Real-Time Scalability of Nested Spin Locks

Hiroaki Takada and Ken Sakamura

Department of Information Science,

Faculty of Science, University of Tokyo
7-3-1, Hongo, Bunkyo-ku, Tokyo 113, Japan

Abstract

When a real-time system is realized on a shared-
memory multiprocessor, the worst-case performance
of interprocessor synchronizations is one of the most
important issues. In this paper, scalability of the
mazimum execution times of critical sections guarded
by nested spin locks 1s discussed. With the simplest
method, the maxzimum execution times become O(n™),
where n is the number of contending processors and m
1s the maximum nesting level of locks. In this paper,
we propose an algorithm with which this order can be
reduced to O(n - e™) and demonstrate its effectiveness
when m = 2 through performance measurements.

1 Introduction

Spin lock is a fundamental synchronization primitive
for exclusive access to shared resources on shared-
memory multiprocessors. For real-time systems, two
kind of spin locks are used depending on the timing re-
quirements on them: (1) bounded spin locks, in which
the maximum times that processors acquire and re-
lease a lock are bounded, and (2) priority-ordered spin
locks, in which processors acquire a lock in the order
of their priorities [1].

In this paper, the scalability issue of bounded spin
locks is discussed. Because worst-case behavior has
the primary importance in real-time systems, we fo-
cus on scalability of the maximum execution times of
critical sections guarded by spin locks, under the as-
sumption that the maximum processing time within
a critical section is bounded. We call scalability of
worst-case behavior as real-time scalability.

In general, shared resources that must be accessed
exclusively by a processor are divided into some lock
units in order to improve concurrency. When a pro-
cessor accesses some shared resources included in dif-
ferent lock units, it must acquire multiple locks one
by one. If FIFO spin locks are used for this kind of
nested spin locks, the maximum execution times of a

whole critical section become O(n™), where n is the
number of contending processors and m is the mazi-
mum nesting level of locks. The strict definition of the
maximum nesting level is presented in Section 2.

It is obvious that this simple method is not accept-
able from the viewpoint of real-time scalability. In this
paper, we propose a method in which this order can
be reduced to O(n - €™), which is acceptable when m
can be kept small.

In Section 2, assumptions and notations adopted in
this paper are described. An O(n) algorithm when the
maximum nesting level is two 1s proposed in Section 3
and its effectiveness is evaluated through performance
measurements in Section 4. In Section 5, an O(n -e™)
algorithm for general case is presented.

2 Assumptions and Notations

A system consists of n processors supporting atomic
read-modify-write operations on a single word of
shared memory (e.g. test.and_set, fetch_and store
(swap), fetch_and_add, and compare_and swap). Each
processor repeatedly executes critical sections guarded
by one or more locks. The maximum execution time
of a critical section except for the waiting time for the
locks is assumed to be bounded.

In order to avoid deadlocks, a partial order > is
defined on the set of locks in the system. A processor
must acquire locks following the order. We assume
that if and only if processors possibly acquire a lock
L; while holding a lock L;, an order L; > L; exists.

The nesting level A; is defined for each lock L; as
follows. If L; is a minimal element (i.e. there is no L;
such that L; > L;), A; is defined to be one. Otherwise,
A; is defined to be max{A; | L; > L;} + 1. We call
maz{A;} as the maximum nesting level of locks in the
system. Consider the example that processors in the
system execute one of the two routines presented in
Figure 1. In this example, A1 = 1, Ay = 2, A3 = 3,
and the maximum nesting level in the system is three.

acquire_lock(L»);
acquire_lock(L1);
// critical section.
release_lock(Lg);
release_lock(L);

routine (b)

acquire_lock(Ls);
acquire_lock(Ls);
// critical section.
release_lock(Lsz);
release_lock(Ls3);

routine (a)

Figure 1: Example of Nested Locks

In the following sections, a lock whose nesting level
1s 7 1s denoted as L;. When there are some locks with
the same nesting level, they are represented as L;, L},
L ..

We also assume that the two-phase protocol is
adopted on each processor. In other words, once a
processor releases a lock, it cannot acquire a lock until
it releases all the locks it is holding. This assumption
is adopted in order to simplify the evaluation of the
maximum number of the critical sections that a pro-
cessor must wait for. The estimation of its order is
also valid without the assumption.

3 Nesting in Two Levels

In this section, we focus on nested spin lock algorithms
when the maximum nesting level is two. We regard
them as important because the scalable real-time ker-
nel model we have proposed in [2] can be implemented
with the maximum nesting level being two.

Problems of Simple Methods

As mentioned before, if FIFO spin locks are simply
applied to the system in which the maximum nesting
level of locks is two, the maximum execution times of
a whole critical section become O(n?), where n is the
number of contending processors.

As an example, consider the case that each proces-
sor in the system repeatedly executes one of the three
routines presented in Figure 2 in random order. Be-
low, we illustrate the case in which the number of the
critical sections that a processor P; must wait for un-
til it finishes an execution of routine (c¢) is maximized.
Assume that when Py tries to acquire Ly in (¢), an-
other processor P has just acquired the lock and all
the other processors Ps, --- P, are waiting for the
lock in routine (c) in this order. When Ps releases the
lock, P5 succeeds to acquire the lock. Just before Ps
tries to acquire Ly, P5 can acquire the lock in routine
(a). In this case, P; must wait until P, finishes the
critical section and releases Lq, and P; must wait for
two critical sections executed by P» and P5. Similarly,

acquire_lock(Ls);
// critical section.
release_lock(Lsz);

routine (b)

acquire_lock(Lq);
// critical section.
release_lock(Ly);

routine (a)

acquire_lock(Ls);
acquire_lock(Ly);
// critical section.
release_lock(Ly);
release_lock(Ls);

routine (c)
Figure 2: Nesting in Two Levels

acquire_lock(L5);
acquire_lock(Ly);
// critical section.
release_lock(Ly);
release_lock(L5);

routine (e)

acquire_lock(L5);
// critical section.
release_lock(L5);

routine (d)

Figure 3: Nesting in Two Levels (cont.)

when P;_q releases Lo, P; succeeds to acquire the lock.
Before P; tries to acquire Ly, P,, ---, P;_1 can wait
for the lock in (a). P; must wait for the executions of
¢ — 2 critical sections until it succeeds to acquire L1,
and P; must wait for ¢ — 1 critical sections until P;
finishes routine (c¢). Finally, after Py succeeds to ac-
quire L, P; must wait for n—1 critical sections before
it acquires Ly. As a result, the maximum number of
the critical sections that a processor P; must wait for
is1+24+-F+n-1)+n-1)=nn+1)/2-1,
thus O(n?). Because the maximum processing time
within a critical section has an upper bound, the or-
der of the maximum execution times of routine (c) is
O(n?). That of routine (b) is also O(n?), while that
of routine (a) is O(n).

A simple method to improve this order is that
precedence is given to the processor holding an outer
lock. In case of Figure 2, the processor that is waiting
for Ly in routine (c) can acquire the lock with higher
priority than other processors. Because the maximum
number of the critical sections that a processor must
wait for while trying to acquire L; in (¢) is reduced to
one with this method, the maximum execution times
of both (b) and (¢) are improved to O(n). The maxi-
mum execution times of routine (a) remain to be O(n),
because a processor never waits for Ly in (c¢) while an-
other processor holds Ly in (c¢), and because the lock is
passed to a processor executing (a) when the processor

in (c) releases the lock.

However, this method has a problem when each
processor can also execute the two routines presented
in Figure 3. In this case, a processor executing rou-
tine (a) can starve while waiting for Ly. Specifically,
a processor trying to acquire Ly in (a) can be passed
by a processor executing (¢) and a processor executing
(e) by turns, and the maximum time until it succeeds
to acquire L cannot be determined.

Another method is that a processor trying to ac-
quire nested locks reserves its turn to acquire the in-
ner lock by enqueueing itself to the wait queue of the
lock, when it begins waiting for the outermost lock.
This method, however, cannot be applied when which
inner lock to be acquired is determined after accessing
the shared resource guarded by the outer lock.

Proposed Method

To solve the problem described in the previous section,
we propose the following algorithm, which can make
the maximum execution times of each routine O(n).

When a processor begins waiting for the outermost
lock, it obtains a time stamp by reading a real-time
clock. Instead of using FIFO spin locks, priority-
ordered spin locks are used with the time stamps as
the priorities! (an earlier time stamp has a higher pri-
ority). With this method, the processor that begins
waiting for the outermost lock earlier can acquire each
lock with higher precedence. In other words, the FIFO
policy is applied to the whole critical section.

This method can reduce the order of the maxi-
mum execution times of each routine to O(n) with
the following reason. The maximum number of the
higher priority critical sections (the critical sections
executed by the processors with higher priorities than
Pp) that a processor P, must wait for is n — 1. This
is because only the processors obtaining time stamps
before P, can acquire locks with precedence over P,
and because each processor can execute only one crit-
ical section with a time stamp. P, must also wait for
some lower priority critical sections. When a processor
tries to acquire an inner lock, another processor with a
lower priority possibly holds the lock. This is a kind of
priority inversion and occurs at most once whenever a
processor begins waiting for an inner lock. Note that
this priority inversion does not occur in acquiring an
outer lock.

When a processor P, with a higher priority than
P, acquires the outer lock on which P is waiting, and

1The fact that a FIFO-ordered lock can be realized with a
priority-ordered lock using time stamps as priorities is pointed
out by Craig [1].

when P, tries to acquire an inner lock, P, must possi-
bly wait for a critical section executed by a lower prior-
ity processor P53 due to priority inversion. In this case,
the critical section executed by P5 should be counted
in the number of the critical sections that P; must
wait for. As a result, an upper bound on the num-
ber of the critical sections that P; must wait for is
2(n—1)4+1 = 2n— 1, thus the order of the maximum
execution times of routine (c¢) is O(n). Those of the
other routines are also O(n).

More precisely, the number of the critical sections
that P, must wait for in routine (¢) in Figure 2 be-
comes maximum in the following case. Assume that
when Py tries to acquire Ly in (¢), another processor
P, holds the lock and all the other processors Ps, - -,
P, are waiting for the lock in routine (¢) in this order.
When P, releases the lock, Ps succeeds to acquire the
lock. Just before Pj tries to acquire Ly, P» can acquire
the lock in routine (a). In this case, P3 must wait until
P releases Ly, and P; must wait for two critical sec-
tions. Similarly, when P; succeeds to acquire Lo and
tries to acquire Ly, one of Py, -+, P;_1 possibly holds
L1, and P; must wait for two critical sections. Finally,
after P succeeds to acquire Ls, it possibly needs to
wait for a critical section before it acquires L;. As a
result, the maximum number of the critical sections
that P, must wait foris 1 +2+---4+2+1=2n-—2.
The result of this exact estimation is smaller than the
previous estimation because the fact that P, does not
suffer any priority inversions is counted in.

In implementing this method, following optimiza-
tions are possible.

1. In acquiring an outer lock (a lock whose nesting
level is two), a FIFO spin lock algorithm can be
used instead of a priority-ordered one.

2. A sequence number that a processor begins wait-
ing for the outermost lock, which can be imple-
mented with fetch_and_increment operation, can
be used as the time stamp instead of an absolute
time read from a real-time clock.

4 Performance Evaluation

In this section, the effectiveness of the algorithm pro-
posed in the previous section (called TF, in this sec-
tion) is examined through performance evaluation. Its
performance is compared with the method that FIFO
spin locks are simply used for all locks (called SF, in
this section) and the method that precedence is given
to the processor holding an outer lock (called PI, in
this section).

Processor 1 . . , |

<_»GMICRO
/200
<«»| Local ||
Memory

Processor 8

y

VMEbus

Master Processor

Figure 4: Evaluation Environment

Evaluation Method

We have adopted the MCS lock algorithm [3] for
the FIFO spin locks and the algorithm proposed by
Markatos [4] for priority-ordered spin locks. The FIFO
spin lock with precedence, which is necessary to im-
plement PI, is realized using the Markatos’ spin lock
algorithm. In implementing TF, we have used a FIFO
spin lock algorithm for the outer locks and a priority-
ordered one for the inner locks. We have also used a
sequence number that a processor begins waiting for
the outermost lock instead of a real-time clock.

A shared-bus multiprocessor system is used for the
evaluation. The shared bus is based on the VMEbus
specification, and each processor node consists of a
GMICRO /200 microprocessor, which is rated at ap-
proximately 10 MIPS, and 1 MB of local memory.
The local memory can be accessed from other pro-
cessors through the shared bus. No coherent cache is
equipped. All the program code and the data area
for each processor are placed on the local memory of
the processor. Global shared data is placed on the lo-
cal memory of the master processor, which does not
execute spin locks (Figure 4).

Since the GMICRO/200 microprocessor supports
compare_and_swap instruction but not fetch_and_store
nor fetch_and_increment, those operations are emu-
lated with a compare_and_swap instruction and a retry
loop. As the VMEbus has only four pairs of bus re-
quest/grant lines, processors are classified into four
classes by the bus request line they use. The round-
robin arbitration scheme is adopted among classes and
the static priority scheme is applied among processors
belonging to a same class.

Since we focus on the worst-case behavior of a sys-
tem, the effectiveness of our proposal should be eval-

t0 := read_current_time();

prio := get_sequence_number();
acquire_lock_markatos(Ly, prio);
// some shared bus accesses

/] and two empty loops (about 22usec).

release_lock_markatos(Ly);
t1 := read_current_time();
// measurement result is (t1 —t0).

routine (a)
t0 := read_current_time();

acquire_lock_mes(Ls);
// some shared bus accesses

/] and two empty loops (about 22usec).

release_lock_mes(L2);
t1 := read_current_time();
// measurement result is (t1 —t0).

routine (b)

t0 := read_current_time();

prio := get_sequence_number();
acquire_lock_mes(L2);

// some shared bus accesses

// and an empty loop (about 11usec).
acquire_lock_markatos(Ly, prio);

// some shared bus accesses

// and an empty loop (about 11usec).
release_lock_markatos(Ly);
release_lock_mes(Ls);

t1 := read_current_time();

// measurement result is (t1 —t0).

routine (c)

for i := 1 to number_of_loop do
case random_number() of
1,2,3,4:
execute routine (a);
5:
execute routine (b);
6:
execute routine (c);
end
end

main routine

Figure 5: Measurement Routines with TF

uated with maximum execution times. Because max-
imum execution times cannot be obtained through
experiments due to unavoidable non-determinism in
multiprocessor systems, however, a p-reliable time, the
time within which a processor finishes execution with
probability p, is adopted as the performance metric
instead of a maximum execution time. In this section,
we show the evaluation results when p is 0.9999 (i.e.

99.99%).

Evaluation Results

At first, processors in the system repeatedly execute
one of the three routines presented in Figure 2 in ran-
dom order. The probability that a processor executes
routine (a) is made four times larger that each of other
routines. A processor accesses the shared bus several
number of times and waits for a while using empty
loops inside the critical section. In case of routine (c),
shared bus accesses and an empty loop are also in-
serted between two acquire_lock operations. Without
spin locks (and the routine for obtaining the sequence
number in case of TF), the execution time of each
critical section is about 30 us, including the overhead
for measuring execution times. As a example, pseudo
code of the measurement routines with TF are pre-
sented in Figure 5.

Figure 6 presents the 99.99%-reliable execution
times of routine (¢). When the number of processors
is large, the execution times of routine (c) is quite
slower with the simplest method (SF) than our pro-
posed method (TF). The execution times with TF in-
crease a little more than O(n). This is because the
lock release times in the Markatos’ lock become long
as the number of processors is increased. This problem
will be relieved with the PR-lock algorithm [5], but
we cannot evaluate with 1t because double-word com-
pare_and_swap operation is necessary to implement
the PR-lock. The 99.99%-reliable execution times of
routine (b) are almost same with routine (c¢) except
that the absolute times are little shorter (Figure 7).

Figure 8 presents the 99.99%-reliable execution
times of routine (a) under the same condition. Though
the execution times of routine (c) are fastest with PI,
those of routine (a) are slowest with the method.

The problem of PI becomes more obvious, when
processors repeatedly execute one of the fives routines
in Figure 2 and 3 in random order. Figure 9 presents
the 99.99%-reliable execution times of routine (a) un-
der this condition. The probability that a processor
executes routine (a) is made twice larger than each of
other routines. In this figure, the execution times with
PI are much slower than the other methods.

800 — T T T T T T .
700 +
600
500 +
400
300
200
100

o0 L—

1 2 3 4 5 6 7 8
number of processors

Figure 6: 99.99%-reliable Exec. Times of Routine (¢)

execution time of routine (c)

800 — T T T T T T .
700 +
600
500 +
400
300
200
100

execution time of routine (b)

1 2 3 4 5 6 7 8
number of processors

Figure 7: 99.99%-reliable Exec. Times of Routine (b)

800 T T T T T T T T
700 p 1

600 [1T 1
500 | =
400 | P
300 | P
200 | o
00
ol — .

1 2 3 4 5 6 7 8
number of processors

Figure 8: 99.99%-reliable Exec. Times of Routine (a)

execution time of routine (a)

800 ———————————————————
[o
600 [1T S
500 | |
a0 | N
300 | e]
200 | T
100 |

execution time of routine (a)

number of processors
Figure 9: 99.99%-reliable Exec. Times of Routine (a)

80 ——m8 —
700 |]
60 | TF °]
500 |]
400 |]
300 |
200 |
100 |

execution time of routine (c)

1 2 3 4 5 6 7 8
number of processors

Figure 10: Average Exec. Times of Routine (c¢)

80 ——m8 —
700 |]
60 | TF °]
500 |]
400 |]
200 | e
100 |

execution time of routine (a)

1 2 3 4 5 6 7 8
number of processors

Figure 11: Average Exec. Times of Routine (a)

From these results, we can see that our proposed
method 1s the most appropriate algorithm of the three
methods from the viewpoint of real-time scalability.

Finally, in order to examine the average perfor-
mance of the algorithms, we present the average ex-
ecution times of routine (c) and (a) in case of three
routines in Figure 10 and 10 respectively. Because the
difference between SF and TF is very small in routine
(c) (Figure 10), we can say that SF is more appropri-
ate in case that improving average performance is the
primary concern.

5 Nesting in Three or More Levels

When FIFO spin locks are simply used when the max-
imum nesting level of locks is m, the maximum execu-
tion times of a whole critical section become O(n™).
An effective method to improve this order 1s proposed
in this section.

Priority Inversion Problem

When the maximum nesting level of locks is more than
or equal to three, the method proposed in Section 3
does not work effectively due to uncontrolled priority
Inversions.

Consider the example that processors execute one
of the three routines in Figure 12 in random order. As-
sume the case that a processor P; holds L3 and waits
for Ly in routine (c¢), and that another processor Ps
with a lower priority than P; holds Lo and tries to ac-
quire Ly in (a). Processors with priorities lower than
P, and higher than P, can acquire L with precedence
over P;. While P» is waiting for those processors, P
must wait also and the duration of the priority inver-
sion becomes long. As a result (we omit the detailed
discussion here), the maximum execution times of (¢)
cannot be improved to O(n). Note that this uncon-
trolled priority inversions do not occur when the max-
imum nesting level is two.

Incorporating Priority Inheritance Scheme

A priority inheritance scheme should be adopted to
solve this problem. With the basic priority inheri-
tance scheme in which a processor holding some locks
inherits the highest priority of the processors that are
waiting for one of the locks, the duration of priority
inversions can be reduced. Since chained priority in-
versions cannot be avoided with this method, however,
the maximum execution times of a critical section be-
come O(n -e™) with the following reason.

The maximum duration of priority inversions can
be estimated as follows. Until a processor finishes the

acquire_lock(L});
acquire_lock(L1);
// critical section.
release_lock(Ly);
release_lock(L5);

routine (b)

acquire_lock(Ls);
acquire_lock(Ly);
// critical section.
release_lock(Lsz);
release_lock(L);

routine (a)
acquire_lock(Ls);
acquire_lock(Lz);
acquire_lock(Lq);
// critical section.
release_lock(Ly);
release_lock(Lsz);
)

release _lock(Ls

bl

routine (c)

Figure 12: Nesting in Three Levels

execution of a critical section guarded by a lock L,,
whose nesting level is m, it must wait for some lower
priority critical sections. We denote the maximum
number of these critical sections as énv(m). When a
processor Pj tries to acquire L,,, another processor P
with a lower priority possibly holds the lock and Py
must wait for the critical section executed by P,. If
the nesting level of the lock is one (i.e. m = 1), no
other priority inversions can occur, thus inv(l) = 1.
When m > 1, at most inv(m — 1) priority inversions
also occur during P is executing the critical section
because P, may try to acquire another lock whose
nesting level is smaller than m within the critical sec-
tion. After P succeeds to acquire L,,, it may also try
to acquire another lock whose nesting level is smaller
than m within the critical section. During its execu-
tion, at most inv(m — 1) priority inversions can oc-
cur. As the result, inv(m) = 2 - inv(m — 1) + 1 then
inv(m) = 2M — 1.

We can estimate the order of the maximum execu-
tion times of a critical section using ¢nv(m). Dur-
ing a processor executes a critical section guarded
by L,,, at most n — 1 higher priority critical sec-
tions are executed. Because each higher priority crit-
ical section suffers at most inv(m — 1) priority in-
versions, the maximum number of the critical sec-
tions that a processor must wait for is smaller than
(n—1D)(inv(m— 1)+ 1) +inv(m—1) =n-2m71 -1,
Note that this also includes some overestimations.

As a result, the order of the maximum execution
times of critical sections is shown to be O(n-e™) with
the basic priority inheritance scheme. We can say that
this method has real-time scalability on the number of

contending processors but not on the maximum nest-
ing level.

The priority ceiling policy can also be adopted,
when there 1s prior knowledge on which locks are ac-
quired in each critical section. In the concrete, when
a processor acquires the outermost lock, the priority
ceiling of the other locks that are required (or possibly
required) by the processor within the critical section is
set to the priority of the processor. When the priority
ceiling of the lock that a processor tries to acquire is
higher than its priority, the processor must wait with
spinning even if the lock is not held by any processor?.

In Section 3, we have mentioned the method that
a processor trying to acquire nested locks reserves its
turn to acquire the inner locks by enqueueing itself to
their wait queue when it begins waiting for the outer-
most lock. When complete knowledge on all required
locks in each critical section is available, the priority
ceiling method is same with this method. To the con-
trary, if there is no knowledge on required locks at all,
the priority ceiling method reduced to the situation
that all shared resources in the system are guarded by
a single lock, which severely degrades concurrency of
the system.

6 Conclusion

In this paper, real-time scalability of nested spin locks
is discussed. An algorithm with which the maximum
execution times of critical sections are O(n) when the
maximum nesting level of locks in the system is two
is proposed, and its effectiveness is demonstrated with
performance evaluation. By introducing a priority in-
heritance scheme to the algorithm, it can be applied
to the system in which the maximum nesting level is
more than two.

Though this paper focuses on bounded spin locks
(in other words, on the cases when each processor
equally contends for nested spin locks ignoring the pri-
ority of the job it is executing), some of the results
are also applicable to priority-ordered spin locks (the
cases when each processor has its priority determined
from the job it is executing). (1) When processors
with the same priority should execute critical sections
following a FIFO policy, our proposed method should
be adopted. In this case, a pair of the native priority
of a processor and the time stamp it obtains should be

2Though induced from the same policy, the behavior of “pri-
ority ceiling spin lock” is quite different from those of the pri-
ority ceiling protocol [6] or its extension for shared memory
multiprocessors [7]. This is because the processor which cannot
acquire a lock is blocked with those protocols, while it spins
with our situation.

used as the priorities for inner locks. (2) Priority in-
heritance scheme is indispensable for nested priority-
ordered spin locks. Note that uncontrolled priority
inversions also occur when the maximum nesting level
is two in case of priority-ordered spin locks.

Efficient spin lock algorithms implementing a pri-
ority inheritance scheme and performance evaluations
with them are remaining as future work. We also plan
to extend the algorithms to support timeouts or pre-
emptions.

Acknowledgment

We would like to thank members of Real-Time Sys-
tems Group of Sakamura Laboratory and anonymous
reviewers for their useful comments.

References

[1] T. S. Craig, “Queuing spin lock algorithms to
support timing predictability,” in Proc. Real-Time
Systems Sympostum, pp. 148-157, Dec. 1993.

[2] H. Takada and K. Sakamura, “Towards a scalable
real-time kernel for function-distributed multipro-
cessors,” in Proc. of 20th IFAC/IFIP Workshop on
Real Time Programming, Nov. 1995. (to appear).

[3] J. M. Mellor-Crummey and M. L. Scott, “Al-
gorithms for scalable synchronization on shared-
memory multiprocessors,” ACM Trans. on Com-
puter Systems, vol. 9, pp. 21-65, Feb. 1991.

[4 E. P. Markatos, “Multiprocessor synchronization
primitives with priorities,” in Proc. of the IEEE
Workshop on Real-Time Operating Systems and
Software, May 1991.

[5] T. Johnson and K. Harathi, “A prioritized mul-
tiprocessor spin lock,” Tech. Rep. TR-93-005,
Department of Computer Science, University of

Florida, 1993.
[6] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Pri-

ority inheritance protocols: An approach to real-
time synchronization,” IEEFE Trans. Computers,

vol. 39, pp. 11751185, Sept. 1990.

[7] R. Rajkumar, “Real-time synchronization pro-
tocols for shared memory multiprocessors,” in
Proc. Int’l Conf. Distributed Computing Systems,
pp- 116-123, May 1990.

