
Predictable Spin Lock Algorithms with Preemption

Hiroaki Takada and Ken Sakamura

Department of Information Science,
Faculty of Science, University of Tokyo

7-3-1, Hongo, Bunkyo-ku, Tokyo 113, Japan

Abstract
Both predictable interprocessor synchronization and

fast interrupt response are required for real-time systems
constructed using asymmetric shared-memory multiproces-
sors. This paper points out the problem that conventional
spin lock algorithms cannot satisfy both requirements at
the same time. To solve this problem, we have proposed
an algorithm which is an extension of queueing spin locks
modified to be preemptable for servicing interrupts [1]. In
this paper, we propose an improved algorithm that mini-
mizes the recovering overhead from an interrupt service.
We also demonstrate that the proposed algorithms have
required properties through performance measurement.

1 Introduction
In many applications of high performance real-time

systems, a large number of external devices such as sensors,
actuators, and network controllers are connected to a system
and the system is required to respond to the external
events from the devices within predefined and usually
short time-bounds. To meet this requirement, asymmetric
multiprocessors in which each device is handled by a fixed
processor are often adopted.

In order to realize real-time systems using shared-
memory multiprocessors, predictable interprocessor syn-
chronization mechanisms are of primary importance. In
addition to adopting a real-time scheduling algorithm with
resource constraints or a real-time synchronization proto-
col, the execution time of the underlying mutual exclusion
mechanism using spin locks must be bounded1.

In asymmetric shared-memory multiprocessors, each
processor is required to achieve fast and predictable re-
sponse to interrupt requests, because external events are
notified to each processor in the form of interrupts. How-
ever, each processor cannot respond to external interrupts
in short latency with conventional bounded spin lock algo-
rithms.

To solve this problem, we have proposed an algorithm
which is an extension of queueing spin locks modified to

1We assume that the access time of the shared bus (or interconnection
network) is bounded in this paper.

be preemptable for servicing interrupts [1]. With the algo-
rithm, an upper bound on the time to acquire and release an
interprocessor lock can be given when no interrupt request
occurs, and fast response to interrupt requests is achieved.
However, the algorithm has a shortcoming that a processor
possibly has to re-execute the lock acquiring routine from
the beginning after it services an interrupt request. In
schedulability analysis, this re-execution overhead must be
added to the interrupt service time.

In this paper, we propose an improved algorithm that
minimizes this overhead. We also demonstrate that the
proposed algorithms have required properties through per-
formance measurement.

2 Spin locks and interrupt latency

In this paper, we assume that atomic read-modify-
write operations on a single word of shared memory (e.g.
test and set, fetch and store (swap), fetch and add, and
compare and swap) are supported in hardware.

In order to bound the time until a processor acquires
an interprocessor lock, the duration that each processor
holds the lock must be bounded as well as the number of
contending processors that the processor must wait for. The
latter condition can be met with ticket locks or queueing
locks [2], with which the turn that a processor acquires a
lock is determined when it begins waiting for the lock. To
satisfy the former condition, the relationship with interrupt
services must be considered.

In asymmetric multiprocessor systems, interrupt ser-
vices for external devices are requested for each processor.
When multiple devices are connected to a processor, inter-
rupt requests from them are usually raised independently
and the maximum time to service all of the requests be-
comes unbounded or very long. Consequently, in order
to give a practical bound on the duration that a processor
holds a lock, interrupt services should be inhibited for that
duration.

On the other hand, in order to realize a system with
fast response to external events, each processor must be
able to service external interrupts with short latency time.
Particularly, when the scalability of the system is an impor-

tant issue, the worst-case interrupt latency should be given
independently of the number of processors in the system.

Here a problem arises in deciding whether interrupts
should be disabled first or an interprocessor lock should
be acquired first. When acquiring an interprocessor lock
precedes disabling interrupts, interrupts may be serviced
while the processor holds the lock, and the condition that
interrupt services should be inhibited while a processor
holds a lock is not satisfied. If acquiring a lock follows
disabling interrupts, on the other hand, the interrupt mask
time includes the time to acquire the lock and its upper
bound heavily depends on the number of processors.

One method to solve this problem is the following. The
processor first disables interrupts and tries to acquire the
lock. If it fails to acquire the lock, the processor probes
interrupt requests before it retries to acquire the lock. When
interrupt requests are detected, it suspends trying to acquire
the lock, enables interrupts, and services them.

Test-and-set locks can be extended easily with this
method. Ticket locks and queueing locks, on the other
hand, cannot be extended similarly.

3 Queueing locks with preemption
In all spin lock algorithms that can give an upper

bound on the time until a processor acquires a lock, a
processor modifies some shared variable and reserves its
turn to acquire the lock when it begins waiting for the
lock. When its turn comes, the lock is passed to the
processor by another. If the processor simply branches to
an interrupt handler while waiting for the lock, it cannot
begin to execute the critical section immediately after the
lock is passed to the processor, and makes the contending
processors wait wastefully until the interrupt service is
finished.

Consequently, when a processor begins to service in-
terrupts while waiting for a lock, it must inform others
that it is servicing interrupts and should not be passed the
lock. The processor trying to release the lock checks if
the succeeding processor is servicing interrupts. If the
succeeding one is found to be servicing interrupts, its turn
to acquire the lock is canceled or deferred, and the lock is
passed to the next in line.

Original algorithm
We have applied the above scheme to the MCS lock,

a list-based queueing lock algorithm [2], and proposed a
queueing lock algorithm with preemption [1]. Some other
spin lock algorithms can be extended similarly. Recently,
R. W. Wisniewski et al. have proposed a similar algo-
rithm for improving the average performance of multipro-
grammed (non-real-time) systems [3]. Craig’s algorithm
can also support the same preemption scheme [4].

In the algorithm, if the processor trying to release
the lock (�0) finds that the succeeding processor (�1)
is servicing interrupts, �0 dequeues �1 from the waiting

queue and passes the lock to a successor of �1. When
only �1 is waiting for the lock, �0 makes the waiting
queue empty. �0 informs �1 that �1 is dequeued using a
shared variable. When �1 finishes the interrupt service, it
checks whether it has been dequeued during the interrupt
service or not. If it has been dequeued, it re-executes the
lock acquiring routine from the beginning. Otherwise, it
resumes waiting for the lock.

When a processor is dequeued and re-executes the lock-
acquiring routine, the waiting time after the processor first
links itself to the queue until it branches to the interrupt
handler is wasted. When the schedulability of the system
is analyzed, this re-execution overhead should be added to
the interrupt service time. Below, we present an improved
algorithm which is devised to reduce this overhead.

Improved algorithm
The re-execution overhead can be reduced with the

following method. When the processor releasing the lock
(�0) finds that the succeeding processor (�1) is servicing
interrupts, �0 leaves �1 in the waiting queue instead of
dequeueing it. �0 removes the processor to which to pass
the lock from the queue using the method adopted in the
prioritized queueing spin lock appeared in [5]. When �1

finishes interrupt services, it simply resumes waiting for the
lock in its original position. Therefore, the overhead which
must be added to the interrupt service time in schedulability
analysis is minimized.

A difficulty occurs when all processors in the waiting
queue are servicing interrupts. To handle this situation,
a global lock flag is introduced. If the processor trying
to release the lock finds that all processors in the queue
are servicing interrupts, it sets the global lock flag. A
processor returning from interrupt services tries to get the
global lock with the same method as with test-and-set
locks. If it succeeds getting the lock, it removes itself from
the waiting queue. As the processor needs to know the
top processor in the queue to remove itself, the processor
releasing the global lock must pass the information in some
shared variable. It is also necessary for a processor to check
the global lock flag once, after it links itself at the end of
the queue, because it is possible that all the processors in
the queue are servicing interrupts and the global lock is set.

Pseudo-code for the improved algorithm appears in
Fig. 1 and 2. In these figures, the keyword shared
indicates that only one instance of the variable is allocated
and shared in the system. Other variables are allocated
for each processor and located in its local memory. The
right hand side of the and operator is assumed to be
evaluated only if its left hand side is true. Fetch and store
reads the memory addressed by the first parameter, returns
the contents of the memory as its value, and atomically
writes the second parameter to the memory. CAS, the
abbreviation of compare and swap, first reads the memory
pointed to by the first parameter and compares its contents

type qnode = record
next, prev: pointer to qnode;
locked: (Released, Locked, Preempted, Dequeueing)

end;
type lock = record

last: pointer to qnode;
glock: pointer to qnode

end;

// global shared data.
shared var L: lock;
// L.last and L.glock are initialized to NIL.

procedure dequeue(entry, pred, top: pointer to qnode)
var succ: pointer to qnode;
succ := entry�next;
if succ = NIL then

pred�next := NIL;
if CAS(&(L.last), entry, pred) then goto release end;

repeat succ := entry�next until succ �� NIL
end;
pred�next := succ;
succ�prev := pred;

release:
entry�next := top;
entry�locked := Released

end;

Fig. 1: Improved algorithm (1)

with the second parameter. If they are equal, the function
writes the third parameter to the memory atomically and
returns true. Otherwise, it returns false.

In this pseudo-code, the glock field of L serves both
as the global lock flag and as the variable to pass the top
processor of the waiting queue. An exponential backoff
scheme is adopted to get the global lock in this code
to reduce the number of shared-bus transactions. Two
constant parameters � and � should be tuned for each
target hardware and application.

Though there are two non-local spins (marked with
#) in this pseudo-code, both of them continue during the
transient state afer another processor writes the pointer
to its queue node to L.last (successful execution of the
fetch and store operation marked with 1�) and until it
writes non-NIL value to the next field of its predecessor
(marked with 2�), and their effect is not significant.

We have adopted the MCS lock as the base algorithm
in this section. The FIFO version of Craig’s algorithm [4]
can be extended similarly.

4 Performance evaluation

The effectiveness of the two queueing spin lock algo-
rithms with preemption, the original one in [1] (called
QL/P1, in this section) and the improved one presented
in Fig. 1 and 2 (QL/P2), are examined through perfor-
mance evaluation. The performance of the algorithms is
compared with the MCS lock without inhibiting interrupts
(QL/ei), the MCS lock during interrupts inhibited (QL/di),

// local data (allocated for each processor).
var I: qnode;
var pred, succ, top: pointer to qnode;
var interval, i: integer;

I.next := NIL;
disable interrupts;

1�pred := fetch and store(&(L.last), &I);
if pred = NIL then goto acquired end;
// enqueue myself.
I.prev := pred;
I.locked := Locked;

2�pred�next := &I;
i := 1; // check the global lock once.
interval :=�; // never expires.
while (I.locked �� Released) do

if interrupt requested and
CAS(&(I.locked), Locked, Preempted) then

enable interrupts;
// interrupt service.
disable interrupts;
I.locked := Locked;
i := 1;
interval := �

end;
i := i - 1;
if i = 0 then

// check the global lock and try to get if it is set.
top := L.glock;
if top �� NIL and CAS(&(L.glock), top, NIL) then

if top �� &I then dequeue(&I, I.prev, top) end;
goto acquired

end;
i := interval;
interval := interval� �

end
end;

acquired:
//
// critical section.
//
succ := I.next;
if succ = NIL then

// try to make the queue empty.
if CAS(&(L.last), &I, NIL) then goto exit end;
repeat succ := I.next until succ �� NIL

end;
// try to pass the lock to the successor.
if CAS(&(succ�locked), Locked, Released) then goto exit end;
top := succ;
repeat

pred := succ;
succ := pred�next;
if succ = NIL then

// set the global lock.
L.glock := top;
// check if pred is really the last processor.
if L.last = pred then goto exit end;
// try to withdraw the global lock.
if �CAS(&(L.glock), top, NIL) then goto exit end;

repeat succ := pred�next until succ �� NIL
end;

until CAS(&(succ�locked), Locked, Dequeueing);
dequeue(succ, pred, top);

exit:
enable interrupts;

Fig. 2: Improved algorithm (2)

for i := 1 to NoLoop do
1�acquire lock and disable interrupts;

//
// critical section.
//
release lock;

2�enable interrupts;
random delay

end;

Fig. 3: Measurement program skeleton

and the test-and-set lock with preemption with constant
delay (T&S/P)2.

Evaluation environment
We have used a shared-bus multiprocessor system for

the evaluation. The shared bus is based on the VME-
bus specification, and each processor node consists of a
20 MHz GMICRO/200 microprocessor, which is rated at
approximately 10 MIPS, 1 MB of local memory, and some
I/O interfaces. The local memory can be accessed from
other processors through the shared bus. No cache memory
is equipped. The program code and the data area for each
processor are placed in the local memory of the processor.
G lobal shared data (e.g.L in Fig. 1) is placed in the local
memory of the master processor, which does not execute
spin locks.

The GMICRO/200 microprocessor supports the com-
pare and swap instruction but not fetch and store. In our
experiments, the fetch and store operation was emulated
using the compare and swap instruction and a retry loop.
As the VMEbus has only four pairs of bus request/grant
lines, processors are classified into four classes by the bus
request line they use. The round-robin arbitration scheme
is adopted among classes and the static priority scheme is
applied among processors belonging to a same class.

Measurement method
Each processor executes the code presented in Fig. 3

while periodic interrupt requests are raised on the processor.
The execution time of a critical region (the region between
1�and 2�in Fig. 3) is measured for each execution, and
its distributions when the processor services no interrupt
request during the region and when it services an interrupt
are collected. The interrupt latency is also measured for
each interrupt service and its distribution is obtained.

Inside the critical section, a processor accesses the
shared bus some number of times (for making the effect of
bus traffic explicit) and waits for a while using empty loops.
Without spin locks, the execution time of the critical region

2Past studies show that a test-and-set lock has good scalability with
exponential backoff [2]. However, because the lock acquisition time
varies widely with exponential backoff, it is inappropriate for real-time
systems. This conjecture was also confirmed through our experiments.

is about 40 �s including some overhead for obtaining the
execution time of the region. In order to change timing
conditions, each processor waits for a random time before
it re-enters the critical region (random delay in Fig. 3).
The average time of the random delay is about 40 �s.

Empty loops are also included in the interrupt handler
in addition to the routine for obtaining interrupt latency
time. The total execution time of the interrupt handler is
about 80 �s. The period of interrupt requests is about 5 ms.
The exact length of the period is varied in 0–2% for each
processor.

Performance metric

In real-time systems, the effectiveness of algorithms
should not be evaluated with their average performance
but with their worst-case execution (or response) times.
However, in the case of spin lock algorithms, worst-case
times cannot be obtained through experiments because of
unavoidable non-determinism in multiprocessor systems.
Therefore, in place of worst-case times, we have adopted
�-reliable times, the time within which a processor finishes
executing a critical region (or responds to an interrupt
request) with probability �, as a performance metric. In the
following section, we show the evaluation results when �

is 0.999 (i.e. 99.9%).

Evaluation results

Fig. 4 presents the 99.9%-reliable execution time of
the critical region (when no interrupt is serviced on the
processor during the region) as the number of processors is
increased from one to eight. With QL/P1 and QL/P2, the
execution time of the critical region increases linearly with
the number of processors, and the algorithms are found to
be scalable. QL/ei exhibits poorer performance because
preceding processors service interrupt requests during the
critical region.

In Fig. 5, the interrupt latency time is nearly independent
of the number of processors with QL/P1 and QL/P2. With
QL/di on the contrary, the interrupt latency becomes long
as the number of processors increases.

From these observations, it is demonstrated that QL/P1
and QL/P2 can give a practical upper bound on the time to
acquire and release an interprocessor lock while achieving
fast response to interrupt requests. The other algorithms
cannot satisfy these two requirements at the same time.

The overall performance of QL/P2 is a little worse than
QL/P1, because the number of shared-bus transactions
is large with QL/P2 and because doubly linked queue is
necessary. The advantage of QL/P2 appears in Fig. 6 which
presents the 99.9%-reliable execution time of the critical
region when an interrupt is serviced during the region.
When the number of processors is large, the recovering
overhead from interrupt services is much smaller in QL/P2
than in QL/P1.

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8

ex
ec

. t
im

e
of

 c
ri

tic
al

 r
eg

io
n

(m
ic

ro
 s

ec
.)

number of processors

QL/P1
QL/P2
QL/ei
QL/di

T&S/P

Fig. 4: 99.9%-reliable exec. time of critical region
(when no interrupt is serviced)

0

50

100

150

200

1 2 3 4 5 6 7 8

in
te

rr
up

t l
at

en
cy

 (
m

ic
ro

 s
ec

.)

number of processors

QL/P1
QL/P2
QL/ei
QL/di

T&S/P

Fig. 5: 99.9%-reliable interrupt latency

Finally, in order to examine the average performance of
the algorithms, we present the average execution time of
the critical region (when no interrupt is serviced during the
region) in Fig. 7.

5 Conclusion

Conventional spin lock algorithms cannot satisfy two
important requirements for real-time systems using asym-
metric shared-memory multiprocessors, predictable spin
locks and fast interrupt response, at the same time. In
this paper, we propose a improved spin lock algorithm
that can give an upper bound on the time to acquire and
release an interprocessor lock while realizing fast response
to interrupt requests. To evaluate their effectiveness, we
have measured their performance through experiments and
confirmed that the algorithms have the required properties.

We are currently designing a real-time kernel specifica-
tion called ITRON-MP and implementing it experimentally
[6]. It remains as a future work to adopt the algorithms in
the implementation and to evaluate the algorithms in real
applications.

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8

ex
ec

. t
im

e
of

 c
ri

tic
al

 r
eg

io
n

(m
ic

ro
 s

ec
.)

number of processors

QL/P1
QL/P2
T&S/P

Fig. 6: 99.9%-reliable exec. time of critical region
(when an interrupt is serviced)

0

50

100

150

200

250

1 2 3 4 5 6 7 8

ex
ec

. t
im

e
of

 c
ri

tic
al

 r
eg

io
n

(m
ic

ro
 s

ec
.)

number of processors

QL/P1
QL/P2
QL/ei
QL/di

T&S/P

Fig. 7: Average exec. time of critical region

References
[1] H. Takada and K. Sakamura, “A bounded spin lock algo-

rithm with preemption,” Tech. Rep. 93-2, Department of
Information Science, University of Tokyo, July 1993.

[2] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for scal-
able synchronization on shared-memory multiprocessors,”
ACM Trans. on Computer Systems, vol. 9, pp. 21–65, Feb.
1991.

[3] R. W. Wisniewski, L. Kontothanassis, and M. L. Scott,
“Scalable spin locks for multiprogrammed systems,” Tech.
Rep. TR454, Computer Science Department, University of
Rochester, Apr. 1993.

[4] T. S. Craig, “Queuing spin lock algorithms to support tim-
ing predictability,” in Proc. Real-Time Systems Symposium,
pp. 148–157, Dec. 1993.

[5] E. P. Markatos, “Multiprocessor synchronization primitives
with priorities,” in Proc. of the IEEE Workshop on Real-Time
Operating Systems and Software, May 1991.

[6] H. Takada and K. Sakamura, “ITRON-MP: An adaptive real-
time kernel specification for shared-memory multiprocessor
systems,” IEEE Micro, vol. 11, pp. 24–27,78–85, Aug. 1991.

