
Compact, Low-Cost, but Real-Time Distributed Computing
for Computer Augmented Environments

Hiroaki Takada and Ken Sakamura

Department of Information Science,
Faculty of Science, University of Tokyo

7-3-1, Hongo, Bunkyo-ku, Tokyo 113, Japan

Abstract

We have been conducting a research and development
project, called the TRON Project, for realizing the computer
augmented environments. The final goal of the project is
to realize highly functionally distributed systems (HFDS)
in which every kind of objects around our daily life are
augmented with embedded computers, be connected with
networks, and cooperate each other to provide better
living environments for human beings. One of the key
technologies towards HFDS is the realization methods
of compact and low-cost distributed computing systems
with dependability and real-time property. In this paper,
the overview of the TRON Project are introduced and
various research and development activities for realizing
HFDS, especially the subprojects on a standard real-
time kernel specification for small-scale embedded systems
called ITRON and on a low-cost real-time LAN called
�ITRON bus, are described. We also describe the future
directions of the project centered on the TRON-concept
Computer Augmented Building, which is a pilot realization
of HFDS and being planned to be built.

1 Introduction

Recent advances in microprocessor technologies have
made every kind of electric and electronic equipment
around our daily life embedded with microcomputers and
offer higher functions to the users. In the next decade,
most kind of equipment, appliances, tools, and other ob-
jects making up our living environments will be augmented
with embedded computers, be connected with networks,
and cooperate each other to provide better living envi-
ronments for human beings (Figure 1). In other words,
these objects and networks constitute a large distributed
computing system and support human activities on many
aspects. We call this kind of system as a highly functionally
distributed system (HFDS) and have been conducting a re-
search and development project, called the TRON1 Project,
for its realization [1].

1TRON is an abbreviation of “The Real-Time Operating System
Nucleus.”

Figure 1: Computerized Living Environment

A typical example of “computing everywhere” envi-
ronment is the TRON-concept Intelligent House, which
was built experimentally in 1989 (Figure 2). The purpose
was to create a testbed for future intensively computerized
living spaces. The house with 330 m2 of floor space was
equipped with around 1000 computers, sensors, and actu-
ators, which were loosely connected to form a distributed
computing system.

This kind of “computing everywhere” environment is
often called as computer augmented environments or ubiq-
uitous computing, and is actively studied recently [2]. Most
of these studies, however, stick to the notion that comput-
ers are information media providing necessary information
to human users. We consider that computers should be
used to provide humans with better living environments,
including the provision of information.

In HFDS environments, because the number of network
nodes is hundreds or thousands times larger than that
of human users, the cost for a node is one of the most
important issues. Dependability and real-time property is
also an important issue, because HFDS is part of our real-
life environments. Consequently, the realization methods
of compact and low-cost distributed computing systems
with dependability and real-time property is among the
most important technologies to the realization of HFDS.



Figure 2: The TRON-concept Intelligent House

2 HFDS and the TRON Project
2.1 Issues towards HFDS

We have determined a number of technological issues
that need to be resolved to realize HFDS, and is conducting
research and development on these issues. Major features
of HFDS causing the issues are as follows [1, 3].

� Huge number of nodes
An HFDS differs from conventional networks in the
number of nodes connected to it, which is hundreds or
thousands times larger than the number of personal com-
puters and workstations. About 1000 network nodes
were used in the TRON-concept Intelligent House.
Building will have many thousands or even millions
of nodes, while cities will have billions.

� Heterogeneity
An HFDS is characterized by the great variety of nodes
connected to it. Each node varies in scale and purpose,
from simple sensors gathering environmental data to
supercomputers acting as computing servers.

� Open-ended network
It must be necessary to add new nodes, remove existing
ones, or move them to different locations readily. It
should be also possible to install a node or remove it
without turning off the power. Management method of
network IDs is among the key issues.

� Dependability
Though high dependability of individual nods is desir-
able, providing fault tolerance at the individual node
level is difficult from cost concerns. A more realis-
tic approach is to realize dependability of system as a
whole, by making it possible to recognize a node failure
and to compensate for it.

� Real-time response
As can be seen from the full name of the project,
we consider that guaranteeing real-time response will
be required in all computer applications in the future.
This requirement applies especially to an HFDS, which
handles information used for the control of equipment
in real-life environments.

� Usability
Because network nodes are part of our living envi-
ronments, they should be equipped with simple user
interface that anyone can use.

� Extensibility
The node hardware and software naturally differ de-
pending on when they are developed. Nodes with new
functions must be able to work in cooperation with older
ones. It is also necessary that version management and
updating are performed automatically.

2.2 Overview of the TRON Project
As a comprehensive approach to solving the problems

described above, we concluded that it would be necessary
to build the basic parts for HFDS in addition to making
up actual application environments of HFDS, such as the
TRON-concept Intelligent House and the TRON-concept
Computer Augmented Building, which will be described
in detail in Section 6. The results of the application
subprojects are fed back to the other subprojects building
the basic parts.

Subprojects we have been conducting to develop the
basic parts for HFDS are as follows.

CHIP
A series of general-purpose microprocessors are neces-

sary to realize HFDS. The TRON-specification CHIP is an
original microprocessor architecture designed to support
the components of HFDS. Six manufactures have devel-
oped about 10 microprocessors based on the specification.

The CHIP subproject is now at the beginning of the sec-
ond stage, in which the hardware architecture and software
on it are codesigned in order to achieve higher cost-
performance. Research is now being conducted into auto-
matic generation of ASIC designs, incorporating peripheral
functions around a core fine-tuned for each application.

ITRON (Industrial TRON)
ITRON is a series of specifications for real-time operat-

ing systems for use in embedded computers. The ITRON
subproject is described in detail in Section 4.

BTRON (Business TRON)
BTRON is an architecture for personal computers or

workstations supporting smooth interaction between hu-
mans and HFDS. The important features of BTRON are its
uniform human-machine interface (HMI) and data compat-
ibility using a data exchange format called TRON Appli-
cation Databus (TAD). It also supports a hypertext-based
file system called the real object/virtual object model.

Three operating system specifications called BTRON1,
BTRON2, and BTRON3 have been developed. A
BTRON1-specification OS running on personal comput-
ers was released in 1991, and a BTRON3-specification
OS running on a workstation using a TRON-specification
CHIP has been implemented in 1994.

CTRON (Central/Communication TRON)
CTRON is a set of operating system interfaces for com-

mon application to switching, communication processing,



and information processing nodes in HFDS. The CTRON
architecture features a two-layered design, consisting of the
basic OS interfaces including kernel and I/O control, and
the extended OS interfaces including data storage control,
execution control, and communication control.

The initial edition of the CTRON specifications was
published in 1988 and the revised edition in 1993. More
than 20 products have been developed and certified as com-
pliant with the specifications. Now, they are widely used
for switching systems, PBXs, and other communication
systems.

MTRON (Macro TRON)
MTRON, a key issue for realizing HFDS, is an archi-

tecture for large computer networks included in an HFDS.
Research on MTRON has become active recently, because
the components of MTRON have become available as the
results of other subprojects. We will describe the basic
architecture of MTRON in Section 3.

TAD (TRON Application Databus)
TAD is a data exchange format to provide data com-

patibility among the computers designed according to the
TRON architecture. TAD is described in Section 3.3.

HMI (Human-Machine Interface)
One of the most important issues for realizing “comput-

ing everywhere” environments is human-machine interface
(HMI) by which people can communicate with computers
easily and effectively. In particular, it is essential to re-
alize an environment in which all equipment around us is
operated in a standardized way. Another requirement is
that HMI standards be usable anywhere, by anyone, for
any purpose, because making use of computer-embedded
equipment is essential in “computing everywhere” envi-
ronments.

To this end, the TRON HMI design guidelines have
been published as the “TRON Human-Machine Interface
Specifications”, which defines a set of standard HMI guide-
lines for both GUI (Graphical User Interface), which is a
virtual HMI on an electronic display, and SUI (Solid User
Interface), which is an HMI making use of real buttons,
dials, and other parts on an operating panel [4].

Importance is also laid on the adaptation of HMI for
each user, We have conducting researches on multi-lingual
processing and Enableware, which is an HMI guidelines
for people with physical disabilities.

2.3 Open Architecture
A fundamental policy of the TRON Project is that the

results of the project, in the form of published specifications
and guidelines, are made available to the public. Anyone
throughout the world is free to develop and market products
implementing the specifications.

We regard interface specifications like those presented
in the previous section as a technological infrastructure
for future computerized society. They should not be mo-
nopolized by one or a few corporations or governments.

Actually, ITRON, BTRON, CTRON, and CHIP specifi-
cations presented in the previous section are implemented
and marketed by multiple vendors.

Another benefit of open architecture is the possibility
of what we call multi-layered design diversity (MLDD),
in which the design diversity approach is adopted to each
system layer to archive very high dependability [5]. The
fact that multiple corporations have implemented different
products based on the same specification makes MLDD
realistic.

3 Basic Architecture of MTRON
3.1 Two-level Network Architecture

In HFDS environments, some of the nodes are very
small and have only very limited processing and memory
resources. Because a general-purpose network protocol
suite (such as TCP/IP and OSI) provides abundant func-
tions necessary for various applications, relatively large
computing resources are usually necessary to handle the
protocols. It is often difficult to install them to small-scale
nodes in HFDS, and then the approach that an HFDS is
constructed with only one protocol suite is not realistic.

Consequently, we have adopted the two-level network
architecture as the basic architecture of MTRON. In this
architecture, a network is divided into the backbone sub-
network in which a general-purpose protocol suite (called
the exterior protocol, below) is used and branch subnet-
works in which protocols with limited functions (called the
interior protocols) are used. A gateway node implements
both the exterior protocol and an interior protocol, and ex-
changes information between them. Note that the usage of
the protocols do not correspond with the physical topology
of the network.

A widely-used protocol suite will be adopted as the ex-
terior protocol. Though it is possible to use an appropriate
interior protocol for each subnetwork, a standard proto-
col for HFDS must be fixed to realize an open network
environment.

3.2 The Standard Interior Protocol
The standard interior protocol for HFDS environments,

now under investigation, is assumed to be used in a limited
area, for example, within a room or a floor of a building.
The following functions will be omitted or restricted in the
standard interior protocol.

� Security-related functions
In order to support security-related functions, a concept
of user (or access subject), a concept of access right,
and an encryption mechanism are necessary to be in-
corporated in the protocol. Because they (especially an
encryption mechanism) usually require large comput-
ing resources, it is difficult that every node in HFDS
environments supports security-related functions.
Instead, the security of the subnetwork using the interior
protocol should be maintained with physical security. If
someone breaks in a room, for example, and taps the



network line, it is unavoidable that the security of the
network is also broken.

� Some protocol layers
A much simpler layered model than the OSI refer-
ence model is adopted in the standard interior protocol
suite. Specifically, four layered architecture consisting
of physical layer, MAC layer, LLC layer, and appli-
cation layer is a candidate [6]. The approach is also
investigated that a network layer protocol with limited
functions is adopted.

3.3 TAD and Programmable Interface
We specify a uniform data format, called TAD (TRON

Application Databus), for various information passed be-
tween nodes in HFDS environments. TAD is intended
as a universal data exchange format, handling real-time
information like voice and video, and various physical
information for control (such as length, volume, location,
temperature, pressure, luminosity, electric power, and so
on), as well as conventional text and ordinary graphics.

However, in a large-scale and open-ended network,
imposing the same fixed data format will stifle the in-
corporation of future advances in technologies. On the
other hand, if version updates are allowed, inconsistency
in versions throughout the network will become a serious
problem. If strict adherence to upward compatibility is
made mandatory, many systems will become overweighted
with non-standard and obsolete features.

The programmable interface concept approaches this
dilemma in the following way [7]. Each interface between
systems are made extensible with programs. When com-
munication takes place between systems, one of the systems
sends the interface specifications represented in program
codes to the others if necessary. For this purpose, the
TULS (TRON Universal Language System) specifications
have been devised.

4 A Standard Real-Time Kernel Specifica-
tion for Embedded Systems

In HFDS environments, a large number of small-scale
embedded systems are developed and utilized. We have
been investigating on standard real-time OS specifications
for embedded systems since about ten years ago, and have
published a series of ITRON kernel specifications as the
result [8]. The reason for centering these studies on kernel
specifications is that only the kernel functions are used in
most deeply embedded systems.

In developing small-scale embedded systems, which
tend to be manufactured in great quantities and be priced
cheap, lowering the cost of the final product is usually
considered more important than reducing development
costs.

4.1 Requirements on a Standard Real-Time OS
for Embedded Systems

In the field of small-scale embedded systems, it is
common practice to use a single-chip microcontroller unit

(MCU), integrating a processor core with ROM, RAM,
general I/O devices, and application-specific peripheral
modules. A particular problem in developing software for
an MCU is the limited hardware resources. Memory size
limits are especially severe, with a typical MCU having
around 32 KB of ROM and 1 KB of RAM. Even larger-
scale chips have no more than 128 KB of ROM and 4 KB
of RAM.

Another point worth noting is that the need for high cost
performance in an MCU-based system means the design is
frequently optimized to the application, resulting in a large
number of different processor cores.

Even in this field of small-scale embedded systems,
raising software productivity is an important issue. Use
of C or other high-level programming languages is one
solution; another approach being adopted with increasing
frequency is the use of a real-time OS.

Requirements on a standard real-time OS for embedded
systems are summarized as follows.

� Being able to derive maximum performance from hard-
ware
Given the severe hardware resource limitations of a
typical MCU-based system, the ability to derive max-
imum performance from the available hardware is a
prerequisite for real-time OS adoption.
In the case of small-scale embedded systems, maximiz-
ing hardware performance is considered more impor-
tant than full source code-level compatibility. This is
because porting to a different processor and its OS nor-
mally becomes necessary only when there are changes
also in the equipment being controlled, so there is hardly
ever a situation where an application program is ported
to another OS without modification.

� Helping to improve software productivity
Especially important is standardization from a training
standpoint, such as adopting consistent concepts and
terminology, and standardizing design methods.

� Being uniformly applicable to various processor scales
and types
The hardware used in an embedded system is normally
designed optimally for its application. The processor
scale, moreover, may vary widely from 8-bit MCUs to
32-bit processors depending on the kind of equipment
to be controlled.

4.2 Design Principles of the ITRON Specifica-
tions

The following design principles were established in
order to satisfy the requirements described above.

� Avoid excessive hardware virtualization
Too much hardware virtualization must be avoided in or-
der to derive the maximum performance from hardware
and achieve high real-time performance. Although
intended for implementing on a variety of different
processors, the basic policy is to design each implemen-
tation independently for each processor.



To this end, the ITRON specification is divided clearly
into aspects that are standard across all processors and
implementation-dependent aspects. Standardized items
include task scheduling rules, system call names and
functions, parameter names, sequence and meanings,
and error code names and meanings. On the other hand,
those aspects that need to be decided separately for each
implementation, based on runtime performance consid-
erations, are not precisely standardized. Examples are
parameter bit size, the method of invoking interrupt
handlers, and exception handlings.

� Allow for optimization to application
Optimizing to the application means modifying the ker-
nel specification and internal implementation algorithm
based on the requirements by a particular application. In
the case of embedded systems, the kernel object code is
generated for each application, making this optimization
especially effective.
Specifically, the specification was designed so as to
make the kernel functions independent of each other
to the extent possible, so that each application can use
just the functions it needs. In fact, most �ITRON-
specification kernels are provided in the form of li-
braries, and are designed so that only the necessary
modules are loaded when the kernel is linked to the
application. Also, each system call provides a single
function, making it easy to select out the necessary
functions for an application.

� Allow for optimization to hardware
Optimizing to hardware means modifying the kernel
specification and internal implementation method based
on the nature of the hardware and its performance, in
order to raise the performance of the system as a whole.

� Emphasize ease of software engineer training
As noted before, software compatibility and portability
tend to be considered as of relatively minor importance
with small-scale embedded systems. The significance of
standardizing kernel specifications relates more to ease
of training software engineers, and the improved com-
munication among software personnel resulting from
consistent terminology and concepts.

� Create a specification series and/or divide into levels
Specifications are developed in series to make them
applicable to a wide variety of hardware. Moreover,
each specification divides functions into different levels
based on their degree of necessity.

� Make available a full range of functions
Rather than limiting the number of primitives provided
by the kernel, the approach is taken of making available
a wide variety of primitives with different functions.
The idea is to enable implementors to raise the runtime
performance and improve ease of programming by using
primitives suitable to the particular application and
hardware.

A concept common to many of these design principles is
that of loose standardization. This means setting uniform

Consumer Applications

TVs, VCRs, audio components, air-conditioners, wash-
ing machines, microwave ovens, rice cookers, lighting

OA Applications

printers, copiers, image scanners, word processors,
optical filing systems

Communications

answer phones, ISDN telephones, cellular phones,
FAX, broadcasting equipment, wireless systems, an-
tenna controllers, satellite controllers

FA and Other Applications

PDAs, game gear, automobiles, vending machines,
electronic musical instruments, FA computers, indus-
trial robots

Table 1: Typical ITRON-specification Kernel Applications

standards only to the extent that performance will not
suffer, rather than trying to force all systems into one rigid
mold, and leaving room to decide matters dependent on the
processor or application.

4.3 Current Status of the ITRON Specifications
The first ITRON specification was released in 1987

as ITRON1. Thereafter studies were carried out on a
reduced-function specification called �ITRON (Ver. 2.0)
for smaller-scale 8-bit and 16-bit MCUs, and on the
ITRON2 specification for larger-scale systems with 32-
bit processors. Both of these were released in 1989.

Of these, the �ITRON specification offered very realis-
tic performance even on an MCU with only very limited
processing and memory resources, and has therefore been
implemented on many different MCUs. Its application has
even widened to various 16-bit MCUs as well as 32-bit
processors. Just counting the �ITRON-specification prod-
ucts that have been registered officially, there are around 30
implementations for more than 20 processors. In addition
to them, the �ITRON-specification kernel, with its small
size and relative ease of implementation, has been used in
numerous developments for in-house systems. There are
also several �ITRON-specification kernels that have been
made available as free software.

As the �ITRON-specification kernel has come to be ap-
plied to a wide range of fields, a clearer picture has emerged
as to the necessity of each function and the performance
demands. Also, as noted above, the �ITRON-specification
kernel has in some instances been implemented for 32-bit
processors, something we did not originally anticipate. It
was therefore decided to reexamine the existing ITRON
specifications, resulting in the release in 1993 of the third-
generation ITRON specification, called �ITRON3.0 [9].

It goes without saying that the reason for this large num-
ber of ITRON-specification kernel implementations is the
wide range of application fields and numerous application
examples. Table 1 lists some of the applications in which
ITRON-specification kernels are used.



4.4 Network Support and Current Issues
With low-cost MCUs becoming available, multiple

MCUs are increasingly being used to control one piece
of equipment. A major reason is to increase ease of
maintenance and reliability by configuring products of
component units. Specific examples include copiers, fax
machines, and automobiles.

In line with this trend, the �ITRON3.0 specifica-
tion incorporates additional functions, called connection
functions, that support distributed systems consisting of
ITRON-specification kernel-based nodes interconnected
on a network. With the connection functions, objects such
as tasks and semaphores on other nodes can be directly
manipulated using ordinary system calls.

The connection functions in the �ITRON3.0 specifica-
tion at this time are intended only for controlling one piece
of equipment or system, and it is necessary to decide the
network configuration statically at the time the system is
built. As the next step, it will be important to enable
interconnection among separately designed systems. It
will further be necessary to deal with dynamic changes in
network configuration. The specification at that stage is
called IMTRON and being studied within the framework
of MTRON.

5 A Low-Cost Control LAN Standard
Another key technology to make HFDS realistic is low-

cost control LAN with real-time property. In this section,
requirements on a control LAN standard for HFDS are
summarized, and the overview of the �ITRON bus, which
is a control LAN standard now under the research and
development stage, is described.

5.1 Requirements on a LAN Standard for HFDS
There are following requirements on a control LAN

standard for use in HFDS environments.

� Able to implement with low cost
Because lots of cheap nodes, such as home appliances,
sensors, and wall switches, are connected to the network
with this LAN standard, it is essential that a LAN node
can be implemented in compact and with low cost.

� Usable as a general-purpose control LAN
Specifically, we have established the following target
performance. The maximum transfer rate is 1 – 2 MBPS
and more than 500 packets should be able to transferred
in a second. The maximum length of a line is around
500 m and the maximum number of nodes on a line is
about 250 (the physical layer may have a lower limit).

� Having real-time property
Here, real-time property means that packets are trans-
ferred in the order of their priorities and that the time
until a node finishes sending a packet with the highest
priority is bounded, even when some other nodes try to
send packets with the same priority.

� Interoperable in open network environments

In the case of control LAN standards, the tuning ap-
proach is often adopted in which some communication
parameters are determined to be optimal for each ap-
plication. In case of HFDS environments, however,
because nodes developed independently by different
manufactures are interconnected with the LAN, one set
(or a few sets depending on the uses) of parameters must
be given.

� Supporting easy operations
End-users should be able to easily install a node to the
LAN or remove it without turning off the power. It
is also necessary that the operation of the LAN can be
continued when some of the nodes are turned on or off.

We have concluded that there is no existing LAN stan-
dard satisfying all of the above requirements and that the
development of a new standard for HFDS is necessary.
This new LAN standard is called �ITRON bus.

5.2 Overview of the �ITRON bus
From the cost and easy operation requirements, a simple

bus topology is desirable for the�ITRON bus. Considering
this and the requirement on real-time property, we have
decided to adopt the bitwise arbitration CSMA protocol in
its MAC layer. We have extended the protocol with the
following methods in order to solve the problems of the
original protocol [10].

Dual-rate Bitwise Arbitration CSMA Protocol
With the bitwise arbitration CSMA protocol, there ex-

ists a trade-off between the transfer rate and the maximum
length of a line, because contentions are resolved for each
bit. When the transfer rate is raised, the maximum length
becomes short, and vice versa. Among the existing stan-
dards adopting the protocol, the maximum length of a line
is very short (typically 50 m) with CAN (Controller Area
Network), while the transfer rate is quite slow (9.6 KBPS)
with the Homebus standard.

In order to meet both requirements at the same time,
�ITRON adopts the dual-rate protocol in which the trans-
fer rate for sending data packets is faster than that for
arbitration. Specifically, the former will be determined to
be 20 – 50 KBPS and the latter be 1.5 – 3 MBPS, resulting
that the maximum bandwidth is 1 – 2 MBPS. Because the
arbitration phase consists of 15 – 19 bits (1 bit for the
start bit, 4 – 8 bits for the priority, 1 bit for the priority
reservation bit, 8 bits for the node ID, and 1 bit for the
parity), arbitration takes 1 ms at most and can be executed
more than 1000 times within a second.

Priority Reservation Bit
Another fault of the original bitwise arbitration CSMA

protocol is that the time until a node finishes sending a
packet with the highest priority cannot be bounded, when
some other nodes try to send packets with the same priority.

In the �ITRON bus standard, this problem is solved
with the priority reservation bit which follows the priority
field in the arbitration phase. When a node begins to
send a data packet, the priority reservation bit is cleared



to “0” (we assume that “0” represents the lower priority).
When it detects that another node with a larger (or more
prioritized) node ID succeeds to send a data packet with
the same priority, the priority reservation bit is set to “1”.
With this simple method, the time until the node finishes
sending a packet with the highest priority is bounded, even
when some other nodes try to send packets with the same
priority.
Piggy Backing

In general, when the average length of data packets is
very short, the effective transfer rate tends to degrade. This
problem is noteworthy with the dual-rate protocol.

We have adopted piggy backing to remedy this problem.
When a node has multiple data packets to be sent, it sends
a frame which conveys as many packets as possible, once
it obtains the access right to the bus through arbitration.
Packets with different destination IDs and with different
priorities can be packed into a frame.

Although piggy backing is effective for improving the
effective transfer rate, its realization can raise the cost of
LAN controllers. Therefore, it is desirable that small-scale
nodes can omit the support for piggy backing. To archive
this, we have placed the restriction that a frame must not
include more than one packets with the same destination
ID. With this restriction, a small-scale node can assume
that at most one packet is necessary to be read within a
frame.

5.3 Implementation Approach
We plan to implement three types of LAN controllers

for the �ITRON bus and use the most suitable one for each
application.
Direct I/O Type

The direct I/O type of LAN controllers are used on
the nodes that can be realized without processors, such
as sensors and wall switches. The LAN controller chip
has a port to the LAN and a parallel I/O port that can be
controlled from other nodes through the LAN.

Some functions can be omitted from the direct I/O type
of LAN controllers. For example, the formats of the
packets that the controller can send or receive are fixed.
The priority of packets it sends can also be fixed to one
value. It is not necessary to send a piggy backed frame.
ASIC Library Type

MCUs are used for more complex nodes in HFDS
environments. The LAN controllers for the nodes should
be provided as an ASIC library which is to incorporate in
an MCU.

Some functions are also omitted from the ASIC library
type of LAN controllers. For example, the packet formats
that the controller may send or receive may have some
restrictions.
Controller Chip Type

The LAN controllers that have all the functions defined
in the �ITRON bus standard is developed and supplied as
an independent chip. Server machines will use this type of
LAN controllers.

Figure 3: The TRON-concept Computer Augmented
Building

6 TRON-concept Computer Augmented
Building

The TRON-concept Computer Augmented Building,
which is studied as one of the application subprojects of
the TRON Project, is an experimental realization of HFDS.
A pilot building is planned to be built in Tokyo and is
now in the final design stage (Figure 3). This section
presents the concepts and major functions of the building,
and describes the information infrastructure of it.

6.1 Concepts and Major Functions
The TRON-concept Computer Augmented Building is

being designed to provide better office environments for
the people working in it and to enhance their productivity,
through extensive uses of advanced computer technologies.
It also aims to save energy through minute control of
equipment in the building.

A few of the concepts and the major functions of the
building is as follows.

Super ID Card System
The super ID card system keeps track of people’s loca-

tion in the building at all times. The location information
is used for various applications, including adaptive air-
conditioning and security management. It is also used to
suggest improvements in the office layout.

Energy-Saving Building
Minute control of equipment can reduce energy con-

sumption in the building. For example, when no people is
in a room, the air-conditioners and lighting of the room are
automatically turned off. The building is also designed to
utilize natural environments: Fresh air outside the build-
ing and external light can be let in the building through
computer-controlled windows and blinds.

Inter-Media Building
The building provides facilities to access various infor-

mation from communication satellites and the Internet, to
convert it to desirable format, and to dispatch information
through these media.



broadcasting
server

. . .

. . .

floor
server

ATM
switch

gateway to
wireless LAN

multimedia
WS

branch control LANs

��
��
��
��

. . .

. . .

se
n

so
rs

a
ctu

a
tors

�
�

ATM
switch

ATM
switch

ATM
switch

. . .

multimedia
file server

b
a
ck

b
on

e 
n

et
w

or
k

public B-ISDN
network

internet
router Internet

multimedia
WS

cellular phone

PDA

super ID card

communication
satellites

Figure 4: Information Infrastructure of the TRON-concept
Computer Augmented Building (plan)

Advanced Facility Management
All equipment in the building are managed with the

facility management database. When the office layout
is changed, for example, the lighting control system and
the air-conditioning system can change their configuration
automatically reading the locations of facilities and the new
layout information from the database.

6.2 Building Information Infrastructure
In most of the conventional intelligent buildings, each

application subsystem (electric power management, air-
conditioning, security management, and so on) has its own
sensors, actuators, and communication lines connecting
them, resulting in redundant investment in equipment.
In the TRON-concept Computer Augmented Building,
sensors and communication networks are installed and
managed in a unified way as the information infrastructure
of the building.

The physical layer skeleton of the information infras-
tructure of the building is presented in Figure 4. The
ATM technology is used for the backbone network, and
uniformly supports various kind of communication in the
building, including communication for controlling equip-
ment, multimedia data transfer, ordinary file transfer, and
telephone applications.

A sensor connected to a branch control LAN multicasts
the collected data to the LAN. An actuator that needs
the information from the sensor reads the data from the
LAN and determines its behavior. A building information
server running on the floor server machines on the LAN
reads all data multicasted on the branch control LAN and
provides them to each application subsystem. TAD is used
as the data exchange format for all of the communications
described here.

Other important functions of the building information
infrastructure include the facility management and the
infrastructure management. The latter provides diagnostic
function for the system.

7 Conclusion
In this paper, the overview of the TRON Project is intro-

duced and its research and development activities towards
the realization of HFDS, especially issues on compact
and low-cost distributed computing with dependability and
real-time property, are described in detail.

Though there is much work remaining to be done to
realize an HFDS, we will continue the effort to solve
problems with eyes on the long-term consequences.

Acknowledgments
We wish to thank all the people participating in the

various activities of the TRON Project.

References
[1] K. Sakamura, “After a decade of TRON, what comes

next?,” in Proc. of the Eleventh TRON Project International
Symposium, pp. 2–16, IEEE CS Press, Dec. 1994.

[2] Special Issue: Computer Augmented Environments: Back
to the Real World, Comm. ACM, vol. 36, July 1993.

[3] K. Sakamura, “Infrastructures for an age of computerized
environments,” in Proc. of the Tenth TRON Project Sympo-
sium, pp. 2–14, IEEE CS Press, Dec. 1993.

[4] K. Sakamura, “Human interface with computers in everyday
life,” in Proc. of the Ninth TRON Project Symposium, pp. 2–
13, IEEE CS Press, 1992.

[5] A. Watanabe and K. Sakamura, “Design fault tolerance in
operating systems based on a standardization project,” in
Proc. Int’l Symposium on Fault-Tolerant Computing, June
1995. to appear.

[6] K. Arvind, K. Ramamritham, and J. A. Stankovic, “A
local area network architecture for communication in dis-
tributed real-time systems,” Real-TimeSystems, vol. 3, no. 2,
pp. 115–147, 1991.

[7] K. Sakamura, “Programmable interface design in HFDS,”
in TRON Project 1990, pp. 3–22, Springer-Verlag, 1990.

[8] H. Takada and K. Sakamura, “Advances in the ITRON
specifications – supporting multiprocessor and distributed
systems,” in Proc. of the Ninth TRON Project Symposium,
pp. 89–95, IEEE CS Press, 1992.

[9] K. Sakamura, ed.,�ITRON 3.0 Specification. Tokyo: TRON
Association, 1994. (can be obtained from http://tron.is.s.u-
tokyo.ac.jp/TRON/ITRON/SPEC/mitron3.txt.Z).

[10] Y. Mano, H. Mori, H. Takada, and K. Sakamura, “Dual-rate
bitwise arbitration CSMA protocol,” in preparation.


