
Priority Inheritance Spin Locks
for Multiprocessor Real-Time Systems

Cai-Dong Wang, Hiroaki Takada, and Ken Sakamura
Department of Information Science,

Faculty of Science, University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan

Abstract
When a real-time system is realized on a shared-memory

multiprocessor, priority-ordered spin locks are often re-
quired to reduce priority inversions. However, simple
priority-ordered spin locks can cause uncontrolled prior-
ity inversions when they are used for nested spin locks.
This paper points out the problem of uncontrolled priority
inversions in the context of spin locks and proposes pri-
ority inheritance spin locks, spin lock algorithms that are
enhanced with the priority inheritance scheme, to solve
the problem. Two algorithms of priority inheritance spin
locks are presented and their effectiveness is demonstrated
through performance measurements.

1 Introduction
Spin lock is one of the fundamental synchronization

primitives for exclusive access to shared resources on
shared-memory multiprocessors. It is usually imple-
mented with atomic read-modify-write operations on a
single word (or aligned contiguous words) of shared mem-
ory such as test and set, fetch and store (swap), or com-
pare and swap. Various spin lock algorithms using these
operations have been proposed [1, 2] and are widely used.

In real-time systems, each job has some timing con-
straints to be met. A scheduling algorithm or a run-time
scheduler translates the timing constraints into a priority,
and a run-time system assigns system resources to higher
priority jobs. It is often the case with a multiprocessor
real-time system that a spin lock is also required to pass the
lock in a priority order. In order to satisfy this requirement,
some priority-ordered spin lock algorithms, in which pro-
cessors acquire a lock in the order of their priorities, have
been proposed [3, 4, 5].

In general, shared resources that must be accessed
exclusively by a processor are divided into some lock
units in order to improve concurrency. When a processor
accesses some shared resources included in different lock
units, it must acquire multiple locks one by one. If priority-
ordered spin locks are simply used for this kind of nested
spin locks, uncontrolled priority inversions can occur. The
uncontrolled priority inversion problem in nested spin locks
is described in Section 2.

In order to solve this problem, this paper proposes pri-
ority inheritance spin locks, spin lock algorithms that are

acquire lock(�2);
// critical section.
release lock(�2);

routine (a)

acquire lock(�1);
acquire lock(�2);
// critical section.
release lock(�2);
release lock(�1);

routine (b)

Fig. 1: Example of nested spin locks

enhanced with the priority inheritance scheme. The pri-
ority inheritance scheme is a promising approach to solve
uncontrolled priority inversion problems and its applica-
tions to task scheduling algorithms are actively studied
[6, 7]. Priority inheritance spin locks are also required to
realize bounded and scalable nested spin locks for real-time
systems [8].

After describing the necessity of priority inheritance
spin locks in Section 2, we present two algorithms of pri-
ority inheritance spin locks in Section 3. In Section 4, their
effectiveness is evaluated through performance measure-
ments.

2 Priority Inversion and Priority Inheri-
tance

2.1 The Priority Inversion Problem in Nested
Spin Locks

Priority inversion in the context of spin locks is the
phenomenon that a higher priority processor is forced
to wait for the execution of a lower priority processor.
Because priority inversion cannot be avoided unless a
higher priority processor can steal the lock held by a lower
priority one, how to minimize its duration is a concern.
When the maximum duration of a priority inversion cannot
be determined, it is called uncontrolled.

When priority-ordered spin locks are used for nested
spin locks, uncontrolled priority inversions can occur. A
typical case is described in the following example.

Example 1 (uncontrolled priority inversion) We as-
sume that �1, �2, �3, and �4 are processors arranged
in descending order of priority with �1 having the highest
priority, and that �1 and �2 are locks. These processors
repeatedly execute one of the two routines presented in
Figure 1. Suppose the case that when �1 begins executing

1

routine (b) and tries to acquire the lock�1, �4 is holding �1
and is waiting for the other lock�2 in routine (b). If �2 and
�3 repeatedly execute routine (a) in this situation, �2 and
�3 can acquire �2 alternately and �4 must wait for �2 all
the while. Because �1 must also wait for the executions of
�2 and �3, this duration is a priority inversion. Obviously,
the maximum duration of this priority inversion cannot be
determined.

2.2 Spin Lock with Priority Inheritance
In order to solve this problem of uncontrolled priority

inversions, we introduce the priority inheritance scheme to
spin locks. The fundamental concept of priority inheritance
scheme is that when a processor makes some higher priority
processors wait, its priority should be raised to the level
of the highest priority processor among the waiting ones.
In other words, the processor inherits the priority of the
highest priority processor blocked by it. Also, priority
inheritance must be transitive. For example, suppose that
�1, �2, and �3 are three processors in descending order of
priority. When �2 makes �1 wait and �3 makes �2 wait,
�3 should inherit the priority of �1.

With the basic priority inheritance scheme, which is the
naive realization of the concept, the uncontrolled priority
inversion problem illustrated in Example 1 is solved as
follows. When �1 tries to acquire �1 and begins waiting
for it, �4, which is holding �1, inherits the priority of �1
because �1 is forced to wait by �4. Because the inherited
priority is higher than the priorities of �2 and �3, �4 can
acquire �2 with precedence over �2 and �3. As the result,
�1 need not wait for the alternate executions of routine (a)
by �2 and �3, and the maximum duration of the priority
inversion can be bounded.

When a processor releases one of the locks, its priority
is necessary to be re-calculated in general. Specifically, its
priority is changed to the highest one of its original priority
and the priorities of the processors that is waiting for the
locks held by the former one. When the processor releases
the last lock it is holding, its priority is recovered to its
original level.

This re-calculation can be omitted under the following
two assumptions. The first assumption is that the inherited
priority is used only for spin locks, and not used for task
schedulings. In more specific, the inherited priority is
used only when the processor tries to acquire another lock.
The second assumption is that the two-phase protocol is
adopted. In other words, once a processor releases a lock, it
cannot acquire another lock until it releases all the locks it is
holding. Under these two assumptions, once the priority of
a processor is raised, it need not be lowered until it releases
all the locks. These assumptions can be removed by
adding re-calculation routines to the algorithms proposed
in Section 3 at the cost of some runtime overhead.

The required behavior of priority inheritance spin locks
can be summarized as follows.

1. Processors acquire a lock in the order of their priorities1.

1A strict definition of priority-ordered spin lock is appeared in [3].

// global shared variables.
shared var L1, L2: Lock;

// local variables (allocated for each processor).
var I1, I2: Node;
var my prio: integer;
var my notify: boolean;
// my notify is necessary only in the second algorithm.

// initialize my prio.
acquire first lock(&L1, &I1);
acquire second lock(&L2, &I2, &L1);
// critical section.
release lock(&L2, &I2);
release lock(&L1, &I1);

Fig. 2: Usage of the algorithms

2. When a processor �1 begins waiting for a lock, and
when its priority is higher than that of the processor �2
that is holding the lock, the priority of �2 is raised to
that of �1.

3. When the priority of a processor �1 is raised while
waiting for a lock, and when its new priority is higher
than that of the processor �2 that is holding the lock,
the priority of �2 is raised to the new priority of �1.

3 Priority Inheritance Spin Lock Algorithms
In this section, we present two algorithms of pri-

ority inheritance spin locks, which are based on the
priority-ordered queueing spin lock algorithm proposed
by Markatos [3]. With the Markatos’ algorithm, proces-
sors trying to acquire a lock are linked to the waiting
queue in a FIFO order2. In releasing the lock, a processor
searches the highest priority processor in the waiting queue
and passes the lock to it.

The first algorithm is a straightforward extension of the
Markatos’ lock. A new variable that indicates the highest
priority of the processors that is waiting for the lock is
prepared for each lock. The processor holding the lock
polls the variable while it is waiting for another lock. When
the processor detects that the highest priority is raised, it
inherits the priority. Because any processor can poll
this highest priority variable for each lock, pollings on the
variable are remote memory accesses and severely increase
the interconnection network traffic with a multiprocessor
system without coherent cache. The second algorithm is
to avoid this non-local spin and is expected to have higher
performance without coherent cache.

In order to avoid unnecessary complexity, this paper
presents the pseudo codes of the algorithms when a pro-
cessor acquires at most two locks at the same time, in
other words, when the nesting level of locks is less than
or equal to two. With this simplification, we prepares two
lock acquisition routines: acquire first lock for acquiring
the outer lock and acquire second lock for acquiring the

2Though the original Markatos’ algorithm adopts a double-linked
queue structure, a single-linked queue structure is sufficient to implement
the algorithm. Therefore, we enhance the simplified version adopting
single-linked queue with the priority inheritance scheme.

type Node = record
next: pointer to Node;
locked: (Released, Locked);
prio: integer

end;

type Lock = record
last: pointer to Node;
maxprio: integer;
notifyp: pointer to boolean

end;
// notifyp is necessary only in the second algorithm.
// last and notifyp fields should be initialized to NULL.
// maxprio field should be initialized to MIN PRIO.

type NodePtr = pointer to Node;
type LockPtr = pointer to Lock;

Fig. 3: Data structures

inner lock. A typical usage of the routines is illustrated in
Figure 2. The third argument of acquire second lock is the
pointer to the lock that the processor is holding.

In Figure 2, the keyword shared indicates that only
one instance of the variable is allocated in the system
and shared by all processors. The other local variables
are allocated for each processor. With a multiprocessor
without coherent cache, the local variables should be placed
on the processor’s locally accessible shared memory. The
my prio variable is to store the current priority of the
processor, and must be initialized before the processor tries
to acquire the outermost lock.

3.1 The First Algorithm
Figure 3 presents the common data structures for both

algorithms (one of the fields is necessary only in the second
algorithm). The Lock record should be prepared for each
lock in the system. Its maxprio field is the highest priority
variable for the lock. When the lock is empty (in other
words, no processor holds the lock), the last field of its
Lock record is NULL and its maxprio field is MIN PRIO,
which designates the minimum priority value. A Node
record is necessary for each nested lock for each processor.

Figure 8 and Figure 9 present the pseudo codes of the first
algorithm. In these figures, we assume that a larger value
represents a higher priority. The fetch and store operation
reads the memory addressed by the first parameter, returns
the contents of the memory as its value, and atomically
writes the second parameter to the memory. The CAS
operation, the abbreviation of compare and swap, first
reads the memory pointed to by the first parameter and
compares its contents with the second parameter. If they
are equal, the function writes the third parameter to the
memory atomically and returns true. Otherwise, it returns
false.

Compared to the Markatos’ algorithm, two invocations
of the raise priority procedure, which is to update the
maxprio field of lock when it is lower than the newprio
parameter, are added to the acquire first lock procedure
and the acquire second lock procedure in Figure 8. The
first invocation (marked with “�1”) is to raise maxprio for

priority inheritance, when the processor begins waiting for
the lock. The second one (marked with “�2”) is to set
maxprio, when the processor succeeds to acquire the lock
without waiting. In the acquire second lock procedure, the
processor must check the maxprio field of lock1, which
is the lock being held by the processor, while waiting for
lock. When maxprio becomes higher than the priority
of the processor (the if statement marked with “�3”), it
inherits maxprio of lock1 and updates maxprio of lock for
transitive priority inheritance.

The only difference of the release lock procedure in
Figure 9 with that of the Markatos’ algorithm is the neces-
sity of updating the maxprio field (two lines marked with
“�4” and “�5”). Assigning MIN PRIO to the maxprio field
at first is necessary to avoid some racing conditions.

This algorithm can be easily generalized to the case
that a processor acquires more than two locks at the same
time with the following method. The list of locks held
by a processor should be maintained using an array or a
linked list. In the generalized version of the acquire lock
procedure, the maxprio fields of all the locks in the list
should be checked while waiting for another lock. If some
of them are higher than the priority of the processor, it
inherits the highest priority among them.

3.2 Avoiding Non-Local Spins
While a processor is waiting for a lock in the ac-

quire second lock procedure of the first algorithm, the
maxprio field of the holding lock is accessed repeatedly
(marked with “�3”). This accesses cause a heavy traffic on
the interconnection network without coherent cache.

With the second algorithm presented in Figure 10 and
Figure 11, this problem is solved by introducing a flag to
notify that the maxprio field is modified. This notification
flag (the my notify variable in Figure 2) is prepared for
each processor on its locally accessible shared memory.
A processor waiting for a lock in the acquire second lock
procedure in Figure 10 reads the maxprio field only when
the notification flag of the processor is set (the if statement
marked with “�6”). Thus the non-local spin can be avoided.
It also checks the maxprio field when it begins waiting for
a lock (by assigning TRUE to my notify). Introducing
the notification flag is also advantageous when a processor
acquires more than two locks at the same time, because
only one memory location (i.e. the notification flag) is
necessary to be checked in the waiting loop. Maintaining
the list of locks held by a processor is still necessary in this
case.

Also, the raise priority notify procedure is used instead
of raise priority (three lines marked with “�7”) in Fig-
ure 10. After updating the maxprio field of lock, the
raise priority notify procedure sets the notification flag of
the processor holding the lock. In order to locate the noti-
fication flag of the lock holder, a new field notifyp which
points to the notification flag is introduced in the Lock
record. The notifyp field of a lock is set when a processor
succeeds to acquire the lock (two lines marked with “�8”).
The field is also necessary to be cleared to NULL at the top
of the release lock procedure in Figure 11 (marked with

Processor 8

GMICRO
/200

Local
Memory

GMICRO
/200

Local
Memory

GMICRO
/200

Local
Memory

GMICRO
/200

Local
Memory

GMICRO
/200

Local
Memory

GMICRO
/200

Local
Memory

GMICRO
/200

Local
Memory

GMICRO
/200

Local
Memory

VMEbus

Master Processor

GMICRO
/200

Local
Memory

Processor 1

Fig. 4: Evaluation environment

“�9”).
There is a slight chance that the notification flag of a

wrong processor is set. Specifically, suppose the case that
the processor holding a lock passes the lock to another one
and its notifyp field is changed, after yet another processor
reads the notifyp field of the lock in the raise priority notify
procedure and before it writes TRUE on �notifyp. In this
case, the notification flag of the processor that has already
passed the lock to another is set. Although this difficulty
can increase the interconnection network traffic a little, it
does not cause wrong behavior.

4 Performance Evaluation
In this section, the effectiveness of the priority inheri-

tance spin lock algorithms proposed in the previous section
is examined through performance evaluation. Their perfor-
mance is compared with the simple priority-ordered spin
locks without supporting priority inheritance scheme. We
have used the single-linked queue version of the Markatos’
spin lock algorithm for this purpose.

4.1 Evaluation Environment
A shared-bus multiprocessor system without coherent

cache is used for the evaluation. The shared bus is based
on the VMEbus specification, and each processor node
consists of a GMICRO/200 microprocessor, which is rated
approximately at 10 MIPS, and 1 MB of local memory.
The local memory can be accessed from other processors
through the shared bus. No coherent cache is equipped. All
the program code and the data area for each processor are
placed on the local memory of the processor. G lobal shared
variables are placed on the local memory of the master
processor, which does not execute spin locks (Figure 4).

Since the GMICRO/200 microprocessor supports com-
pare and swap instruction but not fetch and store, the latter
operation is emulated with a compare and swap instruction
and a retry loop. As the VMEbus has only four pairs of
bus request/grant lines, processors are classified into four
groups by the bus request line they use. The round-robin
arbitration scheme is adopted among groups and the static
priority scheme is applied among processors belonging to
a same group.

acquire lock(�2);
// critical section.
release lock(�2);

routine (a)

acquire lock(�1);
acquire lock(�2);
// critical section.
release lock(�2);
release lock(�1);

routine (b)

acquire lock(��

1);
acquire lock(�2);
// critical section.
release lock(�2);
release lock(��

1);

routine (c)

acquire lock(���

1);
acquire lock(�2);
// critical section.
release lock(�2);
release lock(���

1);

routine (d)

Fig. 5: Evaluation routines

4.2 Evaluation Method
We have used one to eight processors for the evaluation.

The original (or assigned) priority of a processor is fixed
to its ID numbers. Each processor repeatedly executes one
of the four routines presented in Figure 5 in random order.
Routines (c) and (d) are introduced in order to expose
the problem of non-local spins with the first algorithm3.
The execution time of each routine is measured for each
execution, and their distributions are obtained. Inside the
critical section, a processor accesses the shared bus several
number of times and waits for a while using empty loops.
In case of routines (b), (c), and (d), shared bus accesses and
an empty loop are also inserted between acquire first lock
and acquire second lock. Without spin locks, the execution
time of each routine is about 30 �s, including the overhead
for measuring execution times. Each processor also waits
for a random time after each execution of the routines.

Because our evaluation system has no coherent cache,
the simple implementation of the first algorithm causes
heavy shared-bus traffic. In order to avoid shared-bus
saturation, the frequency to read the maxprio field in the
acquire second lock routine is reduced. In more concrete,
maxprio is checked only once for every four checkings of
me�locked.

In real-time systems, because the worst-case behavior
of the system has primary importance, the effectiveness of
the algorithms should be evaluated with their maximum
execution times. Because maximum execution times can-
not be obtained through experiments due to unavoidable
non-determinism in multiprocessor systems, however, a
�-reliable time, the time within which a processor finishes
execution with probability �, is adopted as the performance
metric instead of a maximum execution time. In this sec-
tion, we show the evaluation results when � is 0.9999 (i.e.
99.99%).

4.3 Evaluation Results
Figure 6 presents the 99.99%-reliable execution times

that the highest priority processor executes routine (b).

3With routines (a) and (b) only, the effect of shared-bus traffic is not
revealed, because at most one processor spins on non-local memory at
the same time.

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8

ex
ec

ut
io

n
tim

e
of

 r
ou

tin
e

(b
)

(m
ic

ro
 s

ec
.)

number of processors

Markatos
The first algorithm

The second algorithm

Fig. 6: 99.99%-reliable execution times of routine (b)

0

50

100

150

200

1 2 3 4 5 6 7 8

ex
ec

ut
io

n
tim

e
of

 r
ou

tin
e

(a
)

(m
ic

ro
 s

ec
.)

number of processors

Markatos
The first algorithm

The second algorithm

Fig. 7: 99.99%-reliable execution times of routine (a)

When the number of processors is large, the execution time
with Markatos’ locks is much slower than those with our
algorithms due to uncontrolled priority inversions. When
the number of processors is small, our algorithms are slower
because of the overhead for maintaining the maxprio field
of each lock. Our second algorithm is a bit faster than the
first one when the number of processors is more than six,
but the difference is very small. Though it is not measured
in our experiments, the shared-bus traffic is expected to be
much larger with the first algorithm.

Figure 7 presents the 99.99%-reliable execution times
that the highest priority processor executes routine (a). As
easily imagined, there are little difference in the behavior
of routine (a) with three algorithms. This graph confirms
the conjecture.

Finally, in order to examine the average performance of
the algorithms, we present the average execution times of
routine (b) in Figure 12. From this graph, our algorithms
are slower than Markatos’ lock in average performance.
We can say that priority inheritance spin locks are not
appropriate in case that improving average performance is
the primary concern.

5 Conclusion and Future Work
When a real-time system is realized on a shared-memory

multiprocessor, priority-ordered spin locks are often re-
quired to reduce priority inversions. But, simple applica-
tion of a priority-ordered spin lock algorithm to nested spin
locks causes uncontrolled priority inversions, which are
very harmful for satisfying the timing constraints imposed
on real-time jobs.

In order to solve the problem, we have proposed pri-
ority inheritance spin locks. Two algorithms of priority
inheritance spin locks are presented: one for coherent
cache multiprocessors and the other for multiprocessor
systems without coherent cache. Performance evaluations
to demonstrate their effectiveness have been conducted,
and some affirmative results have been obtained.

In this paper, we have proposed the algorithms based on
the Markatos’ spin lock algorithm. We also plan to extend
other priority-based spin lock algorithms, especially the
PR-lock [5] and the bubble lock [9], to support the priority
inheritance scheme.

Our motivation of this study is the application to a
scalable real-time operating system kernel for function-
distributed multiprocessors [10]. It also remains as a future
work to implement a real-time kernel with the algorithms
and to evaluate them in more realistic conditions.

References
[1] T. E. Anderson, “The performance of spin lock alternatives

for shared-memory multiprocessors,” IEEE Trans. Parallel
and Distributed Systems, vol. 1, pp. 6–16, Jan. 1990.

[2] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for
scalable synchronization on shared-memory multiproces-
sors,” ACM Trans. Computer Systems, vol. 9, pp. 21–65,
Feb. 1991.

[3] E. P. Markatos, “Multiprocessor synchronization primitives
with priorities,” in Proc. 8th IEEE Workshop on Real-Time
Operating Systems and Software, May 1991.

[4] T. S. Craig, “Queuing spin lock algorithms to support timing
predictability,” in Proc. Real-Time Systems Symposium,
pp. 148–157, Dec. 1993.

[5] T. Johnson and K. Harathi, “A prioritized multiprocessor
spin lock,” Tech. Rep. TR-93-005, Department of Computer
Science, University of Florida, 1993.

[6] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheri-
tance protocols: An approach to real-time synchronization,”
IEEE Trans. Computers, vol. 39, pp. 1175–1185, Sept. 1990.

[7] R. Rajkumar, Synchronization in Real-Time Systems: A Pri-
ority Inheritance Approach. Kluwer Academic Publishers,
1991.

[8] H. Takada and K. Sakamura, “Real-time scalability of nested
spin locks,” in Proc. 2nd Real-Time Computing Systems and
Applications, pp. 160–167, Oct. 1995.

[9] N. Sakiyama, H. Takada, and K. Sakamura, “Bubble lock:
Another priority-orderd spin lock algorithm,” in Collection
of Position Papers for the 2nd Youth Forum in Computer
Science and Engineering (YUFORIC), Oct. 1995.

[10] H. Takada and K. Sakamura, “Towards a scalable real-time
kernel for function-distributed multiprocessors,” in Proc.
of 20th IFAC/IFIP Workshop on Real Time Programming,
Nov. 1995.

procedure raise priority(lock: LockPtr,
newprio: integer): boolean;

var prio: integer;
begin

retry:
prio := lock�maxprio;
if newprio � prio then

if CAS(&(lock�maxprio), prio, newprio) then
return TRUE

end;
goto retry

end;
return FALSE

end;

procedure acquire first lock(lock: LockPtr, me: NodePtr);
var pred: NodePtr;

begin
me�next := NULL;
// enqueue myself.
pred := fetch and store(&(lock�last), me);
if pred �� NULL then

// when the queue is not empty
me�locked := Locked;
me�prio := my prio;
pred�next := me;

�1 raise priority(lock, my prio);
repeat until me�locked = Released

else
// succeed to acquire the lock without waiting.

�2 raise priority(lock, my prio)
end

end;

procedure acquire second lock(lock: LockPtr,
me: NodePtr, lock1: LockPtr);

var pred: NodePtr;
begin

me�next := NULL;
// enqueue myself.
pred := fetch and store(&(lock�last), me);
if pred �� NULL then

// when the queue is not empty
me�locked := Locked;
me�prio := my prio;
pred�next := me;

�1 raise priority(lock, my prio);
repeat

�3 if lock1�maxprio � my prio then
// lock1�maxprio is non-local access.

my prio := lock1�maxprio;
me�prio := my prio;
raise priority(lock, my prio)

end
until me�locked = Released

else
// succeed to acquire the lock without waiting.

�2 raise priority(lock, my prio)
end

end;

Fig. 8: The first algorithm

// move entry to the top of the waiting queue of lock.
// pred is the predecessor of entry.
// oldtop is the top of the queue before the move.
procedure move to top(lock: LockPtr, entry, pred,

oldtop: NodePtr);
var succ: NodePtr;

begin
succ := entry�next;
if succ = NULL then

pred�next := NULL;
if CAS(&(lock�last), entry, pred) then

entry�next := oldtop;
return

end;
repeat succ := entry�next until succ �� NULL

end;
pred�next := succ;
enry�next := oldtop

end;

procedure release lock(lock: LockPtr, me: NodePtr);
var top, entry, pred: NodePtr;
var hentry, hpred: NodePtr;

begin
�4 lock�maxprio = MIN PRIO;

top := me�next;
if top = NULL then

if CAS(&(lock�last), me, NULL) then
// the queue becomes empty.
return

end;
repeat top := me�next until top �� NULL

end;
// search the higest priority processor
hentry := top;
hpred := NULL;
pred := top;
entry := pred�next;
while entry �� NULL do

if (entry�prio � hentry�prio) then
hentry := entry;
hpred := pred;

end;
pred := entry;
entry := pred�next

end;
// now, hentry is the higest priority processor.
if hentry �� top then

move to top(lock, hentry, hpred, top)
end;

�5 raise priority(lock, hentry�prio);
hentry�locked = Released

end;

Fig. 9: The first algorithm (cont.)

procedure raise priority notify(lock: LockPtr,
newprio: integer);

var notifyp: pointer to boolean;
begin

if raise priority(lock, newprio) then
notifyp := lock�notifyp;
if notifyp �� NULL then

// set the notification flag.
�notifyp := TRUE

end
end

end;

procedure acquire first lock(lock: LockPtr, me: NodePtr);
var pred: NodePtr;

begin
me�next := NULL;
// enqueue myself.
pred := fetch and store(&(lock�last), me);
if pred �� NULL then

// when the queue is not empty
me�locked := Locked;
me�prio := my prio;
pred�next := me;

�7 raise priority notify(lock, my prio);
repeat until me�locked = Released

else
// succeed to acquire the lock without waiting.
raise priority(lock, my prio)

end;
�8 lock�notifyp := &my notify

end;

procedure acquire second lock(lock: LockPtr,
me: NodePtr, lock1: LockPtr);

var pred: NodePtr;
begin

me�next := NULL;
pred := fetch and store(&(lock�last), me);
if pred �� NULL then

me�locked := Locked;
me�prio := my prio;
pred�next := me;

�7 raise priority notify(lock, my prio);
my notify := TRUE;
repeat

// check if a priority inheritance is notified.
�6 if my notify then

my notify := FALSE;
if lock1�maxprio � my prio then

my prio := lock1�maxprio;
me�prio := my prio;

�7 raise priority notify(lock, my prio)
end

end
until me�locked = Released

else
raise priority(lock, my prio)

end;
�8 lock�notifyp := &my notify

end;

Fig. 10: The second algorithm

procedure release lock(lock: LockPtr, me: NodePtr);
var top, entry, pred: NodePtr;
var hentry, hpred: NodePtr;

begin
lock�maxprio := MIN PRIO;

�9 lock�notifyp := NULL;
top := me�next;
if top = NULL then

if CAS(&(lock�last), me, NULL) then
// the queue becomes empty.
return

end;
repeat top := me�next until top �� NULL

end;
// search the higest priority processor
hentry := top;
hpred := NULL;
pred := top;
entry := pred�next;
while entry �� NULL do

if (entry�prio � hentry�prio) then
hentry := entry;
hpred := pred

end;
pred := entry;
entry := pred�next

end;
// now, hentry is the higest priority processor.
if hentry �� top then

move to top(lock, hentry, hpred, top)
end;
raise priority(lock, hentry�prio);
hentry�locked := Released

end;

Fig. 11: The second algorithm (cont.)

0

50

100

150

200

1 2 3 4 5 6 7 8

ex
ec

ut
io

n
tim

e
of

 r
ou

tin
e

(b
)

(m
ic

ro
 s

ec
.)

number of processors

Markatos
The first algorithm

The second algorithm

Fig. 12: Average execution times of routine (b)

