Section 4.4, in order to realize bounded and scalable nested spin locks

for real-time systems, a priority inheritance scheme is necessary to be incorporated in

priority-ordered spin locks. Apriority inheritance spin lockis also necessary for priority-

ordered nested spin locks. This section proposes two algorithms of priority inheritance

spin lock based on the Markatos’ algorithm [36].

Shared resources that must be accessed exclusively by a processor are usually divided

into some lock units in order to improve concurrency. When a processor accesses some

shared resources included in different lock units, it must acquire multiple locks one by

one. If priority-ordered spin locks are simply used for this kind of nested spin locks,

uncontrolled priority inversions can occur. The uncontrolled priority inversion problem

in nested spin locks is described in Section 5.1.

After describing the necessity of priority inheritance spin locks in Section 5.1, we

present two algorithms of priority inheritance spin lock in Section 5.2. In Section 5.3,

their effectiveness is evaluated through performance measurements.

5.1 Priority Inversion and Priority Inheritance

Priority inversion and priority inheritance schemes, which are promising approaches to

solve the uncontrolled priority inversion problem, are actively studied in the context of

task scheduling algorithms [48, 60, 47]. In this section, we illustrate that the uncontrolled

priority inversion problem also occurs in the context of spin locks and demonstrate that

the basic priority inheritance scheme is also effective in this case.

This is because the processor which cannot acquire a lock is blocked with those protocols, while it spins
with our situation.

97

acquirelock(L2);
// critical section.
releaselock(L2);

routine (a)

acquirelock(L1);
acquirelock(L2);
// critical section.
releaselock(L2);
releaselock(L1);

routine (b)

Figure 51: Example of Nested Spin Locks

Priority Inversion Problem in Nested Spin Locks

Priority inversion in the context of spin locks is the phenomenon that a higher priority

processor is forced to wait for the execution of a lower priority processor. Because priority

inversion cannot be avoided unless a higher priority processor can steal the lock held by

a lower priority one, how to minimize its duration is a concern. When the maximum

duration of a priority inversion cannot be determined, it is called uncontrolled.

When priority-ordered spin locks are used for nested spin locks, uncontrolled priority

inversions can occur. A typical case is described as follows.

Example 1 (uncontrolled priority inversion)

We assume thatP1, P2, P3, andP4 are processors arranged in descending order of

priority with P1 having the highest priority, and thatL1 andL2 are locks. These

processors repeatedly execute one of the two routines presented in Figure 51.

Suppose the case that whenP1 begins executing routine (b) and tries to acquire the

lock L1, P4 is holdingL1 and is waiting for the other lockL2 in routine (b). IfP2

andP3 repeatedly execute routine (a) in this situation,P2 andP3 can acquireL2

alternately andP4 must wait forL2 all the while. BecauseP1 must also wait for

the executions ofP2 andP3, this duration is a priority inversion. Obviously, the

maximum duration of this priority inversion cannot be determined.

Spin Lock with Priority Inheritance

In order to solve this problem of uncontrolled priority inversions, we introduce the priority

inheritance scheme to spin locks. The fundamental concept of priority inheritance scheme

is that when a processor makes some higher priority processors wait, its priority should

be raised to the level of the highest priority processor among the waiting ones. In other

words, the processor inherits the priority of the highest priority processor blocked by it.

Also, priority inheritance must be transitive. For example, suppose thatP1, P2, andP3 are

three processors in descending order of priority. WhenP2 makesP1 wait andP3 makes

P2 wait,P3 should inherit the priority ofP1.

98

With the basic priority inheritance scheme, which is the naive realization of the

concept, the uncontrolled priority inversion problem illustrated in Example 1 is solved

as follows. WhenP1 tries to acquireL1 and begins waiting for it,P4, which is holding

L1, inherits the priority ofP1 becauseP1 is forced to wait byP4. Because the inherited

priority is higher than the priorities ofP2 andP3, P4 can acquireL2 with precedence over

P2 andP3. As the result,P1 need not wait for the alternate executions of routine (a) by

P2 andP3, and the maximum duration of the priority inversion can be bounded.

When a processor releases one of the locks, its priority is necessary to be re-calculated

in general. Specifically, its priority is changed to the highest one of its original priority

and the priorities of the processors that is waiting for the locks held by the former one.

When the processor releases the last lock it is holding, its priority is recovered to its

original level.

This re-calculation can be omitted under the following two assumptions. The first

assumption is that the inherited priority is used only for spin locks, and not used for

task scheduling. In more specific, the inherited priority is used only when the processor

tries to acquire another lock. The second assumption is that the two-phase protocol is

adopted. In other words, once a processor releases a lock, it cannot acquire another lock

until it releases all the locks it is holding. In the following sections, we assume that these

two conditions are satisfied and propose priority inheritance spin lock algorithms. Under

these two assumptions, once the priority of a processor is raised, it need not be lowered

until it releases all the locks. These assumptions can be removed by adding re-calculation

routines to the algorithms proposed in Section 5.2 at the cost of some runtime overhead.

With the two assumptions described above, the required behavior of priority inheritance

spin locks can be summarized as follows.

1. Processors acquire a lock in the order of their priorities.

2. When a processorP1 begins waiting for a lock, and when its priority is higher than

the priority of the processorP2 that is holding the lock, the priority ofP2 is raised

to that ofP1.

3. When the priority of a processorP1 is raised while waiting for a lock, and when its

new priority is higher than the priority of the processorP2 that is holding the lock,

the priority ofP2 is raised to the new priority ofP1.

99

// global shared variables.
shared varL1, L2: Lock;

// local variables (allocated for each processor).
var I1, I2: Node;
var my prio: integer;
var my notify: boolean;
// my notify is necessary only in the second algorithm.

// initialize my prio.
acquirefirst lock(&L1, &I1);
acquiresecondlock(&L2, &I2, &L1);
// critical section.
releaselock(&L2, &I2);
releaselock(&L1, &I1);

Figure 52: Usage of Priority Inheritance Spin Locks

5.2 Priority Inheritance Spin Lock Algorithms

In this section, we present two algorithms of priority inheritance spin locks, which are

based on the single-linked queue version of the Markatos’ lock algorithm presented in

Figure 21 and 22. With the Markatos’ algorithm, processors trying to acquire a lock are

linked to the waiting queue in a FIFO order. In releasing the lock, a processor searches

the highest priority processor in the waiting queue and passes the lock to it.

The first algorithm is a straightforward extension of the Markatos’ lock algorithm. A

new variable that indicates the highest priority of the processors that is waiting for the

lock is prepared for each lock. The processor holding the lockpolls the variable while it

is waiting for another lock. When the processor detects that the highest priority is raised,

it inherits the priority. Because any processor can poll this highest priority variable for

each lock, pollings on the variable are remote memory accesses and severely increase the

interconnection network traffic with a multiprocessor system without a coherent cache.

The second algorithm is to avoid this non-local spinning and is expected to have higher

performance without a coherent cache.

In order to avoid unnecessary complexity, this section presents the pseudo-codes of

the algorithms when a processor acquires at most two locks at the same time. With this

simplification, we prepares two lock acquisition routines:acquirefirst lock for acquiring

the outer lock andacquiresecondlock for acquiring the inner lock. A typical usage of

the routines is illustrated in Figure 52. The third argument ofacquiresecondlock is the

pointer to the lock that the processor is holding.

In Figure 52, themy prio variable is to store the current priority of the processor,

100

type Node =record
next: pointer to Node;
locked: (Released, Locked);
prio: integer

end;

type Lock = record
last: pointer to Node;
maxprio: integer;
notifyp: pointer to boolean

end;
// notifyp is necessary only in the second algorithm.
// lastandnotifyp fields should be initialized toNULL.
// maxpriofield should be initialized toMIN PRIO.

type NodePtr =pointer to Node;
type LockPtr =pointer to Lock;

Figure 53: Data Structures for Priority Inheritance Spin Locks

and must be initialized before the processor tries to acquire the outermost lock. With

a multiprocessor without a coherent cache, the local variables should be placed on the

processor’s locally accessible shared memory.

The First Algorithm

Figure 53 and 54 present the common data structures and subroutines for both algorithms

(some of them are necessary only in the second algorithm). TheLock record should be

prepared for each lock in the system. Itsmaxpriofield is the highest priority variable for

the lock. When the lock is empty (in other words, no processor holds the lock), thelast

field of its Lock record isNULL and itsmaxpriofield is MIN PRIO, which designates

the minimum priority value. ANoderecord is necessary for each nested lock for each

processor.

Figure 55 and 56 present the pseudo-code of the first algorithm. Compared to the

Markatos’ algorithm, two invocations of theraisepriority procedure, which is to update

the maxpriofield of lock when it is lower than thenewprioparameter, are added to the

acquirefirst lock procedure and theacquiresecondlock procedure in Figure 55. The

first invocation (marked with “�1”) is to raisemaxprio for priority inheritance, when

the processor begins waiting for the lock. The second one (marked with “�2”) is to

setmaxprio, when the processor succeeds to acquire the lock without waiting. In the

acquiresecondlock procedure, the processor must check themaxprio field of lock1,

which is the lock being held by the processor, while waiting forlock. Whenmaxprio

101

procedure raisepriority(lock: LockPtr, newprio: integer): boolean;
var prio: integer;

begin
retry:

prio := lock!maxprio;
if newprio> prio then

if compareandswap(&(lock!maxprio), prio, newprio)then
return TRUE

end;
goto retry

end;
return FALSE

end;

procedure raisepriority notify(lock: LockPtr, newprio: integer);
// necessary only in the second algorithm.

var notifyp: pointer to boolean;
begin

if raisepriority(lock, newprio)then
notifyp := lock!notifyp;
if notifyp 6= NULL then

// set the notification flag.
�notifyp := TRUE

end
end

end;

proceduremoveto top(lock: LockPtr, entry, pred, oldtop: NodePtr);
// moveentryto the top of the waiting queue oflock.
// predis the predecessor ofentry.
// oldtopis the top of the queue before the move.

var succ: NodePtr;
begin

succ := entry!next;
if succ = NULLthen

pred!next := NULL;
if compareandswap(&(lock!last), entry, pred)then

entry!next := oldtop;
return

end;
repeatsucc := entry!nextuntil succ6= NULL

end;
pred!next := succ;
entry!next := oldtop

end;

Figure 54: Subroutines for Priority Inheritance Spin Locks

102

procedureacquirefirst lock(lock, LockPtr, me: NodePtr);
// try to acquirelock.
var pred: NodePtr;

begin
me!next := NULL;
// enqueue myself.
pred := fetchandstore(&(lock!last), me);
if pred 6= NULL then

// when the queue is not empty.
me!locked := Locked;
me!prio := my prio;
pred!next := me;

�1 raisepriority(lock, my prio);
repeat until me!locked = Released

else
// succeed to acquire the lock without waiting.

�2 raisepriority(lock, my prio)
end

end;

procedureacquiresecondlock(lock: LockPtr, me: NodePtr, lock1: LockPtr);
// try to acquirelock.
var pred: NodePtr;

begin
me!next := NULL;
// enqueue myself.
pred := fetchandstore(&(lock!last), me);
if pred 6= NULL then

// when the queue is not empty
me!locked := Locked;
me!prio := my prio;
pred!next := me;

�1 raisepriority(lock, my prio);
repeat

�3 if lock1!maxprio> my prio then
// lock1!maxpriois non-local access.

my prio := lock1!maxprio;
me!prio := my prio;
raisepriority(lock, my prio)

end
until me!locked = Released

else
// succeed to acquire the lock without waiting.

�2 raisepriority(lock, my prio)
end

end;

Figure 55: The First Algorithm (Part 1)

103

procedure releaselock(lock: LockPtr, me: NodePtr);
// try to releaselock.

var top, entry, pred: NodePtr;
var hentry, hpred: NodePtr;

begin
�4 lock!maxprio = MIN PRIO;

top := me!next;
if top = NULL then

if compareandswap(&(lock!last), me, NULL)then
// the queue becomes empty.
return

end;
repeat top := me!nextuntil top 6= NULL

end;
// search for the higest priority processor.
hentry := top;
pred := top;
entry := pred!next;
while entry 6= NULL do

if (entry!prio> hentry!prio) then
hentry := entry;
hpred := pred;

end;
pred := entry;
entry := pred!next

end;
// now,hentryis the higest priority processor.
if hentry 6= top then

move to top(lock, hentry, hpred, top)
end;

�5 raisepriority(lock, hentry!prio);
hentry!locked = Released

end;

Figure 56: The First Algorithm (Part 2)

becomes higher than the priority of the processor (theif statement marked with “�3”), it

inheritsmaxprioof lock1and updatesmaxprioof lock for transitive priority inheritance.

The only difference of thereleaselock procedure in Figure 56 with that of the

Markatos’ algorithm is the necessity of updating themaxpriofield (two lines marked with

“�4” and “�5”). AssigningMIN PRIOto themaxpriofield at first is necessary to avoid

some racing conditions.

This algorithm can be easily generalized to the case that a processor acquires more

than two locks at the same time with the following method. The list of locks held by a

processor should be maintained using an array or a linked list. In the generalized version

of the acquirelock procedure, themaxprio fields of all the locks in the list should be

104

checked while waiting for another lock. If some of them are higher than the priority of

the processor, it inherits the highest priority among them.

Avoiding Non-Local Spinning

While a processor is waiting for a lock in theacquiresecondlock procedure of the first

algorithm, themaxprio field of the holding lock is accessed repeatedly (marked with

“�3”). This accesses cause a heavy traffic on the interconnection network without a

coherent cache.

With the second algorithm presented in Figure 57 and Figure 58, this problem is solved

by introducing a flag to notify that themaxpriofield is modified. This notification flag (the

my notify variable in Figure 52) is prepared for each processor on its locally accessible

shared memory. A processor waiting for a lock in theacquiresecondlock procedure

in Figure 57 reads themaxpriofield only when the notification flag of the processor is

set (theif statement marked with “�6”). Thus the non-local spinning can be avoided.

It also checks themaxpriofield when it begins waiting for a lock (by assigningTRUE

to my notify). Introducing the notification flag is also advantageous when a processor

acquires more than two locks at the same time, because only one memory location (i.e.

the notification flag) is necessary to be checked in the waiting loop. Maintaining the list

of locks held by a processor is still necessary in this case.

Also, the raisepriority notify procedure is used instead ofraisepriority (three

lines marked with “�7”) in Figure 57. After updating themaxprio field of lock, the

raisepriority notify procedure sets the notification flag of the processor holding the lock.

In order to locate the notification flag of the lock holder, a new fieldnotifyp which points

to the notification flag is introduced in theLock record. Thenotifyp field of a lock is set

when a processor succeeds to acquire the lock (two lines marked with “�8”). The field is

also necessary to be cleared toNULL at the top of thereleaselock procedure in Figure 58

(marked with “�9”).

There is a slight chance that the notification flag of a wrong processor is set.

Specifically, suppose the case that the processor holding a lock passes the lock to another

one and itsnotifyp field is changed, after yet another processor reads thenotifyp field of

the lock in theraisepriority notify procedure and before it writesTRUE on�notifyp. In

this case, the notification flag of the processor that has already passed the lock to another

is set. Although this difficulty can increase the interconnection network traffic a little, it

does not cause wrong behavior.

105

procedureacquirefirst lock(lock: LockPtr, me: NodePtr);
var pred: NodePtr;

begin
me!next := NULL;
// enqueue myself.
pred := fetchandstore(&(lock!last), me);
if pred 6= NULL then

// when the queue is not empty.
me!locked := Locked;
me!prio := my prio;
pred!next := me;

�7 raisepriority notify(lock, my prio);
repeat until me!locked = Released

else
// succeed to acquire the lock without waiting.
raisepriority(lock, my prio)

end;
�8 lock!notifyp := &my notify

end;

procedureacquiresecondlock(lock: LockPtr, me: NodePtr, lock1: LockPtr);
var pred: NodePtr;

begin
me!next := NULL;
pred := fetchandstore(&(lock!last), me);
if pred 6= NULL then

me!locked := Locked;
me!prio := my prio;
pred!next := me;

�7 raisepriority notify(lock, my prio);
my notify := TRUE;
repeat

// check if a priority inheritance is notified.
�6 if my notify then

my notify := FALSE;
if lock1!maxprio> my prio then

my prio := lock1!maxprio;
me!prio := my prio;

�7 raisepriority notify(lock, my prio)
end

end
until me!locked = Released

else
raisepriority(lock, my prio)

end;
�8 lock!notifyp := &my notify

end;

Figure 57: The Second Algorithm (Part 1)

106

procedure releaselock(lock: LockPtr, me: NodePtr);
var top, entry, pred: NodePtr;
var hentry, hpred: NodePtr;

begin
lock!maxprio := MIN PRIO;

�9 lock!notifyp := NULL;
top := me!next;
if top = NULL then

if compareandswap(&(lock!last), me, NULL)then
// the queue becomes empty.
return

end;
repeat top := me!nextuntil top 6= NULL

end;
// search for the higest priority processor.
hentry := top;
pred := top;
entry := pred!next;
while entry 6= NULL do

if (entry!prio> hentry!prio) then
hentry := entry;
hpred := pred

end;
pred := entry;
entry := pred!next

end;
// now,hentryis the higest priority processor.
if hentry 6= top then

move to top(lock, hentry, hpred, top)
end;
raisepriority(lock, hentry!prio);
hentry!locked := Released

end;

Figure 58: The Second Algorithm (Part 2)

5.3 Performance Evaluation

In this section, the effectiveness of the priority inheritance spin lock algorithms proposed

in the previous section is examined through performance evaluation. Their performance

is compared with the simple priority-ordered spin locks without supporting priority

inheritance scheme. We have used the single-linked queue version of the Markatos’ lock

algorithm for this purpose.

Evaluation Method

We have used one to eight processors for the evaluation. The original (or assigned)

107

acquirelock(L2);
// critical section.
releaselock(L2);

routine (a)

acquirelock(L1);
acquirelock(L2);
// critical section.
releaselock(L2);
releaselock(L1);

routine (b)

acquirelock(L0

1);
acquirelock(L2);
// critical section.
releaselock(L2);
releaselock(L0

1);

routine (c)

acquirelock(L00

1);
acquirelock(L2);
// critical section.
releaselock(L2);
releaselock(L00

1);

routine (d)

Figure 59: Evaluation Routines

priority of processor is fixed to its ID number. Each processor repeatedly executes one

of the four routines presented in Figure 59 in random order. Routines (c) and (d) are

introduced in order to expose the problem of non-local spinning with the first algorithm.8

The execution time of each routine is measured for each execution, and their distributions

are obtained. Inside the critical section, a processor accesses the shared bus several

number of times and waits for a while using empty loops. In case of routines (b), (c), and

(d), shared bus accesses and an empty loop are also inserted betweenacquirefirst lock

andacquiresecondlock. Without spin locks, the execution time of each routine is about

30�s, including the overhead for measuring execution times. Each processor also waits

for a random time after each execution of the routines.

Because our evaluation system has no coherent cache, the simple implementation of

the first algorithm causes heavy shared-bus traffic. In order to avoid shared-bus saturation,

the frequency to read themaxpriofield in theacquiresecondlock routine is reduced. In

more concrete,maxpriois checked only once for every four checkings ofme!locked.

Evaluation Results

Figure 60 presents the 99.99%-reliable execution times that thehighestpriority processor

executes routine (b). When the number of processors is large, the execution time with

Markatos’ locks, which can not be bounded inherently, is much slower than those with

our algorithms due to uncontrolled priority inversions. When the number of processors

is small, our algorithms are slower because of the overhead for maintaining themaxprio

field of each lock. Our second algorithm is a bit faster than the first one when the number

8With routines (a) and (b) only, the effect of shared-bus traffic is not revealed, because at most one
processor spins on non-local memory at the same time.

108

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8

E
xe

cu
tio

n
T

im
e

(m
ic

ro
 s

ec
.)

Number of Processors

Markatos
The first algorithm

The second algorithm

Figure 60: 99.99%-Reliable Execution Times of Routine (b)

0

50

100

150

200

1 2 3 4 5 6 7 8

E
xe

cu
tio

n
T

im
e

(m
ic

ro
 s

ec
.)

Number of Processors

Markatos
The first algorithm

The second algorithm

Figure 61: 99.99%-Reliable Execution Times of Routine (a)

109

0

50

100

150

200

1 2 3 4 5 6 7 8

E
xe

cu
tio

n
T

im
e

(m
ic

ro
 s

ec
.)

Number of Processors

Markatos
The first algorithm

The second algorithm

Figure 62: Average Execution Times of Routine (b)

of processors is more than six, but the difference is very small. Though it is not measured

in our experiments, the shared-bus traffic is expected to be much larger with the first

algorithm.

Figure 61 presents the 99.99%-reliable execution times that the highest priority

processor executes routine (a). As easily imagined, there are little difference in the

behavior of routine (a) with three algorithms. This graph confirms the conjecture.

Finally, in order to examine the average performance of the algorithms, we present the

average execution times of routine (b) in Figure 62. From this graph, our algorithms are

slower than Markatos’ lock in average performance. We can say that priority inheritance

spin locks are not appropriate when improving average performance is the primary

concern.

6 Summary

In this part, we have proposed various spin lock algorithms with the properties required

to implement scalable real-time kernels, and have evaluated their effectiveness through

performance measurements. Before describing the algorithms, Section 1 has presented a

brief survey on spin lock algorithms and has shown the pseudo-codes of some important

algorithms on which our proposed algorithms are based.

In Section 2, we have proposed two algorithms of queueing spin lock with preemption

that can give practical upper bounds on the times to acquire and release an inter-

110

processor lock while realizing constant response to interrupt requests, in order to make

the two important requirements for scalable real-time systems on function-distributed

multiprocessors compatible. The first algorithm, which supports the simple preemption

scheme, has a drawback that the interrupt service overhead depends on the number of

contending processors. In order to solve the problem, we have proposed the second

algorithm which adopts the improved preemption scheme. Their performance evaluation

through experiments has confirmed that the algorithms have the required properties. We

have also described a combined algorithm which supports both preemption schemes.

In Section 3, we have presented an efficient algorithm of spin lock with local

precedence, which is required to make the worst-case execution times of intra-processor

synchronizations independent of the number of contending processors.

In Section 4, real-time scalability of nested spin locks has been discussed. An

algorithm with which the maximum execution times of critical sections areO(n) when

the maximum nesting level of locks in the system is two has been proposed, and its

effectiveness is demonstrated with performance evaluation. By introducing the priority

inheritance scheme to the algorithm, it can be applied to the system in which the maximum

nesting level is more than two.

Though the section has focused on bounded spin locks (in other words, on the cases

when each processor equally contends for nested spin locks ignoring the priority of the

task it is executing), the results are also applicable to priority-ordered spin locks (the

cases when each processor has its priority determined from the job it is executing). In

concrete, when processors with the same priority should execute critical sections in a

FIFO order, our proposed method should be utilized. In this case, a pair of the native (or

assigned) priority of the processor and the time stamp obtained before trying to acquire

the outermost lock should be used as the priority for acquiring inner locks.

In Section 5, we have discussed on priority inheritance spin locks. At first, we

have pointed out the problem that the simple application of a priority-ordered spin lock

algorithm to nested spin locks causes uncontrolled priority inversions, which are very

harmful for satisfying the timing constraints imposed on real-time tasks. In order to

solve the problem, we have incorporated the basic priority inheritance scheme to spin

locks. Two algorithms of priority inheritance spin locks have been proposed based on the

Markatos’ spin lock algorithm: one for coherent cache multiprocessors and the other for

multiprocessor systems without coherent cache. Performance evaluation to demonstrate

their effectiveness has been conducted, and some affirmative results have been obtained.

In Section 4 and 5, we have adopted the Markatos’ priority-ordered spin lock algorithm

for the evaluations and for the base algorithm to which the basic priority inheritance

111

scheme is incorporated. Doing the same thing with the PR-lock [26] remains as future

work. Another important work remaining to be done is to combine the result of Section 2

and 5, in other words, to incorporate a preemption scheme to priority inheritance spin

locks.

112

Part IV

Conclusion and Future Work

113

1 Conclusion

In this dissertation, we have discussed the specification and implementation issues of a

scalable real-time kernel on function-distributed shared-memory multiprocessor systems.

A scalable real-time kernel is the basic software module that facilitates the realization

of scalable application systems. If a real-time system has the property of real-time

scalability, even when a part of the system is modified or when some processors are added

to the system, changes in the worst-case timing behavior of the unmodified part of the

system are minimized, leading to the reduction of the maintenance cost of the system.

Though many researchers have investigated on real-time kernels for shared-memory

multiprocessors, none of them has focused on the issues of real-time scalability.

When a real-time system is realized on a function-distributed multiprocessor archi-

tecture, external devices and tasks handling them are allocated to processors so that the

number of inter-processor synchronizations and communications is minimized and that

as many time-critical tasks as possible are closed within a processor. Therefore, it is

advantageous to reduce the maintenance cost of the system that changes in the worst-case

timing behavior of the processings that can be done within a processor are minimized.

In this dissertation, we have clarified the required properties of a scalable real-

time kernel for function-distributed multiprocessors and investigated on their realization

methods. After describing the implementation approaches of a real-time kernel on shared-

memory multiprocessors, two problems which are the obstacles for a straightforward

implementation method to satisfy the required properties have been pointed out, and the

solutions of the problems have been proposed when task-independent synchronization

and communication objects are not supported. In order to solve the first problem that the

worst-case execution times of synchronizations within a processor depend on the number

of contending processors, spin lock with local precedence is adopted. For the second

problem that predictable inter-processor synchronization and constant interrupt response

are incompatible, bounded spin lock with preemption is devised. We have presented

the algorithms of these two kind of spin locks assuming that processors support atomic

read-modify-write operations on a single word of shared memory.

We have also proposed the approach to classify kernel resources into classes with

different characteristics to improve the performance of intra-processor synchronization.

In the concrete, tasks are classified into the isolated tasks, the private tasks, and the local

tasks of each processor. Task-independent synchronization and communication objects

are also classified into three classes: the isolated objects, the private objects, and the

shared objects.

114

In order to demonstrate the effectiveness of our proposals, we have conducted

performance measurements using an existing shared-bus multiprocessor system without

coherent cache. The underlying inter-processor synchronization is realized with software-

implemented spin locks. Although the hardware and the synchronization mechanism do

not have the properties that is necessary to strictly satisfy the required properties of a

scalable real-time kernel, the performance measurements have confirmed that the required

properties are practically satisfied with our proposals, while they cannot be met with other

methods.

In order to support task-independent synchronization and communication objects,

nested spin locks are necessary. We have discussed on the scalability issues on nested

spin locks and proposed the scheme for reducing the maximum execution times of nested

spin locks toO(n � em), wheren is the number of contending processors andm is the

maximum nesting level of locks. Even though the scheme is adopted, however, the

interrupt service overhead depends on the number of contending processors, and it is not

possible to satisfy the required properties of a scalable real-time kernel.

2 Future Work

There are pretty much work to be tackled. The most pressing one is to realize a scalable

real-time kernel that supports task-independent synchronization and communication

objects by solving (or avoiding) the difficulty described in Section II.7. One of the possible

approaches is to incorporate the notion of block-free or wait-free synchronizations to

our real-time kernel implementation and to avoid nested spin locks. More precisely, the

processings which needs the outer lock should be realized in a block-free or wait-free

fashion [17, 37]. Because the manipulations of the TCBs and the ready queues are too

complicated to realize in block-free or wait-free with reasonable performance, we think

that the inner lock should be used even with this approach. This kind of mixed block-free

and lock-based synchronization is a new research topic that has not been studied. Another

promising approach is to adopt the realization concept of wait-free synchronization in

acquring an inner lock. More precisely, the operation within the inner lock is posted to

the waiting queue for the lock and is executed by another processor during an interrupt

service.

Another important work to do is to extend our kernel model further to support global

tasks which can migrate among processors. We will describe it in the next section

(Section 2.1). There are some problems to be solved in implementing global tasks without

degrading the performance of the other tasks [81].

115

Other future work includes the hardware implementation of the spin locks with

which the maximum execution time can be determined independently of the number of

contending processors, and further extensions of the spin lock algorithms which have

been described in Section III.6. It is also necessary to extend our study to upper layers.

For example, the design guidelines of scalable application systems on a scalable real-time

kernel should be investigated on. The software development environment for our real-

time kernel model, especially a tool that supports the fitting of the kernel resources to

appropriate classes integrated with a schedulability analyzer, is also an important research

topic.

Finally, applying our scalable real-time kernel to real applications and evaluating it

in real-world environments are the most challenging work remaining to be done. To this

end, we plan to port our scalable real-time kernel for shared-memory multiprocessors to

other off-the-shelf hardware environments and distribute it in free.

2.1 Global Tasks

One of the advantages of shared-memory multiprocessors is that task migrations can be

easily implemented. As described in Section II.2, time-critical tasks should be bound

to a processor in function-distributed multiprocessor systems. On the other hand, task

migrations are useful for background jobs without severe timing constraints. We call the

class of tasks that can execute on any processors in the system and that can migrate to

other processors during their execution asglobal tasks.

One of the most import issues on global tasks is their scheduling method. Because

global tasks are introduced to support background jobs without severe timing constraints,

we handle the priorities of global tasks always lower than those of local tasks.

Two shared task queues are prepared for global tasks: the ready queue that includes

all global tasks that are ready to execute but are not being executed, and the run queue

that includes all global tasks that are being executed. When no task of the other classes is

ready to execute on a processor, the task dispatcher on the processor removes the highest

priority task from the ready queue for the global tasks, and moves it to the run queue.

When a processor makes a global task�1 ready to execute, it first finds the lowest priority

task�2 in the run queue. If�1 has a higher priority than�2, the processor moves�2 to the

ready queue and inserts�1 to the run queue instead. Then, it requests the processor that is

executing�2 to switch the executing task using an inter-processor interrupt.

Here, a difficulty occurs when a private (or isolated) task becomes ready to execute

with an external event on a processorP1 that is executing a global task. In this case,

the global task is preempted and should migrate to another processor that is executing

116

P1-private task OK

P

2 -private task

P

2 -private object

P

2 -local task

shared object

P

1 -local task

P

1 -private task

P1-isolated task

P

1 -private object

NA

NA

NA

NAOK

OK

OK

*1

OK

NA

OK

NA

*1

accessing
task

accessed resource

P1-local task

global task

P

1 -isolated task

P

1 -isolated object

global task

P

2 -isolated task

P

2 -isolated object

OK

OK

OK

NA

OK

*2

OK

NA

OK

NA NA

NA NA NA NA NANANA

*1 OK

NA

OK

OK *1 NANA

NA

NA

NA

NA

NANA

NANA

Table 10: Accessibility of Kernel Resources (Full Set)

a lower priority task or is idle. Because the maximum processing time onP1 for the

migration unavoidably depends on the number of contending processors, the maximum

response time of the private (or isolated) task becomes long as the number of contending

processors is increased. In order to avoid this problem, we allow the situation that a

global task is bound to a processor while it is executing a private (or isolated) task, just

like when it is executing an interrupt handler. When the execution times of private tasks

are relatively short compared to the deadlines of global tasks, this restriction is considered

to be reasonable.

The accessibility of kernel resources with global tasks are summarized in Table 10.

Because the control blocks of isolated and private resources on a processor cannot be

accessed from other processors, a global task, which can be executed on any processor,

cannot operate on them. A global task cannot access aP1-local task with special

operations, because the global task cannot access the control block of aP1-private object

on which the local task may be waiting.

Another possible extension is to support the class of tasks that can be executed on

a predefined set of processors. For example, suppose a heterogeneous multiprocessor

architecture, in which some general-purpose microprocessors and some special-purpose

processors (e.g. DSPs) are adopted. It is very natural to support the class of tasks that

can be executed only on the general-purpose microprocessors. Note here that it is not

necessary to implement all the resource classes in a kernel. It is also a possible approach

that some of the classes are removed from a full-set kernel when they are not used.

117

Bibliography

[1] G. Ahmed and K. Schwan, “CHAOSarc: kernel support for multiweight objects,

invocations, and atomicity in real-time multiprocessor applications,”ACM Trans.

Computer Systems, vol. 11, pp. 33–72, Feb. 1993.

[2] R. Alur and G. Taubenfeld, “Results about fast mutual exclusion,” inProc. Real-Time

Systems Symposium, pp. 12–21, Dec. 1992.

[3] T. E. Anderson, “The performance of spin lock alternatives for shared-memory

multiprocessors,”IEEE Trans. Parallel and Distributed Systems, vol. 1, pp. 6–16,

Jan. 1990.

[4] T. P. Baker, “Stack-based scheduling of realtime processes,”Real-Time Systems,

vol. 3, no. 1, pp. 67–99, 1991.

[5] J. E. Burns, “Mutual exclusion with linear waiting using binary shared variables,”

SIGACT News, vol. 10, no. 2, pp. 42–47, 1978.

[6] E. M. Chaves, Jr., P. C. Das, T. J. LeBlanc, B. D. Marsh, and M. L. Scott, “Kernel-

kernel communication in a shared-memory multiprocessor,” Tech. Rep. TR 368,

Computer Science Department, University of Rochester, 1991.

[7] E. M. Chaves, Jr., P. C. Das, T. J. LeBlanc, B. D. Marsh, and M. L. Scott, “Kernel-

kernel communication in a shared-memory multiprocessor,”Concurrency: Practice

and Experience, vol. 5, pp. 171–191, May 1993.

[8] T. S. Craig, “Building fifo and priority-queuing spin locks from atomic swap,” Tech.

Rep. 93-02-02, Department of Computer Science and Engineering, University of

Washington, Feb. 1993.

[9] T. S. Craig, “Queuing spin lock algorithms to support timing predictability,” inProc.

Real-Time Systems Symposium, pp. 148–157, Dec. 1993.

118

[10] E. W. Dijkstra, “Solution of a problem in concurrent programming control,”

Communications of the ACM, vol. 8, p. 569, Sept. 1965.

[11] M. A. Eisenberg and M. R. McGuire, “Futher comments on dijkstra’s concurrent

programming control problem,”Communications of the ACM, vol. 15, p. 999, Nov.

1972.

[12] W. M. Gentleman, S. A. MacKay, D. A. Stewart, and M. Wein, “An introduction to

the Harmony realtime operating system,”Newsletter of the IEEE Computer Society

Technical Committee on Operating Systems, 1988.

[13] J. R. Goodman, M. K. Vernon, and P. J. Woest, “Efficient synchronization primitives

for large-scale cache-coherent multiprocessors,” inProc. 3rd Int’l Conference on

Architectural Support for Programming Languages and Operating Systems, pp. 64–

75, Apr. 1989.

[14] G. Graunke and S. Thakkar, “Synchronization algorithms for shared-memory mul-

tiprocessors,”IEEE Computer, vol. 23, pp. 60–69, June 1990.

[15] W. A. Halang, “Real-time systems: Another perspective,”Journal of System and

Software, pp. 101–108, Apr. 1992.

[16] M. Herlihy, “Impossibility and universality results for wait-free synchronization,” in

Proc. Seventh ACM Symposium on Principles of Distributed Computing, pp. 276–

290, Aug. 1988.

[17] M. Herlihy, “Wait-free synchronization,”ACM Trans. Programming Languages and

Systems, vol. 13, pp. 124–149, Jan. 1991.

[18] M. Herlihy, “A methodology for implementing highly concurrent data objects,”

ACM Trans. Programming Languages and Systems, vol. 15, pp. 745–770, Nov.

1993.

[19] A. L. Hopkins, Jr., T. B. Smith III, and J. H. Lala, “FTMP – a highly reliable

fault-tolerant multiprocessor for aircraft,”Proc. IEEE, vol. 66, pp. 1221–1239, Oct.

1978.

[20] IBM, The IBM PowerPC Architecture – A New Family of RISC Processors. San

Mateo, California: Morgan Kaufmann, 1994.

[21] IEEE, IEEE Standard for a Versatile Backplane Bus: VMEbus, 1987. ANSI/IEEE

Std 1014-1987.

119

[22] Y. Igarashi, M. Joh, T. Hirai, K. Kawai, and K. Kawanishi, “Realization of CTRON

based kernel for tightly coupled multi-processor system,” inProc. TRON Technical

Workshop, vol. 3, no. 3, pp. 15–27, TRON Association, Feb. 1991. (in Japanese).

[23] H. Inayoshi, I. Kawasaki, T. Nishimukai, and K. Sakamura, “Realization of

GMICRO/200,” IEEE Micro, vol. 8, pp. 12–21, Apr. 1988.

[24] M. Itoh, “Architecture characteristics of GMICRO/300,” in TRON Project 1987,

pp. 273–280, Springer-Verlag, 1987.

[25] M. Joh, Y. Igarashi, and T. Ozeki, “CTRON-specification kernel implementation for

a tightly coupled multiprocessor system,” inProc. 8th TRON Project Symposium,

pp. 118–129, IEEE CS Press, 1991.

[26] T. Johnson and K. Harathi, “A prioritized multiprocessor spin lock,” Tech. Rep.

TR-93-005, Department of Computer Science, University of Florida, 1993.

[27] T. Johnson and K. Harathi, “A simple correctness proof of the mcs contention-free

lock,” Information Processing Letters, vol. 48, pp. 215–220, 1993.

[28] G. Kane and J. Heinrich,MISP RISC Architecture. Prentice Hall, 1992.

[29] M. H. Klein, T. Ralya, B. Pollak, R. Obenza, and M. G. Harbour,A Practitioner’s

Handbook for Real-Time Analysis: Guide to Rate Monotonic Analysis for Real-Time

Systems. Kluwer Academic Publishers, 1993.

[30] D. E. Knuth, “Additional comments on a problem in concurrent programming

control,” Communications of the ACM, vol. 9, pp. 321–322, May 1966.

[31] L. Kontothanassis, R. W. Wisniewski, and M. L. Scott, “Schedular-conscious

synchronization,” Tech. Rep. TR550, Computer Science Department, University of

Rochester, Dec. 1994.

[32] L. Lamport, “A new solution of dijkstra’s concurrent programming problem,”

Communications of the ACM, vol. 17, pp. 453–455, Aug. 1974.

[33] L. Lamport, “A fast mutual exclusion algorithm,”ACM Trans. Computer Systems,

vol. 5, no. 1, pp. 1–11, 1987.

[34] J. Lee and U. Ramachandran, “Synchronization with multiprocessor cache,” inProc.

17th Int’l Symposium on Computer Architecture, pp. 27–37, 1990.

120

[35] N. Lynch and N. Shavit, “Timing-based mutual exclusion,” inProc. Real-Time

Systems Symposium, pp. 2–11, Dec. 1992.

[36] E. P. Markatos, “Multiprocessor synchronization primitives with priorities,” inProc.

8th IEEE Workshop on Real-Time Operating Systems and Software, May 1991.

[37] H. Massalin and C. Pu, “A lock-free multiprocessor os kernel,” Tech. Rep. CUCS-

005-91, Department of Computer Science, Columbia University, 1991.

[38] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for scalable synchronization on

shared-memory multiprocessors,”ACM Trans. Computer Systems, vol. 9, pp. 21–65,

Feb. 1991.

[39] J. M. Mellor-Crummey and M. L. Scott, “Scalable reader-writer synchronization for

shared-memory multiprocessors,” inProc. Third ACM Symposium on Principle and

Practice of Parallel Programming, pp. 106–113, Apr. 1991.

[40] J. M. Mellor-Crummey and M. L. Scott, “Synchronization without contention,” in

Proc. Fourth Int’l Conference on Architectural Support for Programming Languages

and Operating Systems, pp. 269–278, Apr. 1991.

[41] M. M. Michael and M. L. Scott, “Fast mutual exclusion, even with contention,”

Tech. Rep. TR460, Computer Science Department, University of Rochester, June

1993.

[42] M. M. Michael and M. L. Scott, “Scalability of atomic primitives on distributed

shared memory multiprocessors,” Tech. Rep. TR528, Computer Science Department,

University of Rochester, July 1994.

[43] L. D. Molesky, K. Ramamritham, C. Shen, J. A. Stankovic, and G. Zlokapa,

“Implementing a predictable real-time multiprocessor kernel – the Spring kernel,”

in Proc. Real-Time Operating Systems and Software, May 1990.

[44] L. D. Molesky, C. Shen, and G. Zlokapa, “Predictable synchronization mechanisms

for multiprocessor real-time systems,”Real-Time Systems, vol. 2, no. 3, pp. 163–180,

1990.

[45] H. Monden, “Introduction to ITRON, the industry-oriented operating system,”IEEE

Micro, vol. 7, pp. 45–52, Apr. 1987.

121

[46] R. Rajkumar, “Real-time synchronization protocols for shared memory multipro-

cessors,” inProc. Int’l Conf. Distributed Computing Systems, pp. 116–123, May

1990.

[47] R. Rajkumar,Synchronization in Real-Time Systems: A Priority Inheritance Ap-

proach. Kluwer Academic Publishers, 1991.

[48] R. Rajkumar, L. Sha, and J. P. Lehoczky, “Real-time synchronization protocols for

multiprocessors,” inProc. Real-Time Systems Symposium, pp. 259–269, Dec. 1988.

[49] M. Rozier, V. Abrosimov, F. Armand, I. Boule, M. Gien, M. Guillemont, F. Herrmann,

C. Kaiser, S. Langlois, P. Le’onard, and W. Neuhauser, “Overview of the Chorus

distributed operating system,” inProc. USENIX Workshop on Micro-Kernels and

Other Kernel Architectures, pp. 39–70, Apr. 1992.

[50] K. Sakamura, “ITRON: An overview,” inTRON Project 1987, pp. 29–34, Springer-

Verlag, 1987.

[51] K. Sakamura, “The objectives of the TRON project,” inTRON Project 1987,

pp. 3–16, Springer-Verlag, 1987.

[52] K. Sakamura, ed.,�ITRON Specification. Tokyo: TRON Association, 1989.

[53] K. Sakamura, ed.,Specification of the Chip Based on the TRON Architecture. Tokyo:

TRON Association, 1989.

[54] K. Sakamura, ed.,ITRON Specification ITRON2. Tokyo: TRON Association, 1990.

[55] K. Sakamura, “After a decade of TRON, what comes next?,” inProc. 11th TRON

Project Int’l Symposium, pp. 2–16, IEEE CS Press, Dec. 1994.

[56] K. Sakamura, ed., �ITRON

3.0 Specification. Tokyo: TRON Association, 1994. (can be obtained from

“ftp://tron.um.u-tokyo.ac.jp/pub/TRON/ITRON/SPEC/mitron3.txt.Z”).

[57] N. Sakiyama, H. Takada, and K. Sakamura, “Bubble lock: Another priority-orderd

spin lock algorithm,” inCollection of Position Papers for the 2nd Youth Forum in

Computer Science and Engineering (YUFORIC), Oct. 1995.

[58] K. Sato, H. Tsubota, O. Yamamoto, and K. Saitoh, “An experimental implementation

of unified real-time operating system,” inProc. 8th TRON Project Symposium,

pp. 57–68, IEEE CS Press, 1991.

122

[59] K. Schwan, P. Gopinath, and W. Bo, “CHAOS – kernel support for objects in the

real-time domain,”IEEE Trans. Computer, vol. 36, pp. 904–916, Aug. 1987.

[60] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance protocols: An

approach to real-time synchronization,”IEEE Trans. Computers, vol. 39, pp. 1175–

1185, Sept. 1990.

[61] R. L. Sites, ed.,Alpha Architecture Reference Manual. Burlington, Massachusetts:

Digital Press, 1992.

[62] J. A. Stankovic, “Misconceptions about real-time computing,”IEEE Computer,

vol. 21, pp. 10–19, Oct. 1988.

[63] J. A. Stankovic and K. Ramamritham, “The design of the Spring kernel,” inProc.

Real-Time Systems Symposium, pp. 146–157, Dec. 1987.

[64] J. A. Stankovic and K. Ramamritham, eds.,Hard Real-Time Systems. IEEE CS

Press, 1988.

[65] J. A. Stankovic and K. Ramamritham, “Editorial: What is predictability for real-time

systems?,”Real-Time Systems, vol. 2, no. 4, pp. 247–254, 1990.

[66] J. A. Stankovic and K. Ramamritham, “The Spring kernel: A new paradigm for

real-time systems,”IEEE Software, pp. 62–72, May 1991.

[67] D. B. Stewart, D. E. Schmitz, and P. K. Khosla, “The Chimera II real-time operating

system for advanced sensor-based robotic applications,”IEEE Trans. Systems, Man,

and Cybernetics, vol. 22, pp. 1282–1295, Nov. 1992.

[68] J. M. Stone and R. P. Fitzgerald, “Storage in the PowerPC,”IEEE Micro, vol. 15,

pp. 50–58, Apr. 1995.

[69] H. Takada, “ItIs: A �ITRON3.0-specification kernel,”TRON PROJECT BI-

MONTHLY, vol. 32, pp. J9–J11,E11–E14, Apr. 1994. (both in Japanese and

English).

[70] H. Takada, “An update on development of ItIs, a�ITRON3.0-specification OS,”

TRON PROJECT BIMONTHLY, vol. 38, pp. J8–J11,E9–E12, Apr. 1995. (both in

Japanese and English).

[71] H. Takada and K. Sakamura, “Implementation of inter-processor synchroniza-

tion/communication and design issues of ITRON-MP,” inProc. 8th TRON Project

Symposium, pp. 44–56, IEEE CS Press, Nov. 1991.

123

[72] H. Takada and K. Sakamura, “ITRON-MP: An adaptive real-time kernel specification

for shared-memory multiprocessor systems,”IEEE Micro, vol. 11, pp. 24–27,78–85,

Aug. 1991.

[73] H. Takada and K. Sakamura, “Advances in the ITRON specifications – supporting

multiprocessor and distributed systems,” inProc. 9th TRON Project Symposium,

pp. 89–95, IEEE CS Press, 1992.

[74] H. Takada and K. Sakamura, “A bounded spin lock algorithm with preemption,”

Tech. Rep. 93-2, Department of Information Science, University of Tokyo, July

1993.

[75] H. Takada and K. Sakamura, “Experimental implementations of priority inheritance

semaphore on ITRON-specification kernel,” inProc. 11th TRON Project Int’l

Symposium, pp. 106–113, IEEE CS Press, Dec. 1994.

[76] H. Takada and K. Sakamura, “Predictable spin lock algorithms with preemption,”

in Proc. Real-Time Operating Systems and Software, pp. 2–6, May 1994.

[77] H. Takada and K. Sakamura, “Compact, low-cost, but real-time distributed com-

puting for computer augmented environments,” inProc. 5th IEEE CS Workshop on

Future Trends of Distributed Computing Systems, pp. 56–63, IEEE CS Press, Aug.

1995.

[78] H. Takada and K. Sakamura, “�ITRON for small-scale embedded systems,”IEEE

Micro, vol. 15, pp. 46–54, Dec. 1995.

[79] H. Takada and K. Sakamura, “Queueing spin lock algorithms with preemption,”

Trans. IEICE (D-I), vol. J78-D-I, pp. 661–669, Aug. 1995. (in Japanese).

[80] H. Takada and K. Sakamura, “Real-time scalability of nested spin locks,” inProc.

2nd Real-Time Computing Systems and Applications, pp. 160–167, Oct. 1995.

[81] H. Takada and K. Sakamura, “Towards a scalable real-time kernel for asymmetric

multiprocessor systems,” inIEICE Technical Report (RTP’95), vol. 94, no. 573,

pp. 1–8, IEICE, Mar. 1995. (in Japanese).

[82] H. Takada and K. Sakamura, “Towards a scalable real-time kernel for function-

distributed multiprocessors,” inProc. 20th IFAC/IFIP Workshop on Real Time

Programming, Nov. 1995.

124

[83] H. Takada and K. Sakamura, “Inter- and intra-processor synchronizations in multi-

processor real-time kernel,” inProc. 4th Int’l Workshop on Parallel and Distributed

Real-Time Systems, pp. 69–74, Apr. 1996.

[84] H. Takada and K. Sakamura, “Scalable implementations of multiprocessor real-time

kernels,” in IEICE Technical Report (RTP’96), vol. 95, no. 603, pp. 1–6, IEICE,

Mar. 1996. (in Japanese).

[85] H. Takada, K. Tamaru, K. Kudou, T. Shimizu, and H. Tsubota, “The present and

future of the ITRON subproject – kernel specifications and their implementation –,”

Journal of IPSJ, vol. 35, pp. 903–909, Oct. 1994. (in Japanese).

[86] K. Takagi, T. Nishimukai, K. Iwasaki, I. Kawasaki, and H. Inayoshi, “Outline

of GMICRO/200 and memory management mechanism,” inTRON Project 1987,

pp. 259–272, Springer-Verlag, 1987.

[87] T. Takahashi, N. Ito, R. Hayano, Y. Watanabe, K. Sakamura, H. Takada, H. Naka-

mura, and N. Nishio, “Development of the parallel computer system using the

TRON chips and its application to physics,” inProc. TRON Technical Workshop,

vol. 2, no. 1, pp. 21–30, TRON Association, Apr. 1989. (in Japanese).

[88] N. Wirth, Programming in Modula-2. Springer-Verlag, 3rd corrected edition ed.,

1985.

[89] R. W. Wisniewski, L. Kontothanassis, and M. L. Scott, “Scalable spin locks for

multiprogrammed systems,” inProc. 8th Int’l Parallel Processing Symposium, Apr.

1994.

125

Appendix A

Implementation Details of our
Real-Time Kernel

In this appendix, we present the implementation details of our real-time kernel, which is

used for the evaluation in Section II.6. We have extended ItIs, a�ITRON3.0-specification

real-time kernel described in Section II.1.4, to support shared-memory multiprocessors.

We call the extended version of ItIs as ItIs/MP in this appendix.

1 Management of Classes

The largest difference between ItIs and ItIs/MP is that ItIs/MP supports the classification

of kernel resources. In order to manage the classes, aclass control blockis prepared for

each class of resources. Though the classification of tasks and that of task-independent

synchronization and communication objects have a bit difference, we have prepared

four type of classes in which both tasks and task-independent objects are included: the

isolated classes, the private classes, the local classes, and the global class. In the current

implementation, only the private classes and the local classes are realized.

As described in Section II.5.4, the ID of a kernel resource is divided into the field

indicating the class ID to which the resource belongs and the field identifying the resource

within the class (Figure 63). The actual assignment of class IDs is also presented in

Figure 63. The class ID 0 designates the same class with the task that uses the ID. For

example, if aP1-local task operates on the object with the ID number 0x00000052, it

designates aP1-local object whose identification number within the class is 0x52.

When a task operates on a kernel resource with its resource ID, the task first extracts

the class ID field within the resource ID and finds the address of its class control block.

The class control block includes the range of valid identification numbers of each resource

type within the class, and the address of the control block table of each resource type

126

MSB LSB
0151631

identification of the class
which the resource belongs to

identification of the resource
within the class

-2 (0xfffe)
-1 (0xffff)
 0
1 ... n
 n+1

n : the maximum number of processors

the isolated class of the processor executing the issuing task
the private class of the processor executing the issuing task
the same class with the issuing task
the local classes of each processor
the global class

class ID assignment:

resource ID structure:

Figure 63: The Structure of Resource ID

(Figure 64). The address of the ready queue of the class and that of the timer event queue

are also included in the class control block. A class control block also includes twolock

objects, one of which guards the TCBs of the class and the other guards the control blocks

of task-independent synchronization and communication objects. Using the information,

the task can find the address of the control block of the kernel resource and operate on it.

Though it is possible to prepare one set of class control blocks and share it by all

the processors, we adopt another approach with which each processor has its own set

of control blocks in order to reduce the shared-bus traffic (remember that our evaluation

environment has no coherent cache). The class control blocks for each processor are

initialized from theshared class control blocks(Figure 64). When the class control blocks

are initialized, each processor customizes their contents.

2 Initialization Procedure

Booting up a multiprocessor system is a bit complicated procedure. We follow the

following three initialization steps to boot up the system.

1. At first, the kernel program code is downloaded to the master processor,1 and is

started execution on the master processor. The master processor clears the shared

class control blocks and other globally shared variables. Then, it distribute the

kernel code to each processor and makes it start with an inter-processor interrupt.

If the local memory of a processor cannot be accessed, the master processor judges

that the processor is not available in the system.

1In the current implementation, we assume that each processor executes the same kernel code.

127

semaphore
control
blocks

eventflag
control
blocks

TCBs

timer event queue

ready queue

class
control
blocks

shared
class
control
blocks

P2P1

. . . .

Pn

in
iti

al
iz
e

. . . .

lock object
for tasks

lock object for
task-independent
objects

Figure 64: Class Control Blocks and Shared Class Control Blocks

2. Each processor (including the master processor) initializes its local and private

variables, such as the control blocks of its local and private resources and the ready

queues for its local and private tasks. It also initializes the shared class control

block of its local class.

When a processor finishes this step, it notifies the master processor of it via a

shared variable and begins waiting. The master processor repeatedly checks if

other processors finish this step. When all the processors finish this step, the master

processor signals the other processors to proceed to the next step via a shared

variable.

128

3. Each processor reads the shared class control blocks and initializes its own class

control blocks. It also initializes the class control block for its private class.2 Then,

it starts executing tasks if some of the tasks are ready to execute.

3 Spin Locks Used in the Implementation

In the current implementation of our real-time kernel, a combined algorithm of the

queueing spin lock with improved preemption scheme presented in Figure 28–30 and

the spin lock with local precedence presented in Figure 38–39 is used with some

improvements.

One of the improvements is that the processor trying to acquire the lock begins

executing the critical section when its state becomesDequeueing. If it remains to be

Dequeueingwhen the processor tries to release the lock, it waits until the state becomes

Released. Another improvement is that the global lock has now three states: the state in

which the global lock is released, the state in which the global lock is not released and a

processor must repeatedly check the global lock, and the state in which the global lock is

not released and a processor need not check the global lock.

Pseudo-code for the combined algorithm is presented in Figure 65, 66, 67, 68, and 69.

In the pseudo-code,NADR designates a special pointer value that has a different value

with the other pointers, just likeNULL. NADR is used withNULL to distinguish the new

state introduced in the global lock. Actually, 0 is assigned toNULL and�1 toNADR in

our implementation.

A processor should useacquiremy local lock and releasemy local lock to ac-

quire/release its local lock, and should useacquirelockandreleaselock to acquire/release

the local locks of other processors. Theacquirelock andacquiremy local lock functions

must be called with the interrupt request disabled. They returnTRUEwhen they succeed

to acquire the lock and returnFALSE when an interrupt is requested while waiting for

the lock. WhenFALSE is returned from these functions, the processor must enable

interrupt request, service the interrupt request, and re-execute the function. In the

acquiremy local lock function, the exponential backoff scheme is not adopted because

theglock field of the lock is located on the local memory of the processor that issues the

function.

The lock object, which is included in the class control block, includes the pointer to

theLock record, the memory area for its queue node (theNoderecord), and the pointers

to the functions with which the lock should be acquired/released.

2Actually, we include this initialization in the second step.

129

type Node =record
next: pointer to Node;
prev: pointer to Node;
locked: (Released, Locked, Preempted, Dequeueing)

end;
// Thelockedfield must be intialized toNULL.

type Lock = record
last: pointer to Node;
glock: pointer to Node;
prec: pointer to Node

end;

shared varL: Lock;
// L.last, L.glock, andL.precare initialized toNULL.

proceduremove to top(lock: pointer to Lock,
entry, pred, oldtop:pointer to Node);

// moveentryto the top of the waiting queue oflock.
// predis the predecessor ofentry.
// oldtopis the top of the queue before the move.

var succ:pointer to Node;
begin

succ := entry!next;
if succ = NULLthen

// whensuccis at the tail of the waiting queue.
pred!next := NULL;
if compareandswap(&(lock!last), entry, pred)then

entry!next := oldtop;
return

end;
repeatsucc := entry!nextuntil succ6= NULL

end;
pred!next := succ;
succ!prev := pred;
entry!next := oldtop

end;

Figure 65: The Spin Lock Used in the Implementation (Part 1)

130

procedureacquirelock(lock: LockPtr, me: NodePtr): boolean;
var pred, succ: NodePtr;
var interval, i: integer;

begin
if me!locked = Preemptedthen

me!locked := Locked;
gotospin

end;
me!next := NULL;
pred := fetchandstore(&(lock!last), me);
if pred = NULL then

return TRUE
end;
me!prev := pred;
me!locked := Locked;
pred!next := me;

spin:
i := 1;
interval :=�;
while (me!locked = Locked)do

if interrupt requestedand
compareandswap(&(me!locked), Locked, Preempted)then

return FALSE
end;
i := i – 1;
if i = 0 then

top := lock!glock;
if top = NULL then

i := 1 // never expires.
else iftop 6= NADR

and compareandswap(&(lock!glock), top, NULL)then
if top 6= me then

move to top(lock, me, me!prev, top)
end;
me!locked := Released;
return TRUE

else
i := interval;
interval := interval� �

end
end

end
end;

Figure 66: The Spin Lock Used in the Implementation (Part 2)

131

procedureacquiremy local lock(lock: LockPtr, me: NodePtr): boolean;
var pred, succ: NodePtr;
var checkglock: boolean;

begin
if me!locked = Preemptedthen

me!locked := Locked;
gotospin

end;
me!next := NULL;
pred := fetchandstore(&(lock!last), me);
if pred = NULL then

return TRUE
end;
me!prev := pred;
me!locked := Locked;
pred!next := me;

spin:
lock!prec = me;
checkglock = TRUE;
while (me!locked = Locked)do

if interrupt requestedand
compareandswap(&(me!locked), Locked, Preempted)then

lock!prec = NULL;
return FALSE

end;
if checkglock then

top := lock!glock;
if top = NULL then

checkglock = FALSE
else iftop 6= NADR

and compareandswap(&(lock!glock), top, NULL)then
if top 6= me then

move to top(lock, me, me!prev, top)
end;
me!locked := Released;
lock!prec = NULL;
return TRUE

end
end

end
end;

Figure 67: The Spin Lock Used in the Implementation (Part 3)

132

procedure releaselock(lock: LockPtr, me: NodePtr);
var top, entry, pred: NodePtr;

begin
repeat until me!locked = Released;
top := me!next;
if top = NULL then

if compareandswap(&(lock!last), me, NULL)then
return

end;
repeat top := me!nextuntil top 6= NULL

end;
entry := lock!prec;
if entry 6= NULL

and compareandswap(&(entry!locked), Locked, Dequeueing)then
if entry 6= top then

move to top(lock, entry, entry!prev, top)
end;
entry!locked := Released;
return

end;
repeat until lock!glock = NULL;
lock!glock := NADR;
if compareandswap(&(top!locked), Locked, Released)then

lock!glock := NULL;
return

end;
pred := top;
entry := pred!next;
while entry 6= NULL then

if compareandswap(&(entry!locked), Locked, Dequeueing)then
lock!glock := NULL;
move to top(lock, entry, pred, top);
entry!locked := Released;
return

end;
pred := entry;
entry := pred!next

end;
lock!glock := top

end;

Figure 68: The Spin Lock Used in the Implementation (Part 4)

133

procedure releasemy local lock(lock: LockPtr, me: NodePtr);
var top, entry, pred: NodePtr;

begin
repeat until me!locked = Released;
top := me!next;
if top = NULL then

if compareandswap(&(lock!last), me, NULL)then
return

end;
repeat top := me!nextuntil top 6= NULL

end;
repeat until lock!glock = NULL;
lock!glock := NADR;
if compareandswap(&(top!locked), Locked, Released)then

lock!glock := NULL;
return

end;
pred := top;
entry := pred!next;
while entry 6= NULL then

if compareandswap(&(entry!locked), Locked, Dequeueing)then
lock!glock := NULL;
move to top(lock, entry, pred, top);
entry!locked := Released;
return

end;
pred := entry;
entry := pred!next

end;
lock!glock := top

end;

Figure 69: The Spin Lock Used in the Implementation (Part 5)

134

Appendix B

Proofs on the Queueing Spin Lock
Algorithm with Simple Preemption
Scheme

In this appendix, we show that the queueing spin lock algorithm with the simple

preemption scheme described in Section III.2 realizes mutual exclusion and deadlock

freedom.

We first show that the algorithm in Figure 70 and 71 realizes mutual exclusion. The

difference between the algorithm and the one in Figure 26 and 27 is (1) the initial value

of thelockedfield is determined to beReleasedand (2) compareandswap operations are

used in assigningReleasedto thelockedfield of queue nodes (in the lines marked with16j

and18j). Next, we show that the algorithm is deadlock free. Once mutual exclusion and

deadlock freedom are proved, the equivalence of these two algorithms is straightforward.

At first, the state of a processor is classified into nineteen states by the execution point

of the processor, which is presented in Figure 70 and 71 as1j–19j. A state transition

occurs when the processor accesses a shared data, with which the processor interacts

with others. For example, the transition from1jto 2joccurs when the processor reads

I.next. Similarly, the transition from2jto 3jor 9joccurs when the processor executes

the fetchandstore operation. Whether the processor moves to3jor 9jis fixed at this

moment. The only exception is the transition from19jto 12jwhich occurs when the

processor modifies its private variablesucc.

The state of a processor is also classified by the value of thelockedfield of its queue

node into the released state (R state, in short), the locked state (L state), the preempted

state (P state), and the canceled state. The canceled state is further classified into two

states: the state that the variableL is kept non-NULL after Canceledis assigned to the

lockedfield (C state), and the state afterL becomesNULL (C’ state).

135

type Node =record
next: pointer to Node;
locked: (Released, Locked, Preempted, Canceled)

end;
type Lock = pointer to Node;

shared varL: Lock;
// L is initialized toNULL.

var I: Node;
// I.lockedis initialized toReleased
var pred, succ, sn:pointer to Node;

// try to acquire the lockL.
retry:

1hI.next := NULL;
disableinterrupts;
// enqueue myself.

2hpred := fetchandstore(&L, &I);
if pred 6= NULL then

// when the queue is not empty.
3hI.locked := Locked;
4hpred!next := &I;
5hwhile (I.locked 6= Released)do

if interrupt requestedand
6hcompareandswap(&(I.locked), Locked, Preempted)then

enableinterrupts;
// interrupt service.
disableinterrupts;

7hif :compareandswap(&(I.locked), Preempted, Locked)then
enableinterrupts;

8hrepeat while I.locked 6= Released;
goto retry

end
end

end
end;
//

9h// critical section.
//

Figure 70: The Queueing Lock with Simple Preemption Scheme (Part 1)

136

//
9h// critical section.

//
// try to release the lockL.
succ := I.next;
if succ = NULLthen
10hif compareandswap(&L, &I, NULL) then

// the queue becomes empty.
gotoexit

end;
11hrepeatsucc := I.nextuntil succ6= NULL

end;
// try to pass the lock to the successor.

12hwhile :compareandswap(&(succ!locked), Locked, Released)do
// when the successor is servicing interrupts.

13hif compareandswap(&(succ!locked), Preempted, Canceled)then
// dequeue the successor from the waiting queue.

14hsn := succ!next;
if sn = NULL then
15hif compareandswap(&L, succ, NULL)then

// the queue becomes empty.
16hcompareandswap(&(succ!locked), Canceled, Released);

gotoexit
end;

17hrepeatsn := succ!nextuntil sn 6= NULL
end;

18hcompareandswap(&(succ!locked), Canceled, Released);
19hsucc := sn

end
end;

exit:
enableinterrupts;

Figure 71: The Queueing Lock with Simple Preemption Scheme (Part 2)

The state transition diagram of a processor presented in Figure 72 can be obtained

from these two classifications and some observations of the code in Figure 70 and 71

such as the fact that a processor assignsLocked to the locked field of its queue node

with the transition from 3jto 4j, the fact that a processor changes thelockedfield of

another processor only fromLockedto Released, from Preemptedto Canceled, and from

Canceledto Released, and the fact that the transition from C’ state to C state does not

exist by definition.1 The transitions marked with “�” in the diagram are caused by other

processors, and the transition with “#” occurs only when an interrupt request is raised on

the processor.

1Following discussions reveal two other facts that a processor never becomes 4R state and that the
transition from 7P to 7C’ does not occur.

137

1R

2R

3R

4L

5L

4R

5R

6L6R

7P 7C 7R

7C’

8C 8R

8C’

9R

10R

11R

12R

13R

14R

15R

17R
18R 19R

16R

LQ

*

*

*
#

*

*

*
* *

*
* *

ER

Figure 72: The State Transition Diagram of a Processor

138

A processor is called to be in theexclusive region(ER, in short), when its state is

included in ER in Figure 72. In the following, we call thelocked and next fields of

the queue node of a processor simply as thelocked and next fields of the processor,

respectively.

Lemma 1 WhenL is NULL, no processor is in ER. WhenL is notNULL, there is one

(and only one) processor that is in ER.

Proof: In the initial state, the condition is satisfied becauseL is initialized toNULL and

the state of each processor is 1R. Then, the lemma can be proved by showing that for

each transition, if the condition is satisfied before the transition, it is preserved with the

transition. We may safely check only the transitions with which a processor enters/leaves

ER orL is modified.

� 2R!9R (The processor enters ER andL is modified.)

This transition occurs only whenL is NULL, and changes it to non-NULL. There

are no processor in ER before the transition sinceL is NULL. Therefore, the

condition is preserved.

� 4L!4R, 5L!5R, 6L!6R (The processor enters ER.)

These transitions occur only when another processor changes thelockedfield to

Locked; in other words, it makes the transition from 12R to 1R. In this case, a

processor enters ER while another leaves ER. AsL is not modified with these

transitions, the condition is preserved.

� 12R!1R (The processor leaves ER.)

A processor making this transition changes thelockedfield of another processor

from Lockedto Released; in other words, it causes a transition from 4L/5L/6L to

4R/5R/6R on another processor. This is the same situation with the above.

� 10R!1R, 15R!16R (The processor leaves ER andL is modified.)

These transitions occur only whenL is notNULL and change it toNULL. Therefore,

the condition is preserved.

� 2R!3R (L is modified.)

L is kept non-NULL with this transition. Therefore, the condition is preserved.2

Theorem 2 (Mutual Exclusion) There is at most one processor which is in 9R state.

Proof: This directly follows from Lemma 1. 2

139

In the following, the processor in ER is called thelock holder(LH, in short), if any. A

processor is called to be designated by a pointer variable when its queue node is pointed

to by the pointer.

Next, we define thelock queueWe do not use the word “waiting queue” because the

lock holder can be included in the queue. which is an ordered list of processors. The last

processor of the lock queue is defined to be the one designated byL. WhenL is NULL,

the lock queue is defined to be empty. The predecessor of a processor in the lock queue

is the one designated by itspredvariable. WhenL is notNULL, the first processor of the

queue is defined according as the state of LH (which exists from Lemma 1) as follows.

(1) When LH is in 4R, 5R, 6R, 9R, 10R, or 11R, LH is the first processor of the lock

queue.

(2) When LH is in 12R, 13R, 14R, 15R, 17R, or 18R, the processor designated by the

succvariable of LH is the first one of the lock queue.

(3) When LH is in 19R, the processor designated by thesnvariable of LH is the first

one of the lock queue.

In the next lemma, we show that the lock queue is well-structured and handled

focusing only on the lock queue operations. We need the following assumption for further

discussion.

Assumption 3 Any processor has not been included in the lock queue when it is in 1R

state. 2

In the initial state, this assumption is satisfied because all processors are in 1R and

because the lock queue is empty. To show that the assumption always holds, it is necessary

to prove that a processor is not included in the lock queue when it returns to 1R state. The

algorithm in Figure 70 and 71 realizes this property by introducing the transient status in

which thelockedfield is Canceled.

In the following, we suppose that this assumption alway holds. It is proved that

a processor is not included in the lock queue when it returns to 1R state in Lemma 7

after the discussions which take the value oflockedfields into consideration. This result

shows that the assumption is preserved if it is satisfied in the initial state. Therefore, the

assumption is proved inductively using Lemma 7.

Lemma 4 Following two conditions hold under Assumption 3.

140

(1) A processor modifies the lock queue with only two kind of operations: (a) inserting

itself at the end of the lock queue when it is not included in the queue and (b)

removing the first processor of the lock queue from the queue.

(2) When thenext field of a processor included in the lock queue is notNULL, it

designates the successor of the processor in the lock queue.

Proof: In the initial state, the conditions are satisfied because no operation has been done

on the lock queue and because the lock queue is empty. Then, the lemma can be proved

by showing that for each transition, if the conditions are satisfied before the transition,

they are preserved with the transition. We may safely check only the transitions with

which the lock queue is changed or with which thenextfield of a processor included in

the lock queue is modified. The lock queue is modified in the following four cases: (a)

L is changed, (b) thepredvariable of a processor in the lock queue is changed, (c) LH

is changed, and (d) LH makes a transition beyond the boundaries with which the first

processor of the lock queue is defined.

� 2R!3R, 2R!9R (L is changed and thepredvariable is changed.)

A processor making one of these transitions becomes the last processor of the lock

queue after the transition. In case of 2R!3R, the last processor before the transition

is designated by thepredvariable. The first processor of the lock queue remains

unchanged. In case of 2R!9R, the lock queue is empty before the transition and

includes only the processor making the transition after the transition. In both cases,

the processor making the transition is inserted at the end of the lock queue.

Because a processor in 1R is not included in the lock queue from Assumption 3

and because a processor is not inserted to the lock queue by another processor from

Condition (1), a processor in 2R is not included in the lock queue.

Since thenextfield of a processor is modified only when it is designated by thepred

variable of another processor, thenextfield of the processor which is not included

in the lock queue or is at the end of the lock queue is not modified by another

processor. Because the processor making the transition 2R!3R/9R is not included

in the lock queue before the transition and is at the end of the lock queue after the

transition, thenextfield of the processor is not modified for the while. Therefore,

thenextfield of the processor isNULL immediately after the transition.

From the above discussions, if the conditions are satisfied before one of the

transitions, they are preserved after the transition.

141

� 10R!1R, 15R!16R (L is changed.)

Before these transitions, the lock queue includes only one processor (LH in case

of 10R!1R, and the processor designated by thesuccvariable of LH in case of

15R!16R) because the first processor of the lock queue is designated byL. After

the transitions, the lock queue becomes empty. Therefore, the transitions remove

the unique processor (witch is the first processor obviously) in the lock queue from

the queue, and the conditions are preserved with the transitions.

� 4L!4R, 5L!5R, 6L!6R (LH is changed.)

These transitions occur only when another processor makes the transition from

12R to 1R. Before the transitions, the first processor of the lock queue is the one

designated by thesuccvariable of the latter processor, which is the former processor

obviously. After the transitions, the former processor is the first one. Consequently,

the lock queue is not modified with these transitions and the conditions are preserved.

� 12R!1R (LH is changed.)

A processor making this transition causes a transition from 4L/5L/6L to 4R/5R/6R

on another processor. This is the same situation with the above.

� 9R!12R, 11R!12R (LH makes a transition beyond the boundaries.)

The first processor of the lock queue is changed from LH to the one designated

by thesuccvariable of LH with these transitions. Thesuccvariable of LH equals

to I.next and designates the successor of LH in the lock queue. Therefore, the

transitions remove LH, which is the first processor of the lock queue, from the

queue, and the conditions are preserved.

� 18R!19R (LH makes a transition beyond the boundaries.)

The first processor of the lock queue is changed from the one designated by the

succvariable of LH (P0) to the one designated by thesn variable (P1) with this

transition. Thesnvariable of LH equals tosucc!nextand designates the successor

of P0 in the lock queue. Therefore, the transitions removeP0, which is the first

processor of the lock queue, from the queue, and the conditions are preserved.

� 19R!12R (LH makes a transition beyond the boundaries.)

The first processor of the lock queue is changed from the one designated by the

sn variable of LH to the one designated by thesuccvariable with this transition

from the definition. Because thesuccvariable after the transition equals to thesn

142

variable before the transition, the first processor is not changed in actual and the

conditions are preserved.

� 4L!5L, 4R!5R (Thenextfield is modified.)

The processor making one of these transitions makes thenextfield of the processor

designated by itspredvariable designate itself. Therefore, thenextfield designates

the successor in the lock queue, and Condition (2) is shown to be preserved with the

transitions. Since the lock queue is not modified with the transitions, Condition (1)

is preserved obviously. 2

Lemma 5 Following conditions hold under Assumption 3.

(1) When LH is in 14R, 15R, 17R, or 18R, the processor designated by thesuccvariable

of LH is in C state. Conversely, a processor in C state is designated by thesucc

variable of another processor in 14R, 15R, 17R, or 18R.

(2) When a processor is in 16R, the processor designated by itssuccvariable is in C’

state. Conversely, a processor in C’ state is designated by thesuccvariable of

another processor in 16R.

Proof: First, we prove that the following condition is satisfied under Assumption 3.

(0) When a processor is in 14R, 15R, 16R, 17R, or 18R (we call the processor is inSC

in the following), thelockedfield of the processor designated by itssuccvariable

is Canceled. Conversely, a processor whoselockedfield is Canceledis designated

by thesuccvariable of another processor in SC.

Since this condition obviously holds in the initial state, it is proved to be satisfied

by showing that every transition preserves the condition. We may safely check only the

transitions with which a processor enters/leaves SC and the ones with which thelocked

field of a processor is changed from/toCanceledto/from another.

� 13R!14R

With this transition, LH enters SC andCanceledis assigned to thelockedfield of

the processor designated by thesuccvariable of LH. Therefore, if Condition (0) is

satisfied before the transition, it is also satisfied after the transition.

� 18R!19R

With this transition, LH leaves SC andReleasedis assigned to thelockedfield of

the processor designated by thesuccvariable of LH. Therefore, Condition (0) is

preserved.

143

� 16R!1R

From the proof of Lemma 4, the processor designated by thesuccvariable (P0) is

not included in the lock queue immediately after the transition from 15R to 16R.

Since the Condition (0) is assumed to be satisfied before the transition 16R!1R, the

lockedfield of P0 is kept to beCanceled. Because a new processor is added to the

lock queue only with the transition from 2R to 3R/9R (from the proof of Lemma 4),

the processorP0, whoselockedfield is kept to beCanceled, is not inserted to the

lock queue. Consequently, the processor designated by thesuccvariable of another

processor in 16R is proved to be not included in the lock queue. Since the processor

designated by thesuccvariable of another processor in 14R, 15R, 17R, or 18R

is the first one in the lock queue by definition, it is never designated by thesucc

variable of any processor in 16R.

Suppose the case that more than two processors are in 16R state. Because these

processors have made the transition from 15R and because theirsuccvariables are

not modified for the while, thesuccvariables of each two of them never designate

the same processor.

From the above discussions, the transition 16R!1R does not change the states

of the processors designated by thesuccvariables of other processors in SC and

preserves Condition (0).

SinceL does not becomeNULL while LH exists from Lemma 1,L is kept non-NULL

while a processor is in 14R, 15R, 17R, or 18R. Therefore, the processor designated by the

succvariable of LH is in C state for the while. As a processor assignsNULL to L with

the transition from 15R to 16R, the processor designated by itssuccvariable becomes C’

state after the transition. Condition (1) and (2) follow from the above discussion.2

Lemma 6 Following conditions hold under Assumption 3.

(1) The transition 13R!14R (and only the transition) causes the transition 7P!7C

(not 7P!7C’) on the processor designated by thesuccvariable.

(2) The transition 15R!16R (and only the transition) causes the transition 7C!7C’ or

8C!8C’ on the processor designated by thesuccvariable.

(3) The transition 16R!1R (and only the transition) causes the transition 7C’!7R

or 8C’!8R (not 7C!7R or 8C!8R) on the processor designated by thesucc

variable.

144

(4) The transition 18R!19R causes (and only the transition) the transition 7C!7R

or 8C!8R (not 7C’!7R or 8C’!8R) on the processor designated by thesucc

variable.

Proof: Because the processor designated by thesuccvariable of another processor in

14R is in C state from Lemma 6, the transition 13R!14R causes the transition 7P!7C

(not 7P!7C’) on the former processor. Since there are no other transitions which change

thelockedfield fromPreemptedto Canceled, Condition (1) is shown to be satisfied.

They are also shown from Lemma 6 that the transition 16R!1R causes a transition

from C’ state to R state on another processor and that 18R!19R causes a transition from

C state to R state. Since there are no other transitions which change thelockedfield from

Canceledto Released, Condition (3) and (4) are shown to be satisfied.

Similarly, the transition 15R!16R causes a transition from C state to C’ state on the

processor designated by thesuccvariable from Lemma 6.

There are two transitions 15R!16R and 10R!1R which makeL to NULL. As a

processor making the transition from 10R to 1R is LH before the transition, there are

no other processor in 14R, 15R, 17R, or 18R. Therefore, if there are some processors

whoselocked fields areCanceled, they are proved to be in C’ state from Lemma 6.

Consequently, the transition 10R!1R does not cause a transition from C state to C’ state

on another processor, and Condition (2) is proved to be satisfied. 2

Lemma 7 The state of the processor linked to the lock queue is included in LQ in

Figure 72. The processor whose state is included in LQ is linked to the lock queue.

Proof: In the initial state, the condition is satisfied becauseL is initialized toNULL and

the state of each processor is 1R. Then, the lemma can be proved by showing that for

each transition, if the condition is satisfied before the transition, it is preserved with the

transition. We may safely check only the transitions with which a processor enters/leaves

LQ or the lock queue is modified.

� 2R!3R, 2R!9R (The processor enters LQ and the lock queue is modified.)

The processor making one of these transitions is added at the end of the lock queue

(from the proof of Lemma 4). Therefore, the condition is preserved.

� 10R!1R (The processor leaves LQ and the lock queue is modified.)

This transition occurs when only the processor making the transition is included in

the lock queue, and the lock queue becomes empty after the transition. Therefore,

the condition is preserved.

145

� 9R!12R, 11R!12R (The processor leaves LQ and the lock queue is modified.)

The processor making one of these transitions is removed from the lock queue

(from the proof of Lemma 4). Therefore, the condition is preserved.

� 7C!7C’, 8C!8C’ (The processor leaves LQ.)

These transitions occur only when LH makes the transition from 15R to 16R

from Lemma 6 (2). Since the processor making one of these transitions, which

is designated by thesuccvariable of LH, is removed from the lock queue, the

condition is satisfied after the transition.

� 15R!16R (The lock queue is modified.)

This transition causes the transition from 7C/8C to 7C’/8C’ on the processor

designated by thesuccvariable from Lemma 6 (2). This is the same situation with

the above.

� 7C!7R, 8C!8R (The processor leaves LQ.)

These transitions occur only when LH makes the transition from 18R to 19R

from Lemma 6 (4). Since the processor making one of these transitions, which

is designated by thesuccvariable of LH, is removed from the lock queue, the

condition is satisfied after the transitions.

� 18R!19R (The lock queue is modified.)

This transition causes the transition from 7C/8C to 7R/8R on the processor

designated by thesuccvariable from Lemma 6 (4). This is the same situation with

the above.

� 7P!7C’ (The processor leaves LQ.)

The only transition which changes the state of another processor from P state to

C/C’ state is 13R!14R. Because it is shown that the transition 13R!14R changes

the state of another processor from P state to C state from Lemma 6 (1), the

transition from 7P to 7C’ never occurs.

None of the transitions 4L!4R, 5L!5R, 6L!6R, 12R!1R, and 19R!12R actually

changes the lock queue from the proof of Lemma 4. 2

From this lemma, it is proved that a processor is not included in the lock queue when

it returns to 1R, and Assumption 3 can be proved by induction.

To prove deadlock freedom of the algorithm, we assume that each processor makes

the next transition in finite duration of time. First, we show that thenextfield is written

non-NULL value in finite duration of time.

146

Lemma 8 If a processor included in the lock queue is not the last one in the queue, its

nextfield becomes non-NULL in finite duration of time under the assumption that each

processor makes the next transition in finite duration of time.

Proof: Suppose the case that a processor makes the transition from 2R to 3R and inserts

itself at the end of the lock queue. From the assumption, the processor makes thenext

field of its predecessor designate itself, makes the field non-NULL in other words, within

finite duration of time after the transition. From the other point of view, thenext field

of the processor which is included in the lock queue but not the last one in the queue

becomes non-NULL in finite duration of time. 2

The deadlock freedom of the algorithm can be derived as the following theorems.

Theorem 9 (Deadlock Freedom (1))When no processor holds a lock and some proces-

sors try to acquire the lock, one of them can acquire the lock within finite duration of

time.

Proof: When no processor holds the lock (or is in ER),L is NULL from Lemma 1.

Therefore, the lock queue is empty by definition and there is no processor whose state is

in LQ from Lemma 7. Then, all of the processors trying to acquire the lock are in 7C’,

8C’, 7R, 8R, 1R, or 2R.

A processor in 8C’ moves to 8R in finite duration of time because the state 8C’

is a result of the transition 15R!16R on another processor and because the transition

16R!1R occurs in finite duration of time on the processor. Similarly, a processor in 7C’

moves to 7R or 8C’ in finite duration of time.

Therefore, every processor trying to acquire the lock reaches 2R in finite duration of

time. The first processor trying the transition from 2R moves to 9R sinceL remains to be

NULL and succeeds in acquiring the lock. 2

Theorem 10 (Deadlock Freedom (2))A processor trying to release a lock finishes to

release the lock within finite duration of time, if the number of interrupt requests raised

on other processors during the release operation is bounded.

Proof: There are four loops in the lock releasing routine: 11R!11R, 17R!17R,

12R!13R!12R, and 12R! � � � !19R!12R. This theorem can be proved by showing

that a processor trying to release a lock finishes these loops in finite duration of time under

the condition that the number that other processors make the transition from 6L to 7P is

bounded.

1. 11R!11R, 17R!17R

A processor finishes these loops in finite duration of time from Lemma 8.

147

2. 12R!13R!12R

When LH is in 12R or 13R,succ!lockednever becomesReleasedor Canceled. It

never becomesReleasedbecause the processor designated bysuccis included in

the lock queue and is not LH. It never becomesCanceledfrom Lemma 5.

Consequently, the transition 13R!12R occurs only whensucc!lockedis modified

from Preemptedto Locked while LH is in 13R. From the assumption that the

number of interrupt requests raised on other processors during the release operation

is bounded, the number of the transition from 6L to 7P, which is the only transition

changing thelockedfield to Preempted, is bounded, and the execution of this loop

is finished in finite duration of time.

3. 12R! � � � !19R!12R

When LH makes the transition from 18R to 19R, the first processor of the lock

queue is removed from the queue. Therefore, the length of the lock queue becomes

shorter as the processor executes this loop. From the assumption that the number

of interrupt requests raised on other processors during the release operation is

bounded, the maximum number of processors which are included in the lock queue

when release operation is started and the processors which are inserted to the queue

afterwards is bounded. Therefore, the maximum execution number of this loop is

bounded. 2

Finally, we show the equivalence of the algorithm in Figure 26 and 27 and the one

in Figure 70 and 71. When a processor is in 16R or 18R,succ!locked is fixed to

be Canceledfrom Lemma 5. Therefore, the compareandswap operations in the lines

marked with16jand18jin Figure 71 are equivalent to simple assignments.

A processor refers to thelocked field of another processor only when the latter

processor is designated by thenext field of LH or other processors in the lock queue.

In other words, thelocked field of a processor is referred to only when the processor

is included in the lock queue and is not LH, and after it makes thenext field of its

predecessor designate itself. In short, it is referred only when the processor is in5j, 6j,

7j, or 8j. Consequently, its initial value is never referred to.

148

