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Abstract

Making critical sections abortable is a promising approach
to reducing priority inversions. To improve the schedu-
lability of a system using abortable critical sections, the
maximum number of abortions should be decreased. In
this paper, we propose a real-time synchronization protocol
named the ceiling abort protocol (CAP) which introduces
a new priority-based abort scheme to the priority ceiling
protocol. Our proposed protocol can make the maximum
number of abortions smaller than with the conventional
priority abort scheme. A method to determine an up-
per bound on the number of abortions under the CAP is
presented, and a schedulability analysis of the protocol is
illustrated. Some extensions of the CAP are also discussed.

1 Introduction
Priority inversion, the state in which a higher priority job

is blocked by lower priority jobs due to resource sharing,
is a major cause to degrade schedulability in hard real-time
systems.

Making critical sections abortable is a promising ap-
proach to reducing priority inversions. Some real-time
synchronization protocols using abortable critical sections
have been proposed and evaluated [1, 2, 3]. All of these
protocols adopt the priority abort scheme [1], in which a
critical section can be aborted by any job that has a higher
priority than the job executing the critical section. How-
ever, the priority abort scheme has a drawback in that it can
sometimes cause unnecessary abortions thus degrading the
schedulability of a system.

In this paper, we propose a real-time synchronization
protocol named the ceiling abort protocol (CAP) which
introduces an improved priority-based abort scheme called
the ceiling abort scheme to the priority ceiling protocol
(PCP) [4]. With this scheme, a critical section is divided
into two segments and a priority ceiling is assigned to
each. The critical section can be aborted by jobs that have
a higher priority than the priority ceiling of the currently
executed segment. A job that has a lower or the same
priority as the priority ceiling is blocked, when it tries
to enter a critical section. The executed critical section

inherits the priority of the blocked job when necessary.
To guarantee the schedulability of a system using abort-

able critical sections, the maximum number of abortions
must be determined. We will present a method to determine
an upper bound on the number of abortions under the CAP.
A schedulability analysis of the protocol is illustrated using
an example, and its effectiveness is demonstrated. We also
present some extensions of the CAP that can reduce the
maximum number of abortions.

2 Assumptions and Notations
A system consists of � periodic tasks �1� �2� � � � � ��.

Each task has a priority determined by the rate monotonic
scheduling algorithm. �� and �� denote the period and
priority of task �� respectively, and �1� �2� � � � � �� are sorted
in descending order of priority. Hence, �� � �� and
�� � �� if � � �.

An execution of a task is called a job. �� also denotes
a job requested by task ��. Each task requests a job at the
beginning of each period, and the job’s deadline is at the
end of the period. The priority of a job is set to the priority
of the requesting task when it starts, and is changed during
its execution. The priority of a job at any given moment is
called its current priority or simply its priority.

Each job is preemptive and executed according to the
priority-driven scheduling. The highest priority job that is
ready to run is executed first. Jobs with the same priority
are scheduled in a FCFS order. When the execution of a
job is delayed due to the execution of other jobs of higher
or the same priority tasks, the job is said to be preempted.

Each task includes critical sections guarded by binary
semaphores. The �-th critical section in task �� is repre-
sented as ���� . When a job is preempted during a critical
section, the critical section is said to be preempted. Two
critical sections included in a task must be either disjoint
or properly nested. Job �� is called blocked, when the
execution of �� is delayed by a semaphore locked by a job
of lower priority tasks.

The maximum processing time of job �� is denoted as
�� and the maximum blocking time during its execution is
denoted as 	�. The execution of a job is not delayed due
to reasons other than being preempted or blocked. When



the schedulability of a system is discussed, we ignore the
overheads of task scheduling, context switches, and other
processing needed for task synchronization.

3 Abortable Critical Sections
An abortable critical section consists of an abortable

segment followed by an unabortable segment. When a job
is executed within the abortable segment, the execution of
the critical section may be aborted and restarted from the
beginning. Once the job enters the unabortable segment,
the critical section is not aborted and is executed to the end.

The maximum processing times of the abortable seg-
ment and the unabortable segment of ���� are denoted as

��� and ���� respectively. Though the maximum pro-
cessing time of the entire critical section is less than or
equal to 
��� � ���� in general, we assume that it is equal
to 
��� � ���� in this paper. Also, we ignore various
overheads when aborting a critical section for simplicity.
In the following, we refer to an abortable critical section
as defined above simply as a critical section. A critical
section ���� is called unabortable when 
��� � 0.

If abortable critical sections are nested arbitrarily, eval-
uation of the maximum processing time of the outer critical
section becomes complicated. Thus, when ���� and �����
are nested, we allow only the following two cases (����� is
assumed to be the outer critical section, here).
� ���� is unabortable and is included in the unabortable

segment of ����� .
� The abortable segment of ���� corresponds to that of
����� and the unabortable segment of ���� is included
in that of ����� . When one of the critical sections is
aborted, the other is regarded to also be aborted.

As a result of these simplifications, when ���� is aborted
� times during its execution, the maximum processing
time of its abortable segment is prolonged by �
��� . The
maximum duration that ���� can block a higher priority job
that can abort ���� is reduced to ���� .

4 The Ceiling Abort Protocol
With the ceiling abort scheme, the priority ceiling as-

signed to the abortable segment of a critical section differs
from that assigned to its unabortable segment. The pri-
ority ceiling of the abortable segment of ���� and that of
its unabortable segment are represented as ��

��� and ��
���

respectively.

Definition 1 (Priority Ceilings) For each critical section
����, ��

��� and ��
��� are determined as follows.

� ��
��� is equal to the highest priority task that may lock

the semaphore guarding ���� .

� ��
��� should be determined to be an arbitrary priority

which is lower than ��
��� and higher than or equal to

��
1. �

1When ���� is included in another critical section ����� , ��
��� must be

higher than or equal to ��
����

.

Note that ��
��� is the same as the priority ceiling of ����

determined in the PCP.
With the ceiling abort scheme, a critical section ����

is aborted in its abortable segment, when the semaphore
guarding ���� is requested by a job with a higher priority
than ��

��� . We introduce this scheme to the PCP and define
the CAP as presented below.

Definition 2 (The Ceiling Abort Protocol) When a job ��
tries to enter a critical section ���� , �� must follow the
following steps.

1. If any critical sections are preempted with priority
ceilings higher than the priority of ��, �� is blocked by
the critical sections. The job executing these critical
sections2 inherits the priority of �� and is executed
first. When the job finishes the execution of the critical
sections and releases the semaphore, its priority is reset
to the priority before the inheritance and the execution
of �� resumes.

2. If the semaphore guarding ���� is locked by another
job, all the critical sections that the job is executing are
aborted.

3. �� locks the semaphore guarding ���� and begins to
execute ���� .

When ���� is aborted during the execution of its abortable
segment, the semaphore guarding ���� is released and the
priority of �� is reset to the priority it had before entering
���� . Then, �� tries to reenter ���� from Step 1. �

When all critical sections are unabortable, the
semaphore guarding ���� is never locked by another job
in Step 2, and the behavior of the CAP corresponds to that
of the PCP. In this sense, the CAP is an extension of the
PCP.

The CAP inherits the important properties of the PCP
presented in the following theorems [4].

Theorem 3 The CAP prevents deadlocks. �

Theorem 4 When the CAP is used, a job is blocked at most
for the duration of one execution of the critical sections or
their unabortable segments that can possibly block the job.
�

In other words, each job is blocked no more than
once. Therefore, 	� can be determined by calculating the
maximum processing time of the critical sections or their
unabortable segments that can possibly block ��. �� can
be blocked by a critical section ���� included in a lower
priority task, if �� locks the semaphore guarding ���� and
if ��

��� is higher than or equal to ��. �� can be blocked by
the unabortable segment of ���� , if �� locks the semaphore
guarding ���� and if ��

��� is higher than or equal to ��.
In the CAP, the priority of a job is changed according to

the priority inheritance policy. Another protocol adopting

2It is proved that all of these critical sections belong to a job.



�
�
�
�

��
��

blocked

τ1
τ2

τ3

τ4
abortable segment starts abortable segment restarts

unabortable segment starts

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14

aborts

: executing

: unabortable segment

��: abortable segment

: preempted or blocked

Figure 1: Scheduling Example under the CAP

�� �� �� ���1 [��
��1] ���1 [��

��1]
�1 4 10 �1 - -
�2 4 15 �2 0 2 [�2]
�3 4 30 �3 0 2 [�2]
�4 10 100 �4 2 [�3] 2 [�2]

Table 1: Task Set for Example 5

the stack resource policy (SRP) [5] instead is possible and
has the same properties as the CAP presented above. It
is also possible to apply the SRP to either the abortable
segment only or to the unabortable segment only.

Example 5 (Scheduling under the CAP) We present an
example of task scheduling using the CAP. An example
task set consisting of four tasks is presented in Table 1.
Here, �2, �3, and �4 include critical sections �2�1, �3�1, and
�4�1 respectively. These critical sections are guarded by
a binary semaphore. �4�1 is abortable, while �2�1 and �3�1
are not. The value in the brackets represents the priority
ceiling of each segment.

Figure 1 illustrates an example scheduling of the tasks.
We will describe each event in the figure.
� At time 0, �4 enters the abortable segment of �4�1.
� At time 1, �3 is requested and begins to execute.
� At time 2, �3 tries to enter �3�1. Because �4�1 is

preempted in the abortable segment and its priority
ceiling is �3, �3 is blocked by �4�1. Now �4 inherits
the priority of �3 and continues to execute the abortable
segment.

� At time 3, �2 is requested and begins to execute,
just before �4 finishes the execution of the abortable
segment.

� At time 5, �2 tries to enter �2�1. Because the semaphore
is locked by �4, �2 cannot enter �2�1 immediately. As
the priority of �2 is higher than ��

4�1 (� �3), �4�1 is
aborted and �2 begins to execute �2�1. The priority of
�4 is reset to �4 by the abortion.

� At time 7, the execution of �2 is finished and �3 resumes
execution. As �4�1 has been aborted, �3 can enter �3�1.

� At time 11, �4 resumes execution. As �4�1 has been
aborted, �4 restarts �4�1 from the beginning.

� At time 13, �4 enters the unabortable segment of �4�1.

� At time 14, �4 finishes the execution of �4�1.

In this example, every job meets its deadline.

5 Schedulability Analysis of the CAP
To analyze the schedulability of a system using the

CAP, we can apply the results of the PCP presented below
[4]. �� in the following theorems denotes the index set of
the tasks whose priority is higher than or equal to ��, i.e.
�� � � � � � � 1� � � � � �� ��� �� � �� �.

Theorem 6 A set of � periodic tasks using the PCP is
schedulable by the rate monotonic scheduling algorithm, if

��� 1 � � � ��
�
����

��

��
�

	�

��
� ��21�� 	 1��

�

Theorem 7 A set of � periodic tasks using the PCP is
schedulable by the rate monotonic scheduling algorithm
for all task phasings, if and only if

��� 1 � � � ��

�� � max
���	����
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��� 	

�
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��
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�
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where 
� � ���� �� � � � ��� � � 1� � � � � �������. �

The latter theorem presents the necessary and sufficient
condition, when �� is equal to the maximum processing
time of �� and 	� is equal to its maximum blocking
duration. When larger values are used, this theorem
provides a sufficient condition for the schedulability. We
call �� the schedulable laxity of ��.

Next, we examine the effects of abortions on each pa-
rameter that appears in the theorems. By making a critical
section ���� abortable, the effects on the schedulability of
�� can be examined for each of the following four cases.
The maximum number of times that ���� is aborted is
represented as ���� below.

� When �� � ��
��� , making ���� abortable has no effect

on any parameter of ��.



� When��
��� � �� � ��

��� , the maximum duration that ��
can be blocked by ���� is reduced to���� . Consequently,
	� can possibly be decreased by making ���� abortable.

� When �� � �� � ��
��� , the maximum duration that ��

can be blocked by ���� remains 
��� � ���� . Therefore,
making ���� abortable has no effect on any parameter
of �� .

� When�� � ��, the schedulability of �� may be affected
by the increase of ��. �� is prolonged by ����
��� be-
cause one abortion of ���� requires additional execution
time for 
��� . 	� remains unchanged.

From these examinations, if ���� can be determined for
each � and �, the schedulability of the system using the
CAP by the rate monotonic scheduling algorithm can be
checked using Theorem 6 or 7.

The following theorem presents a method to determine
an upper bound of���� when the CAP is used. ���� denotes
the index set of the tasks which can possibly abort ���� .

Theorem 8 ���� , the maximum number of times that ����
is aborted when a set of � periodic tasks using the CAP
is scheduled by the rate monotonic scheduling algorithm,
is less than or equal to � that satisfies the following
inequality.

max
���	��������

�
��� 	

�
����

��

�
���
��

� �
� ��� 1�
��� �

� � � (1)
where �� � � � � � � 1� � � � � �� ��� �� � �� �

and 
����
 � ���� �� � � � ��� � � 0� 1� � � � � �������
���

�
������

�������� � ��. �

The notion of worst-case phasing [6] is used to prove this
theorem. The worst-case phasing for a task is the system
status in which the time until the termination of its job
is the longest possible. Under static priority assignments,
the worst-case phasing for a task �� has been proved to
be the instant when every task with a higher or the same
priority with �� requests a job [7]. This instant is called
a critical instant, and is determined independently of the
execution time of ��. From this property, the execution of
the abortable segment of ���� finishes latest, when a critical
instant occurs immediately after �� enters the abortable
segment of ���� .

Another necessary property to prove this theorem is that
�� is not blocked within ���� once the execution of ����
begins. This property holds under the CAP as well as
under the PCP.

As a result, the left side of (1) represents the minimum
processing time given to ���� , while the jobs that can
possibly abort ���� are executed in � times or less. The
right side of (1) represents the maximum processing time
of the abortable segment, when ���� is aborted � times.
Therefore, if (1) is met, the execution of the abortable
segment will be finished despite the abortions.

Because the left side of (1) stops increasing when
� �

�
������

�������, the minimum value of� satisfying

� LS of (1) RS of (1)
1 0 4
2 6 6
3 6 8
4 12 10

Table 2: Evaluation of an Upper Bound of �4�1

�� �� �� ���1 ���1 �� �
�

� ��

�1 4 10 �1 - - 0 0 6
�2 4 15 �2 0 2 [�2] 2 0 1
�3 4 30 �3 0 2 [�2] 4 0 2
�4 10 100 �4 2 [�3] 2 [�2] 0 4 4

Table 3: Schedulability Analysis Example (Case 1)

(1), if any, can be obtained by checking (1) by incrementing
� from one by one.

The upper bound of ���� calculated with this method
is a pessimistic bound. Accordingly, using the parameters
calculated from this upper bound, Theorem 7 gives a
sufficient condition for the schedulability.

Example 9 (Schedulability Analysis of the CAP) Using
the method described above, we illustrate a schedulability
analysis of the task set of Example 5. First, we calculate
an upper bound of �4�1 using Theorem 8. In this task set,
only �2 can abort �4�1, i.e. �4�1 � �2�. Table 2 presents
the value of the left and right sides of (1) by incrementing
� from one by one. From this table, we can see that (1) is
first met when � � 2. Figure 2 illustrates the scheduling
of each task, when �1, �2 and �3 are requested at time 0,
which is the worst-case phasing for �4. Until time 1, �4�1
can be aborted no more than twice, while the processing
time given to �4 is sufficient to finish the execution of the
abortable segment despite the abortions.

The result of calculating the effects on the schedulability
of each task is presented in Table 3. In this table, ��

�
denotes the additional execution time required for �� when
critical sections are made abortable. Since �4�1 is known
to be two or less, an upper bound of ��

4 is 2
4�1�� 4�.
�� in the table is the schedulable laxity of �� as defined in
Theorem 7. Because no �� is negative in this table, this
task set can be scheduled with the CAP.

To demonstrate the validity of the CAP, we present
the results of schedulability analyses using conventional
approaches. The center columns of Table 4 show the result
when �4�1 is unabortable, i.e. the PCP is used. In this case,
�2 is negative and �2 may miss its deadline. The right
columns of Table 4 show the result when ��

4�1 is �4, i.e. the
priority abort scheme is used. In this case, �4�1 is aborted
not only by �2, but also by �3. As a result, an upper bound
of �4�1 cannot be determined using Theorem 8 and the
schedulability of the task set cannot be shown.

6 Extensions of the CAP
The CAP can be extended in the following ways to

further reduce the number of abortions.
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Figure 2: Evaluation of an Upper Bound of �4�1

�� �� �� ���1 ���1 �� �
�

� �� ���1 ���1 �� �
�

� ��

�1 4 10 �1 - - 0 0 6 - - 0 0 6
�2 4 15 �2 0 2 [�2] 4 0 -1 0 2 [�2] 2 0 1
�3 4 30 �3 0 2 [�2] 4 0 2 0 2 [�2] 2 0 4
�4 10 100 �4 0 4 [�2] 0 0 8 2 [�4] 2 [�2] 0 - -

Table 4: Schedulability Analysis Examples (Case 2 and 3)

� A critical section can be executed at a higher priority
level than the priority of the task. When the critical
section is aborted, its priority is reset to that priority
level instead of the task’s priority.
The execution of the critical section precedes some
higher priority jobs and thus the chance of an abortion
is decreased. The maximum blocking durations of
preceded jobs are prolonged instead.

� The abortable segment of a critical section can be
divided into sub-segments and a priority ceiling can
be assigned to each sub-segment, so that the priority
ceiling of the job will not decrease as the execution
proceeds.
With this extension, the maximum processing time of
the abortable segment, the right side of (1), can be
reduced.

� Whether a job can abort a critical section or not can
be determined by a set of tasks, called an abort task
set, defined for the abortable segment of each critical
section instead of its priority ceiling.
With the ceiling abort scheme, if �3 can abort �4�� , for
example, �2 can also abort it. However, when �2 has
larger schedulable laxity than �3, �2 may not need to
abort �4�� . In this case, �2 is excluded from the abort
task set of �4�� .
We call this method the selective abort scheme. With
this scheme, some unnecessary abortions are avoided
and the number of abortions can be reduced.

7 Conclusion
In this paper, a real-time synchronization protocol called

the ceiling abort protocol (CAP) is proposed and a suffi-
cient condition for the schedulability under the protocol
is presented. As an example of the CAP’s applicability,
we present a set of tasks which cannot be scheduled using

conventional protocols, but can be scheduled using the
CAP. We also discuss some extensions of the CAP.

In this paper, the rate monotonic scheduling is adopted as
the base scheduling algorithm in which the deadline of each
job is at the end of each period. When the deadline of one
of the jobs is earlier due to a jitter requirement or for some
other reason, making critical sections abortable is even
more effective [3]. Another useful application of abortable
critical sections is to incorporate them into the earliest
deadline first scheduling algorithm, in which a higher
priority task has a smaller schedulable laxity. Combining
the ceiling abort scheme with the earliest deadline first
scheduling remains as future work.
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