
Issues for Realizing a Scalable Real-Time Kernel
for Function-Distributed Multiprocessors

Hiroaki Takada�, Cai-Dong Wang�, and Ken Sakamura�

� Department of Information Science, � The University Museum,
School of Science, University of Tokyo University of Tokyo

7–3–1 Hongo, Bunkyo-ku, Tokyo 113, Japan 7–3–1 Hongo, Bunkyo-ku, Tokyo 113, Japan
Email: hiro@is.s.u-tokyo.ac.jp

Abstract
In multiprocessor systems, the worst-case execution time

of a task that exclusively accesses a shared resource is un-
avoidably prolonged as the number of contending processors
is increased. In case of function-distributed multiproces-
sors, because many of the tasks can be processed without
synchronizing with other processors, it is advantageous that
their worst-case behavior are independent of the number
of processors in the system. This paper summarizes the
required properties on scalable real-time kernels and dis-
cusses their realization techniques. What we have solved so
far are described, and the remaining problem to be solved
is presented.

1 Introduction
In many applications of high-performance real-time sys-

tems, a system is required to handle a large number of
external devices and to respond to the events from the
devices within predefined and usually short time-bounds.
Adopting a function-distributed multiprocessor, in which
each external device is interfaced to the local bus of a pro-
cessor and is handled only by the processor, is a promising
approach to satisfying this requirement (Figure 1).

In order to realize a real-time system on a multiprocessor
environment, predictable and scalable inter-processor syn-
chronization is among the significant issues. A real-time
synchronization protocol for multiprocessors such as those
in [1, 2, 3] is necessary to be adopted in the application
level. In addition, the underlying synchronization mecha-
nism used in the run-time system must also be predictable
and scalable. In implementing the priority ceiling protocol
for shared-memory multiprocessors in [1], for example, a
spin lock is used as an underlying synchronization primitive
to guard the queue of tasks that are waiting to enter an
application-level critical section. Another queue (called a
ready queue) of the tasks that are ready to execute on a
processor should also be guarded with a spin lock. Those
queues of tasks are shared among processors and thus must
be accessed exclusively by a processor within the run-time
system.

It is ideal from the scalability point of view that the
worst-case execution time of each run-time system service

Global
Memory

Local
Memory

I/O MPU

Local
Memory

I/O MPU

Local
Memory

I/O MPU

I/OI/Fnetwork
��

sensors actuator

external
storage

Figure 1: Function-Distributed Multiprocessor

is determined independently of the number of processors in
the system and of the activities of other processors. Here
exists an obvious limitation, however, that the worst-case
execution time of a routine that exclusively accesses a
shared resource is prolonged, as the number of contending
processors is increased, with its linear order at least. Though
multiprocessor real-time systems have been actively studied,
little studies have focused on the scalability of worst-case
behavior.

Our study is to ease this difficulty by taking the gen-
eral design rule of function-distributed multiprocessors into
account that external devices and tasks handling them are
allocated to processors so that as many tasks as possible can
be processed within a processor (or without synchronizing
with other processors). The maximum execution times of
those tasks should be independent of the number of con-
tending processors in the system. In addition, the maximum
execution times of other tasks should be bounded with its
linear order.

2 Kernel Model and Lock Units
In this study, the basic model of real-time kernels1 for

function-distributed multiprocessors is specified as follows.
Each task has its host processor on which it is executed,

1In this paper, the word “real-time kernel” indicates a basic run-time
system for real-time systems supporting task management, priority-based
preemptive scheduling, inter-task synchronization and communication, and
some other functions, which is also called as a real-time monitor or a
real-time executive.



and is called a local task of the processor. A task can
synchronize and communicate with any task in the system
with the same set of operations. A ready queue is prepared
for each processor in which all the local tasks that are ready to
execute on the processor are included in the descending order
of priorities. Each task-independent synchronization and
communication object (simply called as a synchronization
object below), such as a semaphore (or a mutex) and an
eventflag (or a condition variable), also has its host processor
and can be accessed from any task in the system.

In designing a software system on shared-memory mul-
tiprocessors, the granularity of lock units guarding shared
data structures is always a difficult issue. In implementing
a real-time kernel, making lock units so small that many
locks are necessary to be acquired in nested structure in
some operations is not an appropriate approach, because the
execution time of each operation is very short and the lock
acquisition overhead is relatively large.

The simplest method to avoid nested locks is to enter all
kernel data structures in one lock unit. With this method,
however, because only one kernel service can be executed at
the same time, the total throughput to execute kernel services
cannot scale well. Thus we have premised that kernel data
structures on different processors, at least, should be placed
in different lock units.

Under this premise, at least two locks are necessary
to be acquired in nested structure. In concrete, when a
task begins waiting on a synchronization object, it first
accesses the control block of the object and then accesses
the task control block (TCB) of itself. When the task
and the synchronization object are located on different
processors, their control blocks are placed in different lock
units. The same situation also occurs when a task operates
on a synchronization object and wakes up another task that
has been waiting on the object.

In order to determine an appropriate granularity of lock
units, we have examined a real-time kernel implementation
for single processors based on the�ITRON 3.0 Specification
[4]. As the result, two lock units are prepared for each
processor; one of the locks (called the task lock) guards
the TCBs and the ready queue on a processor and the other
lock (called the object lock) guards the control blocks of
the synchronization objects on the processor. With this
granularity of lock units, at most two lock units, an object
lock and a task lock in this order, are necessary to be acquired
in nested structure except for some rarely used operations.

3 Required Properties
As described in Section 1, the worst-case execution

times of the operations that access shared data structures
are unavoidably prolonged, as the number of contending
processors is increased. In case of function-distributed
multiprocessors, this difficulty is greatly relieved if the
worst-case execution times of the operations that can be
done within a processor are independent of the number of
contending processors. Processings that can be done within
a processor include synchronizations and communications

with another task on the same processor and interrupt ser-
vices requested by the external devices attached to the local
bus of the processor.

In addition, the worst-case execution times of the oper-
ations within a processor should not depend on the other
processors’ activities. Conversely, it is also desired that ac-
tivities within a processor do not affect the timing behavior
of the processings on the other processors.

These discussions can be summarized in the following
four properties that scalable real-time kernels for function-
distributed multiprocessors are required to satisfy [5].

(A) The maximum execution time of an operation that is
to synchronize or communicate with tasks on the same
processor (called a local operation) can be determined
independently of the other processors’ activities and
the number of contending processors.

(B) The maximum execution time of an operation that is
to synchronize or communicate with tasks on other
processors can be determined independently of the
other processors’ activities and be bounded with a
linear order of the number of contending processors.

(C) The maximum interrupt response time on each pro-
cessor can be determined independently of the other
processors’ activities and the number of contending
processors.

(D) The interrupt service overhead can be determined in-
dependently of the other processors’ activities and the
number of contending processors.

In the property (D), the interrupt service overhead is
defined to be the wasted computation time caused by an
interrupt service, which should be added to the interrupt
service time when the schedulability of the system is an-
alyzed. Because interrupt services are usually requested
more frequently than tasks, a small increase in the interrupt
service overhead can severely degrade the schedulability
of the system. Therefore, this property is necessary for
the scalability, though not so essential as the former three
properties.

4 What has been Achieved
In this section, we focus on the case when task-

independent synchronization objects are not supported.
Without task-independent synchronization objects, only one
lock unit is necessary for each processor, which guards all
shared data structures on its local memory. A processor
needs to acquire at most one lock unit at the same time.

Even with this limitation, the above four properties can-
not be obtained with a straightforward implementation.
Specifically, there are two problems for satisfying these
properties; incompatibility of constant interrupt response
and predictable inter-processor synchronization, and lack of
scalability in local operations. Our proposed solutions to
these problems are described below.

The first problem is that constant interrupt response
(the property (C)) is not compatible with predictable inter-



processor synchronization (the property (B)) for the follow-
ing reason. In order to bound the time until a processor
acquires an inter-processor lock, it is necessary to bound the
duration that each processor holds the lock as well as the
number of contending processors that the processor must
wait for. The latter condition can be met with a FIFO-
ordered spin lock, with which the turn that a processor
acquires a lock is reserved when it begins waiting for the
lock. In order to satisfy the former condition, interrupt
services should be inhibited while the processor holds a
lock.2 On the other hand, in order to make the maximum
interrupt response independent of the number of processors,
the processor must service interrupt requests while waiting
for a lock. These conditions, however, cannot be satisfied
with conventional spin lock algorithms.

To solve this problem, we have proposed two FIFO-
ordered queueing spin lock algorithms supporting preemp-
tion [6]. With the simpler one of the algorithms, when a
processor begins interrupt services while waiting for a lock,
it informs others that it is servicing interrupts. The pro-
cessor releasing the lock checks the state of the succeeding
processor. When the succeeding one is servicing interrupts,
its reservation to acquire the lock is canceled and the lock is
passed to the next one in line. When a processor find that
its reservation has been canceled while servicing interrupts,
it re-executes the lock acquisition routine from the begin-
ning. Clearly, this re-execution overhead, which should be
included in the interrupt service overhead, depends on the
number of contending processors, and the property (D) is not
satisfied. With our improved algorithm in [6], when the turn
to acquire a lock comes during interrupt services, the reser-
vation is not canceled but is postponed. When the processor
returning from the interrupt services, it resumes waiting for
the lock in its original position. With this improved scheme,
the interrupt service overhead can be reduced to a constant
time length, and thus the property (D) is satisfied.

The second problem is that the worst-case execution times
of local operations depend on the number of contending
processors. This is because a task must acquire an inter-
processor lock even when it accesses a task on the same
processor. We have solved this problem by giving the
precedence in acquiring a lock to its host processor [7].
In other words, a processor can acquire the lock unit that
guards its local data structures with precedence over the other
processors. With this scheme, the maximum execution time
of a local operation becomes independent of the number of
contending processors. More precisely, a task must wait
for at most one critical section executed by other processors
until it acquires its local lock. On the other hand, the
maximum number of critical sections that a processor must
wait for until it acquires a non-local lock is increased. In

2There is another solution to this problem that the number of interrupt
requests that are serviced while a processor holds a lock is limited to a
constant number. We have not adopted this solution because the maximum
execution time of some interrupt service is much longer than that of a
critical section. As the result, the maximum duration that a processor
holds a lock becomes very long and thus the schedulability of the system is
severely degraded.

more precise, when a task tries to acquire a non-local lock,
it must wait for � � 1 critical sections executed by its host
processor in addition to � � 2 critical sections executed by
the other processors (where � is the number of contending
processors in the system).

Effectiveness of our proposed solutions has been demon-
strated through performance measurements using an existing
multiprocessor system [5]. It is confirmed through the mea-
surements that the four properties are practically satisfied
with our proposals,3 while they cannot be met at the same
time with other methods.

We have also proposed an approach to classify tasks
according as their characteristics [8]. Especially, we clas-
sify the tasks that do not synchronize or communication
with tasks on other processors as private tasks, which are
managed differently from the local tasks. Task-independent
synchronization objects can also be classified accordingly.
Another useful class of tasks are global tasks, which can be
executed on any processor in the system and can migrate
dynamically.

5 What is Remaining to be Solved
In this section, realization techniques when task-

independent synchronization objects are supported are dis-
cussed. In this case, two lock units, an object lock and a
task lock, are necessary to be acquired in some operations.

The property (A) can be satisfied by classifying synchro-
nization objects into private ones and shared ones, and by
managing them differently.4 On the other hand, the prop-
erty (B) is not satisfied if each lock is realized with a simple
FIFO-ordered spin lock algorithm. With this straightforward
method, the maximum execution time to acquire nested spin
locks becomes a square order of the number of contending
processors and cannot be bounded with its linear order. We
have also proposed a method with which this problem can
be solved [9].

Below, two methods are presented to satisfy the properties
(C) and (D), but in vain.

The First Method

In order to satisfy (C), when an interrupt is requested to
a processor while it is waiting for a lock, the processor must
suspend the spin-waiting and start servicing the interrupt
request. When an interrupt request occurs while a processor
is waiting for the outer lock, the improved preemption
scheme described in Section 4 can be applied.

When an interrupt request occurs while a processor is
waiting for the inner lock, it must release the outer lock

3Strictly speaking, some assumptions on underlying spin lock algorithm
and hardware architecture are necessary to satisfy the four properties [5].
Although our software-implemented spin lock algorithm in [6] does not
satisfy one of the properties in strict, the effect is so small that it can be
ignored in usual applications. For very hard real-time applications, the spin
lock should be implemented with hardware.

4This real-time kernel model is best suited to the run-time system for
the priority ceiling protocol for shared-memory multiprocessors in [1].



retry:
disable interrupts;
if (�acquire lock(Object Lock)) then

enable interrupts;
interrupt requests are serviced here;
goto retry

end;
deterimine which lock to acquire next;
if (�acquire lock(Task Lock)) then

release lock(Object Lock);
enable interrupts;
interrupt requests are serviced here;
goto retry

end;
execute the operation;
release lock(Task Lock)
release lock(Object Lock);
enable interrupts;

Figure 2: Nested Spin Locks with Preemption

before servicing the interrupt request, in addition to sus-
pending the spin-waiting for the inner lock. Otherwise, the
maximum duration that the processor holds the outer lock
includes interrupt service times. The skeleton of the routine
acquiring nested locks is presented in Figure 2. In this
figure, the acquire lock function is assumed to return false,
when an interrupt is requested during the spin-waiting. With
this method, the processor must re-acquire the outer lock
after interrupt services. This re-acquisition overhead, which
depends on the number of contending processors, should
be included in the interrupt service overhead, and thus the
property (D) cannot be satisfied.

The Second Method

In order to satisfy the property (D), a processor should be
able to come back to the original state with a constant time
length after interrupt services. In concrete, after returning
from an interrupt service which is requested while waiting
for the inner lock, the processor should wait for the outer
lock at the top of its waiting queue instead of its end. This
scheme can make the interrupt service overhead independent
of the number of contending processors and satisfy (D).

With this scheme, however, the property (B) cannot be
met with the following reason. Suppose the case that a
processor �1 is holding the outer lock � on which two other
processors�2 and�3 are waiting. If an interrupt is requested
on �1 while it is waiting for the inner lock, �1 suspends
waiting for the inner lock, passes the outer lock � to �2,
and starts the interrupt service. �2 acquires � and begins
executing the critical section. Assume that �2 is waiting for
the inner lock and is still holding � when �1 returns from
the interrupt service. In this case, �1 returns to the top of
the waiting queue, i.e. in front of �3. If an interrupt request
is raised on �2 at this moment, it passes the lock � to �1.
Again, �2 can return to the top of the waiting queue, i.e.
in front of �3. This process can continue permanently and
violates the property (B).

6 Concluding Remarks
In this paper, requirements on scalable real-time kernels

for function-distributed multiprocessors are summarized in
four properties, and its realization techniques are discussed.
So far, we have proposed a solution in the case that only
one lock unit is necessary to be acquired at the same time,
while the realization method when more than one locks are
acquired in nested structure is an open issue.

A possible approach to its realization is to incorporate
the notion of block-free or wait-free synchronizations and
to avoid nested spin locks. More precisely, the processings
which needs the outer lock should be realized in a block-free
or wait-free fashion [10]. Because the manipulations of
a TCB and a ready queue are too complicated to realize
in block-free or wait-free with reasonable performance, the
inner lock should be used even with this approach. Another
promising approach is to incorporate the concept in realizing
wait-free synchronization to the inner lock. More precisely,
the operation within the inner lock is posted to the waiting
queue for the lock and is executed by another processor
during an interrupt service.

We would like to report the results of these investigations
in the future.

References
[1] R. Rajkumar, “Real-time synchronization protocols for shared

memory multiprocessors,” in Proc. Int’l Conf. Distributed
Computing Systems, pp. 116–123, May 1990.

[2] V. B. Lortz and K. G. Shin, “Semaphore queue priority
assignment for real-time multiprocessor synchronization,”
IEEE Trans. Software Engineering, vol. 21, pp. 834–844,
Oct. 1995.

[3] I. Rhee and G. R. Martin, “A scalable real-time synchroniza-
tion protocol for distributed systems,” in Proc. Real-Time
Systems Symposium, pp. 18–27, Dec. 1995.

[4] K. Sakamura, ed., �ITRON 3.0 Specification. Tokyo: TRON
Association, 1994. (can be obtained from “ftp://tron.um.u-
tokyo.ac.jp/pub/TRON/ITRON/SPEC/mitron3.txt.Z”).

[5] H. Takada, Studies on Scalable Real-Time Kernels for
Function-Distributed Multiprocessors. PhD thesis, School
of Science, University of Tokyo, Sept. 1996.

[6] H. Takada and K. Sakamura, “Predictable spin lock al-
gorithms with preemption,” in Proc. Real-Time Operating
Systems and Software, pp. 2–6, May 1994.

[7] H. Takada and K. Sakamura, “Inter- and intra-processor
synchronizations in multiprocessor real-time kernel,” in Proc.
4th Int’l Workshop on Parallel and Distributed Real-Time
Systems, pp. 69–74, Apr. 1996.

[8] H. Takada and K. Sakamura, “Towards a scalable real-time
kernel for function-distributed multiprocessors,” in Proc.
20th IFAC/IFIP Workshop on Real Time Programming, Nov.
1995.

[9] H. Takada and K. Sakamura, “Real-time scalability of nested
spin locks,” in Proc. 2nd Real-Time Computing Systems and
Applications, pp. 160–167, Oct. 1995.

[10] M. Herlihy, “Wait-free synchronization,” ACM Trans. Pro-
gramming Languages and Systems, vol. 13, pp. 124–149,
Jan. 1991.


