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Abstract

Predictable interprocessor synchronization and fast interrupt response are important for
real-time systems constructed using asymmetric shared-memory multiprocessors. This paper
points out the problem that existing spin lock algorithms cannot satisfy both requirements
at the same time, and proposes a new algorithm to solve this problem. The algorithm, an
extension of queueing spin locks modified to be preemptable for servicing interrupts, can give
an upper bound on the time to acquire and release an interprocessor lock while achieving fast
response to interrupt requests. The effectiveness of the algorithm is demonstrated through
performance evaluation.

1 Introduction

Requirements for large-scale and high performance real-time systems are increasing with the ex-
pansion of the application areas of embedded real-time systems. In particular, these requirements
are rapidly increasing in the areas of large-scale control systems (industrial-plant control and air-
craft control systems), and communication servers (packet switchers and network routers). In
these applications, many external devices such as sensors, actuators, and network controllers are
connected to a system and not only massive computational power but also fast and predictable
response to external events from the devices are required. Adopting a multiprocessor architecture
is a promising approach to make a system responsive to growing numbers of external events.

Since the required processing time for each external device can be estimated beforehand in
most of these applications, it is preferable that each device be handled by a fixed processor (or a
fixed set of processors) and that the interface with the device be connected to the local bus of the
processor. A distributed shared-memory architecture is also adopted in which memory modules
are connected to the local bus of processors. In this kind of asymmetric multiprocessor system,
because the code and data areas of the program handling an external device are placed in the local
memory of the processor for the device, the number of shared-bus (or interconnection network)
transactions can be reduced compared to a symmetric architecture. This is profitable not only
because the high-performance shared bus and expensive cache mechanisms can be omitted, but
also because the predictability of the system can be improved through the reduction of access
conflicts on the shared bus.

We are designing a real-time kernel specification called ITRON-MP! mainly for this kind of
asymmetric shared-memory multiprocessor, and implementing it experimentally [2].

In order to realize predictable real-time systems using shared-memory multiprocessors, a pre-
dictable interprocessor synchronization mechanism is of primary importance. In addition to adopt-
ing a real-time scheduling algorithm with resource constraints (e.g. the algorithm in [3]) or a real-
time synchronization protocol (e.g. [4]), the execution time of the underlying mutual exclusion

IITRON-MP is a shared-memory multiprocessor extension of ITRON, a real-time kernel specification for em-
bedded systems [1].



mechanism must be bounded. In this paper, we focus on bounded spin lock algorithms, with which
the time to acquire and release an interprocessor lock is bounded?.

Fast response to external events is also important for high performance real-time systems.
Because external events are notified to each processor in the form of interrupts in asymmetric
shared-memory multiprocessors, the major reason for response degradation is to inhibit interrupt
services for realizing mutual exclusion among tasks and interrupt handlers on the processor. Par-
ticularly, the maximum interrupt inhibition time should be given independently of the number
of processors in order to make the system scalable. Fast interrupt response is also important in
making blocking-based interprocessor synchronization fast, because a synchronization condition is
usually notified using an interprocessor interrupt mechanism.

We first point out the problem that these two requirements, bounded spin lock and fast inter-
rupt response, are not compatible using existing spin lock algorithms in Section 2. In Section 3, a
new spin lock algorithm is proposed to solve this problem. The algorithm can give an upper bound
on the time to acquire and release an interprocessor lock while realizing fast response to inter-
rupt requests. In Section 4, the effectiveness of the proposed algorithm is demonstrated through
performance evaluation.

2 Spin Locks in Multiprocessor Real-Time Systems

2.1 Existing Spin Lock Algorithms

Spin lock algorithms for shared-memory multiprocessors have been intensively studied under vari-
ous conditions. In this paper, we assume that atomic read-modify-write operations on a single word
of shared memory are supported in hardware. Typical examples of the operations are test_and_set,
fetch_and_store (swap), fetch_and_add, and compare_and_swap.

On the same assumption, J. M. Mellor-Crummey and M. L. Scott have classified major spin
lock algorithms into following four categories [5].

Test-and-set Locks

Each processor trying to acquire a lock repeatedly executes a test_and_set operation on
a shared Boolean variable indicating the lock status. It releases the lock by clearing the
variable. There are many variations of this algorithm in how each processor retries to
execute a test_and_set operation [6].

Ticket Locks

Two shared counters are used in ticket locks: a request counter and a release counter. Each
processor increments the request counter using a fetch_and_add operation and obtains the
old value of the counter, which indicates its turn to acquire the lock. Then, it waits until
the release counter is equal to the value. To release the lock, the processor increments the
release counter. There are some variations in how each processor retries to read the release
counter.

Array-Based Queueing Locks

In this class of algorithms, each processor is linked to an array-based queue. An algorithm
using a fetch_and_add operation [6] and another using a fetch_and_store operation [7] have
been proposed. With these algorithms, the number of shared-bus transactions is bounded
on cache-coherent multiprocessors independently of the number of processors, and the bus
contention problem is resolved.

List-Based Queueing Locks

2When we say that there is an upper bound on the acquisition or release time in spin locks, we assume that the
access time of the shared bus is bounded.



type gqnode = record
next: pointer to qnode;
locked: (Released, Locked)
end;
type lock = pointer to gqnode;

shared var L: lock;
// L is initialized to NIL.

var I: gqnode;
var pred: pointer to qnode;

I.next := NIL;
pred := fetch_and store(&L, &1);
if pred # NIL then
I.locked := Locked;
pred—next := &I;
repeat until [.locked = Released
end;

//

// critical section.

/!
if I.next = NIL then

if compare_and_swap(&L, &I, NIL) then
goto exit
end;
repeat until I.next # NIL
end;
I.next—locked := Released;
exit:

Figure 1: The MCS lock

In this class of algorithms, each processor trying to acquire a lock is linked to an list-based
queue. The MCS lock algorithm using a fetch_and _store operation and a compare_and_swap
operation has been proposed [5]. There is a variation which uses fetch_and_store operations
only.

Pseudo-code for the MCS lock appears in Figure 1. In this figure, the keyword shared
indicates that only one instance of the variable is allocated and shared in the system. Other
variables are allocated for each processor. Fetch_and_store reads the memory addressed
by the first parameter (which must be a pointer), returns the contents of the memory as
its value, and atomically writes the second parameter to the memory. Compare_and_swap
is a Boolean function with three parameters. It first reads the memory pointed to by the
first parameter and compares its contents with the second parameter. If they are equal, the
function writes the third parameter to the memory atomically and returns true. Otherwise,
it returns false3.

With the MCS lock, when the queue node area of each processor (variable I in Figure 1)
is located on its local memory?, the number of shared-bus transactions is bounded even on
multiprocessors without a coherent cache.

In these algorithms, test-and-set locks are not appropriate for real-time systems because the time
until a processor can acquire a lock cannot be bounded.

3The compare_and_swap instructions of many existing processors store the contents of the memory to the third
parameter in this case. This mechanism is not used in this paper.

4The local memory of a processor is memory which can be accessed from the processor without using the shared
bus and can be accessed from others through the shared bus.



acquire_lock;
disable_interrupts;

//

// critical section.

//

enable_interrupts;
release_lock;

Figure 2: Acquiring a lock precedes disabling interrupts

disable_interrupts;
acquire_lock;

//

// critical section.

//

release_lock;
enable_interrupts;

Figure 3: Disabling interrupts precedes acquiring a lock

2.2 Bounded Spin Lock and Interrupt Latency

In order to bound the time until a processor acquires a lock for accessing shared data, the duration
that each processor holds the lock as well as the number of contending processors that the processor
waits for must be bounded. The latter condition can be met with ticket locks or queueing locks
described in the previous section. To satisfy the former condition, the relationship with interrupt
services must be considered.

In asymmetric multiprocessor systems, interrupt services for external devices are requested for
each processor. When multiple devices are connected to a processor, interrupt requests from them
are usually raised independently and the maximum time to service all of the requests becomes
long. Consequently, in order to give a practical bound on the duration that a processor holds a
lock, interrupt services should be inhibited for that duration.

On the other hand, in order to realize a system with fast response to external events, each
processor must be able to service external interrupts with short latency time. Therefore, interrupt
mask times should be minimized. Particularly, when the extensibility of the system is an important
issue, the maximum interrupt mask time should be given independently of the number of processors
in the system.

Here, a problem arises in deciding whether interrupts should be disabled or an interprocessor
lock should be acquired first. Figure 2 presents a method in which acquiring an interprocessor lock
precedes disabling interrupts. With this method, interrupts are serviced while the processor holds
the lock, and the condition that interrupt services should be inhibited while a processor holds a
lock is not satisfied. Figure 3 presents another method where acquiring a lock follows disabling
interrupts. In this method, the interrupt mask time includes the time to acquire an interprocessor
lock and its bound depends on the number of processors.

To satisfy both of the requirements, bounded interprocessor mutual exclusion and fast interrupt
response, interrupt services should not be inhibited while a processor waits for an interprocessor
lock and should be kept inhibited after the processor acquires the lock. One method to realize
this principle is the following. The processor first disables interrupts and tries to acquire the lock.
If it fails to acquire the lock, the processor probes interrupt requests before it retries to acquire
the lock. When interrupt requests are detected, it suspends trying to acquire the lock, enables
interrupts, and services them. Pseudo-code for the test-and-set lock with preemption, an extension
of the simple test-and-set lock algorithm with this method, appears in Figure 4 [8].

In ticket locks and queueing locks, on the other hand, a processor modifies some shared data
and reserves its turn to acquire a lock when it begins to wait for the lock, and the lock 1s passed
to the processor by another when its turn comes. Therefore, if the processor simply branches
to the interrupt handler in detecting requests and if its turn comes during the interrupt service,



type lock = (Released, Locked);

shared var L: lock;
// L is initialized to Released.

disable_interrupts;
while test_and_set(L) = Locked do
if interrupt_requested then
enable_interrupts;
// interrupt service.
disable_interrupts
else
delay
end
end;

//

// critical section.

//
L := Released,;

enable_interrupts;

Figure 4: The test-and-set lock with preemption

the remaining interrupt service time is included in the time that the processor holds the lock.
Consequently, simple extensions of ticket locks and queueing locks with the above method do not
satisfy the above principle. In the following section, we present a new algorithm, an extension of
a queueing lock, with which a processor can service interrupts with short latency while satisfying
the principle.

3 A Queueing Lock with Preemption

In this section, we present a new algorithm that can give an upper bound on the time until a
processor acquires a lock and that enables interrupt services while the processor waits for the lock.

In all spin lock algorithms which can give a bound on the time until a processor acquires a
lock, a processor modifies some shared data and determines its turn to acquire a lock when it
begins to wait for the lock. If the processor simply branches to an interrupt handler while waiting
for the lock, it cannot begin executing the critical section immediately after the lock is passed to
the processor by another, and makes the contending processors wait wastefully until the interrupt
service is finished. Therefore, when a processor begins to service interrupts while waiting, it must
inform other processors that it is servicing interrupt requests and should not be passed the lock.
The processor trying to release the lock checks if the succeeding processor is servicing interrupts. If
the succeeding processor is found to be servicing interrupts, its turn to acquire the lock 1s canceled
or deferred, and the lock is passed to the next in line.

Pseudo-code for an extended algorithm of the MCS lock with the above method appears in
Figure 5. In this figure, the right hand side of the operator and is assumed to be evaluated if its
left hand side is true. CAS is an abbreviation of compare_and_swap.

In this algorithm, a processor informs others that it is servicing interrupts by writing the value
Preempted to the state field of its queue node record (i.e. I.state).

If the processor releasing the lock (Fp) finds that the succeeding processor (Py) is servicing
interrupts, Py dequeues P; from the waiting queue for the lock and passes the lock to the successor
of P;. When only P is waiting for the lock, Py makes the waiting queue empty. P, informs Py
that P; i1s dequeued by changing the value of the state field of P;’s queue node to Released.
During this process, a transient status occurs that P;’s queue node has been dequeued but that
the node area must not be reused because the value of its next field is necessary. P, informs P;
of this transient status by writing the value Canceled to the state field of P;’s queue node.



type gqnode = record

next: pointer to qnode;

state: (Released, Locked, Preempted, Canceled)
end;
type lock = pointer to qnode;

shared var L: lock;
// L is initialized to NIL.

var I: qnode;
var pred, succ, sn: pointer to qnode;

retry:
I.next := NIL;
disable_interrupts;
pred := fetch_and store(&L, &I);
if pred # NIL then
I.state := Locked,;
pred—next := &I;
while (I.state # Released) do
if interrupt_requested and
CAS(&(ILstate), Locked, Preempted) then
enable_interrupts;
// interrupt service.
disable_interrupts;
if =CAS(&(I.state), Preempted, Locked) then
enable_interrupts;
repeat while [.state # Released;
goto retry
end
end
end
end;
//
// critical section.
//
succ := [.next;
if succ = NIL then
if CAS(&L, &I, NIL) then goto exit end;
repeat succ := L.next until succ # NIL
end;
while ~CAS(&(succ—state), Locked, Released) do
if CAS(&(succ—state), Preempted, Canceled) then
sn := succ—next;
if sn = NIL then
if CAS(&L, succ, NIL) then
succ—state := Released;
goto exit
end;
repeat sn := succ—next until sn # NIL
end;
succ—state := Released;
succ := sn;
end
end;
exit:
enable_interrupts;

Figure 5: The queueing lock with preemption



When the processor that has branched to an interrupt handler while waiting for a lock finishes
the handler, it reads the state field of its queue node and checks whether it has been dequeued
during the interrupt service or not. If it has been dequeued, it re-executes the lock acquiring
routine from the beginning after waiting until its queue node area becomes reusable. Otherwise,
it recovers its state field to the value Locked and resumes waiting for the lock.

In this algorithm, a processor waiting for a lock can acquire the lock in the order of the waiting
queue and the time until 1t acquires the lock can be bounded if no interrupt request is raised on
the processor. In releasing a lock, the algorithm also gives an upper bound on the number of
search loops for identifying to which processor the releasing processor should pass the lock, unless
interrupt services start and finish repeatedly on the waiting processors®. As interrupt services are
inhibited while the processor holds a lock, no interrupt service time is included in the lock holding
time. Consequently, both the time until a processor acquires a lock and the time until it releases
the lock can be bounded in this algorithm under the above conditions.

When a processor services interrupts while waiting for a lock and is dequeued from the waiting
queue, the processor must re-execute the lock acquiring routine and link itself to the end of the
waiting queue. Therefore, the waiting time after it first links itself to the queue until 1t branches
to the interrupt handler is wasted. When the schedulability of the system is analyzed, this re-
execution overhead should be added to the interrupt service time.

When the execution time of the code inside the critical section is bounded, the interrupt mask
time is also bounded under the same condition that the releasing time is bounded. Because
a processor observes interrupt requests while it is waiting for a lock, the upper bound of the
interrupt mask time in the lock acquiring routine does not depend on the number of processors.
On the other hand, the interrupt mask time in the lock releasing routine depends on the number
of processors. However, it can be considered to be bounded in practice, because the number of
search loops follows an exponential distribution and because the processing time of one loop is
short.

The proofs of the important features of this algorithm, mutual exclusion and deadlock freedom
when a certain condition is laid on interrupt occurrence, is presented in Appendix A.

The queueing lock with preemption proposed in this section is based on the MCS lock. Array-
based queueing locks can be extended similarly. On the other hand, ticket locks cannot be extended
in this method, since the algorithms do not have a shared data area with which a processor informs
others of its status.

4 Performance Evaluation

In this section, the effectiveness of the queueing lock with preemption presented in Figure 5 (called
QL/P, in this section) is examined through performance evaluation. The performance of the algo-
rithm is compared with the MCS lock without inhibiting interrupts (QL/ei), the algorithm in which
interrupts are disabled before an interprocessor lock is acquired as appeared in Figure 3 using the
MCS lock (QL/di), and test-and-set locks with preemption presented in Figure 4. We have adopted
two versions of test-and-set locks with preemption: one with constant delay (T&S/P/const) and
another with exponential backoff in which the delay between successive test_and_set operations
is exponentially increased up to a predetermined bound (T&S/P/exp). Past studies show that
a test-and-set lock has good scalability with exponential backoff [5, 6]. However, because the
lock acquisition time varies widely with exponential backoff, it 1s expected to be inappropriate for
real-time systems. This conjecture is also confirmed through our experiments.

5 A processor can be visited twice in the search loops in the following case. Immediately after the processor is
dequeued from the waiting queue, it finishes the interrupt service and links itself to the end of the queue. If this
case repeatedly occurs until the processor to which to pass the lock is identified, the number of the loops is not
bounded. This case rarely occurs. But, when this problem cannot be ignored (when the number of processors is
large and when interrupts are requested frequently, in general), the algorithm should be modified so that writing
Released to the state field of a dequeued processor should be delayed until the processor to which to pass the lock
is identified.
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4.1 Evaluation Environment

We have used a shared-bus multiprocessor system for the evaluation. The shared bus is based on
the VMEbus specification, and each processor node consists of a 20 MHz GMICRO /200 processor,
1 MB of local memory, and some I/O interfaces (Figure 6). The GMICR0O/200 is a TRON-
specification CPU rated at approximately 10 MIPS with a 20 MHz clock [9]. The local memory
can be accessed from other processor nodes through the shared bus. No cache memory is equipped
on the processor node. In our experiments, the data area necessary for each processor and the
program code area are placed in the local memory of the processor. Data requiring only one
instance in the system 1s placed in the local memory of the master processor, which does not
execute spin locks.

A TRON-gspecification CPU supports three read-modify-write instructions: bit_test_and set
(BSETT), bit_test_and_clear (BCLRI), and compare_and_swap (CSI). Since the fetch_and store
operation necessary for the MCS lock and our algorithm is not supported, it was emulated using the
compare_and_swap instruction and a retry loop. Therefore, the feature of the MCS lock bounding
the number of shared-bus transactions was not realized in this experiments. The evaluation
programs were written in C with inline assembler code for the read-modify-write instructions.
There is some overhead in passing data between code written in C and code in assembler.

The round-robin arbitration of the VM Ebus was adopted in our experiments. As the VMEbus
has only four pairs of bus request/grant lines, the round-robin scheme can be applied to at most
four bus masters. Therefore, processors are classified into four classes by the bus request line
they use, and the static priority scheme is applied among processors belonging to a same class.
Accessing local memory on other processor nodes takes nearly 1 us and is a relatively slow operation
compared with the performance of the processor.

4.2 Measurement Method

We have adopted the following method in measuring the performance of the algorithms. Each
processor executes the code presented in Figure 7 while periodic interrupt requests are raised on
the processor by a cyclic timer. The execution time of a critical region (the region between @O
and (@ in Figure 7) is measured for each execution of the region, and the distributions when
no interrupt is serviced during the region and when an interrupt is serviced are obtained. The



fori:= 1 to NolLoop do
() acquire_lock_and_disable_interrupts;

//

// critical section.

//

release_lock;
(@ enable_interrupts;
random_delay
end;

Figure 7: Measurement Program Skeleton

interrupt latency 1s also measured for each interrupt service and its distribution is obtained.

Inside the critical section, a processor accesses memory through the shared bus some number
of times (for making the effect of bus traffic explicit) and waits for a while using empty loops.
When acquire_lock and release_lock are omitted, the execution time of the critical region is
about 40 ps including some overhead for obtaining the start and termination time of the region. In
order to change timing conditions, each processor waits for a random time following an exponential
distribution before it re-enters the critical region (random_delay in Figure 7). Here, the processor
also records the execution time of the critical region. The average time of the random delay plus
this recording time is about 40 us.

Empty loops are also included in the interrupt handler in addition to the processing for record-
ing interrupt latency. The total execution time of an interrupt handler is about 80 us. The period
of interrupt requests is about 2 ms. The exact length of this period is varied in 0-3% for each pro-
cessor in order that the timing of interrupt requests for each processor should not be synchronized.
Other interrupt requests are inhibited during the measurement.

4.3 Performance Metrics

Figure 8 presents the distributions of the execution time of the critical region with QL/P and
T&S/P/const, when four processors execute spin locks®. The fluctuations in short cycle appearing
in T&S/P/const is an effect of constant delay between test_and_set operations (delay in Figure 4).
Figure 9 presents the distributions of the interrupt latency under the same conditions.

Figure 9 shows that there are practical upper bounds on the interrupt latency with both
algorithms. On the contrary, Figure 8 indicates that it is difficult to determine the upper bound
of the execution time of the critical region with T&S/P/const. This is because which processor
acquires the lock is randomly determined with test-and-set locks, and illustrates that test-and-set
locks are not appropriate for real-time systems. As presented later in Figure 12, the difference of
the average execution times of the critical region with these two algorithms is only 10% or so.

In real-time systems, the effectiveness of algorithms should not be evaluated with their average
performance but with their worst-case execution (or response) times. However, in the case of spin
lock algorithms, worst-case times cannot be obtained through experiments because of unavoidable
non-determinism in multiprocessor systems. Worst-case times are also inadequate as a metric in
our evaluation because the execution time of a critical region cannot be bounded in test-and-set
locks. Therefore, in place of worst-case times we have adopted p-reliable times, the probability p
with which a processor finishes to execute a critical region (or responds to an interrupt request),
as a performance metric. In the following section, we show the evaluation results when p is 0.999

(ie. 99.9%).

4.4 Evaluation Results

Figures 10 and 11 present the 99.9%-reliable execution time of the critical region (when no inter-
rupts are serviced during the region) and the 99.9%-reliable interrupt latency time, respectively,

6Note that the vertical axis of Figure 8 and 9 (probability density) is in logarithmic scale.
"In our experiments, similar results were obtained when appeared worst-case times are used.
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as the number of processors is increased from one to eight.

In Figure 10, the execution time of the critical region increases linearly with the number of pro-
cessors with QL /P, and the algorithm is found to be scalable. QL/ei exhibits poorer performance
because processors service interrupt requests during the critical region. With T&S/P/const, the
execution time increases rapidly when the number of processor becomes large, and the algorithm
does not scale well. T&S/P/exp, the test-and-set lock with exponential backoff, has the worst
scalability.

In Figure 11, the interrupt latency time is nearly independent of the number of processors
with QL/P. With QL/di, on the contrary, the interrupt latency becomes long as the number
of processors increases. With T&S/P/const, the interrupt latency slowly increases because the
execution time of the code inside the critical section becomes longer due to the effect of shared-bus
contention.

From these observations, it is demonstrated that QL/P can give a practical upper bound on
the time to acquire and release an interprocessor lock while achieving fast response to interrupt
requests. The other algorithms cannot satisfy these two requirements at the same time.

Finally, in order to examine the average performance of the algorithms, we present the average
execution time of the critical region (when no interrupts are serviced during the region) in Fig-
ure 12. When the number of processors is small, QL /P is slower than T&S/P /const by about 10%.
As the number of processors becomes larger, the average performance of T&S/P/const becomes
worse. This is an effect of the bus contention problem and is not observed with T&S/P /exp,
which adopts the exponential backoff scheme. Consequently, the exponential backoff scheme is
appropriate when average performance is the major concern but inadequate for real-time systems
where worst-case behavior is important.

5 Conclusion
Existing spin lock algorithms cannot satisfy two important requirements for real-time systems

using asymmetric shared-memory multiprocessors, bounded spin lock and fast interrupt response,
at the same time. In this paper, we propose a new spin lock algorithm that can give an upper

11
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bound on the time to acquire and release an interprocessor lock while realizing fast response
to interrupt requests. To evaluate its effectiveness, we have measured its performance through
experiments and confirmed that the algorithm has required properties.

Although the proposed algorithm is somewhat slower than the test-and-set lock with preemp-
tion in its average behavior, it is more appropriate for real-time systems in which the average
performance can be degraded to improve worst-case behavior.

The combination of the proposed algorithm with prioritized spin locks [10] remains as future
work. It is also important to adopt the algorithm in a real-time kernel based on the ITRON-MP
specification and to evaluate the algorithm in real applications.

A Proofs on the Queueing Lock with Preemption

We first show that the algorithm in Figure 13 realizes mutual exclusion. The difference between
the algorithm and the one in Figure 5 is: (1) the initial value of the state field is determined to
be Released and (2) compare_and_swap operations are used in assigning Released to the state
field of queue nodes (in the lines marked with €& and 8). Then, we show that the algorithm is
deadlock free. Once mutual exclusion and deadlock freedom are proved, the equivalence of these
two algorithms is straightforward.

First, the state of a processor is classified into nineteen states by the execution point of the
processor, which is presented in Figure 13 as (D—(9. A state transition occurs when the processor
accesses a shared data, with which the processor interacts with others. For example, the transition
from O to @) occurs when the processor reads I.next. Similarly, the transition from @) to @)
or @ occurs when the processor executes the fetch_and_store operation. Whether the processor
moves to 3) or (9 is fixed at this moment. The only exception is the transition from €9 to @@
which occurs when the processor modifies its private variable succ.

The state of a processor 1s also classified by the value of the state field of its queue node into
released state (R state, in short), locked state (I state), preempted state (P state), and canceled
state. Canceled state is further classified into two states: the state that the variable L 1s kept
non-NIL all after Canceled is assigned to the state field (C state), and the state after L becomes
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type gqnode = record

next: pointer to qnode;

state: (Released, Locked, Preempted, Canceled)
end;
type lock = pointer to qnode;

shared var L: lock;
// L is initialized to NIL.

var I: qnode;
// l.state is initialized to Released.
var pred, succ, sn: pointer to qnode;

retry:
(@ ILnext := NIL;
disable_interrupts;
(@ pred := fetch_and store(&L, &I);
if pred # NIL then
(®) Istate := Locked;
® pred—next := &I;
(® while (L.state # Released) do
if interrupt_requested and
(® CAS(&(Lstate), Locked, Preempted) then
enable_interrupts;
// interrupt service.
disable_interrupts;
@ if “CAS(&(I.state), Preempted, Locked) then
enable_interrupts;
repeat while I.state # Released;
goto retry
end
end
end
end;
/1
(® // critical section.
/]
succ := l.next;
if succ = NIL then
if CAS(&L, &I, NIL) then goto exit end;
@ repeat succ := Lnext until succ # NIL
end;
@ while =CAS(&(succ—state), Locked, Released) do
@ if CAS(&(succ—state), Preempted, Canceled) then
@ sn := succ—next;
if sn = NIL then
@ if CAS(&L, succ, NIL) then
CAS(&(succ—state), Canceled, Released);
goto exit
end;
@ repeat sn := succ—next until sn # NIL
end;
CAS(&(succ—state), Canceled, Released);
@ succ := sn
end
end;
exit:
() enable_interrupts;

Figure 13: The queueing lock with preemption (modified for the proofs)
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ER—

Figure 14: The state transition diagram of a processor

NIL (C’ state).

The state transition diagram of a processor presented in Figure 14 can be obtained from these
two classifications and some observations of the code in Figure 13 such as the fact that a processor
assigns Locked to the state field of its queue node with the transition from @ to @), the fact
that a processor changes the state field of another processor only from Locked to Released, from
Preempted to Canceled, and from Canceled to Released, and the fact that the transition from
C’ state to C state does not exist by definition®. The transitions marked with “+” in the diagram
are caused by other processors, and the transition with “#” occurs only when an interrupt request
is raised on the processor.

A processor is called to be in the exclusive region (ER, in short), when its state is included
in ER in Figure 14. In the following, we call the state (and next) field of the queue node of a
processor simply as the state (and next respectively) field of the processor.

Lemma 1 When L is NIL, no processor is in ER. When L is not NIL, there is one (and only one)
processor that is in ER.

Proof: In the initial state, the condition is satisfied because L is initialized to NIL and the state
of each processor is 1R. Then, the lemma can be proved by showing that for each transition, if

8 Following discussions reveal two other facts that a processor never becomes 4R state and that the transition
from 7P to 7C’ does not occur.
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the condition is satisfied before the transition, it is preserved with the transition. We may safely
check only the transitions with which a processor enters/leaves ER or L is modified.

e 2R—9IR (The processor enters ER and L is modified.)

This transition occurs only when L is NIL and changes it to non-NIL. There are no processor
in ER before the transition since L is NIL. Therefore, the condition is preserved.

e 4L—4R, 5L—5R, 6L.—6R (The processor enters ER.)

These transitions occur only when another processor changes the state field to Locked; in
other words, it makes the transition from 12R to 1R. In this case, a processor enters ER
while another leaves ER. As L is not modified in these transitions, the condition is preserved.

e 12R—1R (The processor leaves ER.)

A processor making this transition changes the state field of another processor from Locked
to Released; in other words, it causes a transition from 4L/5L/6L to 4R/5R/6R on another
processor. This is the same situation with the above.

e 10R—1R, 15R—16R (The processor leaves ER and L is modified.)

These transitions occur only when L 1s not NIL and change it to NIL. Therefore, the condition
is preserved.

e 2R—3R (L is modified.)

L 1s kept non-NIL with this transition. Therefore, the condition is preserved. a

Theorem 2 (Mutual Exclusion) There is at most one processor which is in 9R state.
Proof: This directly follows from Lemma 1. a

In the following, the processor in ER is called the lock holder (LH, in short), if any. A processor
is called to be designated by a pointer variable when its queue node is pointed to by the pointer.

Next, we define the lock queue which is an ordered list of processors. The last processor of
the lock queue is defined to be the one designated by L. When L is NIL, the lock queue is defined
to be empty. The predecessor of a processor in the lock queue is the one designated by its pred
variable. When L is not NIL, the first processor of the queue is defined according as the state of
LH (which exists from Lemma 1) as follows.

(1) When LH is in 4R, 5R, 6R, 9R, 10R, or 11R, LH is the first processor of the lock queue.

(2) When LH is in 12R, 13R, 14R, 15R, 17R, or 18R, the processor designated by the succ
variable of LH is the first one of the lock queue.

(3) When LH is in 19R, the processor designated by the sn variable of LH is the first one of the
lock queue.

In the next lemma, we show that the lock queue is well-structured and handled focusing only
on the lock queue operations. We need the following assumption for further discussion.

Assumption 3 Any processor has not been included in the lock queue when it is in 1R state. O

In the initial state, this assumption is satisfied because all processors are in 1R and because
the lock queue is empty. To show that the assumption always holds, it is necessary to prove that a
processor 1s not included in the lock queue when it returns to 1R state. The algorithm in Figure 13
realizes this property by introducing the transient status in which the state field is Canceled.

In the following, we suppose that this assumption alway holds. It is proved that a processor
i1s not included in the lock queue when it returns to 1R state in Lemma 7 after the discussions
which take the value of state fields into consideration. This result shows that the assumption
is preserved if it is satisfied in the initial state. Therefore, the assumption is proved inductively
using Lemma 7.
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Lemma 4 Following two conditions hold under Assumption 3.

(1) A processor modifies the lock queue with only two kind of operations: (a) inserting itself at
the end of the lock queue when it is not included in the queue and (b) removing the first
processor of the lock queue from the queue.

(2) When the next field of a processor included in the lock queue is not NIL, it designates the
successor of the processor in the lock queue.

Proof: In the initial state, the conditions are satisfied because no operation has been done on the
lock queue and because the lock queue is empty. Then, the lemma can be proved by showing that
for each transition, if the conditions are satisfied before the transition, they are preserved with
the transition. We may safely check only the transitions with which the lock queue is changed or
with which the next field of a processor included in the lock queue is modified. The lock queue is
modified in the following four cases: (a) L is changed, (b) the pred variable of a processor in the
lock queue is changed, (¢) LH is changed, and (d) LH makes a transition beyond the boundaries
with which the first processor of the lock queue is defined.

¢ 2R—3R, 2R—9IR (L is changed and the pred variable is changed.)

A processor making one of these transitions becomes the last processor of the lock queue
after the transition. In case of 2R—3R, the last processor before the transition is designated
by the pred variable. The first processor of the lock queue remains unchanged. In case
of 2R—9R, the lock queue is empty before the transition and includes only the processor
making the transition after the transition. In both cases, the processor making the transition
is inserted at the end of the lock queue.

Because a processor in 1R is not included in the lock queue from Assumption 3 and because
a processor is not inserted to the lock queue by another processor from Condition (1), a
processor in 2R is not included in the lock queue.

Since the next field of a processor is modified only when it is designated by the pred variable
of another processor, the next field of the processor which is not included in the lock queue
or is at the end of the lock queue is not modified by another processor. Because the processor
making the transition 2R—3R/9R is not included in the lock queue before the transition
and is at the end of the lock queue after the transition, the next field of the processor is not
modified for the while. Therefore, the next field of the processor is NIL immediately after
the transition.

From the above discussions, if the conditions are satisfied before one of the transitions, they
are preserved after the transition.

e 10R—I1R, 15R—16R (L is changed.)

Before these transitions, the lock queue includes only one processor (LH in case of 10R—1R,
and the processor designated by the succ variable of LH in case of I5R—16R) because the
first processor of the lock queue is designated by L. After the transitions, the lock queue
becomes empty. Therefore, the transitions remove the unique processor (witch is the first
processor obviously) in the lock queue from the queue, and the conditions are preserved with
the transitions.

e 4L.—4R, 5L—5R, 6L—6R (LH is changed.)

These transitions occur only when another processor makes the transition from 12R to 1R.
Before the transitions, the first processor of the lock queue is the one designated by the succ
variable of the latter processor, which is the former processor obviously. After the transitions,
the former processor is the first one. Consequently, the lock queue is not modified with these
transitions and the conditions are preserved.

e 12R—I1R (LH is changed.)

A processor making this transition causes a transition from 4L/5L/6L to 4R/5R/6R on
another processor. This is the same situation with the above.
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e 9R—I12R, 11R—12R (LH makes a transition beyond the boundaries.)

The first processor of the lock queue is changed from LH to the one designated by the
succ variable of LH with these transitions. The succ variable of LH equals to I.next
and designates the successor of LH in the lock queue. Therefore, the transitions remove
LH, which 1s the first processor of the lock queue, from the queue, and the conditions are
preserved.

e 18R—19R (LH makes a transition beyond the boundaries.)

The first processor of the lock queue 1s changed from the one designated by the succ variable
of LH (Py) to the one designated by the sn variable (Py) with this transition. The sn variable
of LH equals to succ—next and designates the successor of Py in the lock queue. Therefore,
the transitions remove Py, which is the first processor of the lock queue, from the queue,
and the conditions are preserved.

e 19R—12R (LH makes a transition beyond the boundaries.)

The first processor of the lock queue i1s changed from the one designated by the sn variable
of LH to the one designated by the succ variable with this transition from the definition.
Because the succ variable after the transition equals to the sn variable before the transition,
the first processor is not changed in actual and the conditions are preserved.

e 4L—5L, 4R—5R (The next field is modified.)

The processor making one of these transitions makes the next field of the processor desig-
nated by its pred variable designate itself. Therefore, the next field designates the successor
in the lock queue, and Condition (2) is shown to be preserved with the transitions. Since
the lock queue is not modified with the transitions, Condition (1) is preserved obviously. O

Lemma 5 Following conditions hold under Assumption 3.

(1) When LH is in 14R, 15R, 17R, or 18R, the processor designated by the succ variable of
LH is in C state. Conversely, a processor in C state is designated by the succ variable of
another processor in 14R, 15R, 17R, or 18R.

(2) When a processor is in 16R, the processor designated by its succ variable is in C’ state.
Conversely, a processor in C’ state is designated by the succ variable of another processor

in 16R.
Proof: First, we prove that the following condition is satisfied under Assumption 3.

(0) When a processor is in 14R, 15R, 16R, 17R, or 18R (we call the processor is in SC in the
following), the state field of the processor designated by its succ variable is Canceled.
Conversely, a processor whose state field 1s Canceled is designated by the succ variable of
another processor in SC.

Since this condition obviously holds in the initial state, it is proved to be satisfied by showing
that every transition preserves the condition. We may safely check only the transitions with which
a processor enters/leaves SC and the ones with which the state field of a processor is changed
from/to Canceled to/from another.

e 13R—14R

With this transition, LH enters SC and Canceled is assigned to the state field of the
processor designated by the succ variable of LH. Therefore, if Condition (0) is satisfied
before the transition, it is also satisfied after the transition.

¢ 18R—19R

With this transition, LH leaves SC and Released is assigned to the state field of the
processor designated by the succ variable of LH. Therefore, Condition (0) is preserved.
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¢ 16R—1R

From the proof of Lemma 4, the processor designated by the succ variable (Fy) is not
included in the lock queue immediately after the transition from 15R to 16R. Since the
Condition (0) is assumed to be satisfied before the transition 16R—1R, the state field of P,
is kept to be Canceled. Because a new processor is added to the lock queue only with the
transition from 2R to 3R/9R (from the proof of Lemma 4), the processor Py, whose state
field is kept to be Canceled, is not inserted to the lock queue. Consequently, the processor
designated by the succ variable of another processor in 16R, is proved to be not included in
the lock queue. Since the processor designated by the succ variable of another processor in
14R, 15R, 17R, or 18R is the first one in the lock queue by definition, 1t is never designated
by the succ variable of any processor in 16R.

Suppose the case that more than two processors are in 16R state. Because these processors
have made the transition from 15R and because their succ variables are not modified for
the while, the succ variables of each two of them never designate the same processor.

From the above discussions, the transition 16R—1R does not change the states of the proces-
sors designated by the succ variables of other processors in SC and preserves Condition (0).

Since L does not become NIL while LH exists from Lemma 1, L is kept non-NIL while a processor
isin 14R, 15R, 17R, or 18R. Therefore, the processor designated by the succ variable of LH is in
C state for the while. As a processor assigns NIL to L with the transition from 15R to 16R, the
processor designated by its succ variable becomes C’ state after the transition. Condition (1) and
(2) follow from the above discussion. O

Lemma 6 Following conditions hold under Assumption 3.

(1) The transition 13R—14R (and only the transition) causes the transition 7P—7C (not 7P—7C")
on the processor designated by the succ variable.

(2) The transition 15R—16R (and only the transition) causes the transition 7C—7C’ or 8C—8C’
on the processor designated by the succ variable.

(3) The transition 16R—1R (and only the transition) causes the transition 7C’—=7R or 8C’—8R
(not 7TC—7R or 8C—8R) on the processor designated by the succ variable.

(4) The transition 18R—19R causes (and only the transition) the transition 7TC—7R or 8C—8R
(not 7C’—T7R or 8C’—8R) on the processor designated by the succ variable.

Proof: Because the processor designated by the succ variable of another processor in 14R is
in C state from Lemma 6, the transition 13R—14R causes the transition 7P—7C (not 7P—7C’)
on the former processor. Since there are no other transitions which change the state field from
Preempted to Canceled, Condition (1) is shown to be satisfied.

They are also shown from Lemma 6 that the transition 16R—1R causes a transition from C’
state to R state on another processor and that 18 R—19R causes a transition from C state to
R state. Since there are no other transitions which change the state field from Canceled to
Released, Condition (3) and (4) are shown to be satisfied.

Similarly, the transition 15R—16R causes a transition from C state to C’ state on the processor
designated by the succ variable from Lemma 6.

There are two transitions 15R—16R and 10R—1R which make L to NIL. As a processor making
the transition from 10R to 1R is LH before the transition, there are no other processor in 14R,
15R, 17R, or 18R. Therefore, if there are some processors whose state fields are Canceled, they
are proved to be in C’ state from Lemma 6. Consequently, the transition 10R—1R, does not cause
a transition from C state to C’ state on another processor, and Condition (2) is proved to be
satisfied. ad

Lemma 7 The state of the processor linked to the lock queue is included in LQ in Figure 14.
The processor whose state is included in LQ is linked to the lock queue.
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Proof: In the initial state, the condition is satisfied because L is initialized to NIL and the state
of each processor is 1R. Then, the lemma can be proved by showing that for each transition, if
the condition is satisfied before the transition, it is preserved with the transition. We may safely
check only the transitions with which a processor enters/leaves LQ or the lock queue is modified.

¢ 2R—3R, 2R—9IR (The processor enters LQ and the lock queue is modified.)

The processor making one of these transitions is added at the end of the lock queue (from
the proof of Lemma 4). Therefore, the condition is preserved.

e 10R—1R (The processor leaves LQ and the lock queue is modified.)

This transition occurs when only the processor making the transition is included in the lock
queue, and the lock queue becomes empty after the transition. Therefore, the condition is
preserved.

e 9R—I12R, 11R—12R (The processor leaves LQ and the lock queue is modified.)

The processor making one of these transitions is removed from the lock queue (from the
proof of Lemma 4). Therefore, the condition is preserved.

o 7TC—7C’, 8C—8C’ (The processor leaves LQ.)

These transitions occur only when LH makes the transition from 15R to 16R from Lemma 6 (2).
Since the processor making one of these transitions, which is designated by the succ variable
of LH, is removed from the lock queue, the condition is satisfied after the transition.

e 15R—16R (The lock queue is modified.)

This transition causes the transition from 7C/8C to 7C’/8C’ on the processor designated by
the succ variable from Lemma 6 (2). This is the same situation with the above.

e 7TC—TR, 8C—8R (The processor leaves LQ.)

These transitions occur only when LH makes the transition from 18R to 19R from Lemma 6 (4).
Since the processor making one of these transitions, which is designated by the succ variable
of LH, is removed from the lock queue, the condition is satisfied after the transitions.

e 18R—19R (The lock queue is modified.)

This transition causes the transition from 7C/8C to TR/8R on the processor designated by
the succ variable from Lemma 6 (4). This is the same situation with the above.

e TP—T7C’ (The processor leaves LQ.)

The only transition which changes the state of another processor from P state to C/C’ state
is 13R—14R. Because it is shown that the transition 13R—14R changes the state of another
processor from P state to C state from Lemma 6 (1), the transition from 7P to 7C’ never
occurs.

Nomne of the transitions 4L—4R, bL—bR, 6L—6R, 12R—1R, and 19R—12R actually changes
the lock queue from the proof of Lemma 4. a

From this lemma, it 1s proved that a processor is not included in the lock queue when it returns
to 1R, and Assumption 3 can be proved by induction.

To prove deadlock freedom of the algorithm, we assume that each processor makes the next
transition in finite duration of time. First, we show that the next field is written non-NIL value
in finite duration of time.

Lemma 8 If a processor included in the lock queue is not the last one in the queue, its next field
becomes non-NIL in finite duration of time under the assumption that each processor makes the
next transition in finite duration of time.

Proof: Suppose the case that a processor makes the transition from 2R to 3R and inserts itself
at the end of the lock queue. From the assumption, the processor makes the next field of its
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predecessor designate itself, makes the field non-NIL in other words, within finite duration of time
after the transition. From the other point of view, the next field of the processor which is included
in the lock queue but not the last one in the queue becomes non-NIL in finite duration of time. O

The deadlock freedom of the algorithm can be derived as the following theorems.

Theorem 9 (Deadlock Freedom (1)) When no processor holds a lock and some processors
try to acquire the lock, one of them can acquire the lock within finite duration of time.

Proof: When no processor holds the lock (or is in ER), L is NIL from Lemma 1. Therefore, the
lock queue is empty by definition and there is no processor whose state is in LQ from Lemma 7.
Then, all of the processors trying to acquire the lock are in 7C’, 8C’, 7R, 8R, 1R, or 2R.

A processor in 8C’ moves to 8R in finite duration of time because the state 8C’ is a result
of the transition 15R—16R on another processor and because the transition 16R—1R occurs in
finite duration of time on the processor. Similarly, a processor in 7C’ moves to 7R or 8C’ in finite
duration of time.

Therefore, every processor trying to acquire the lock reaches 2R in finite duration of time. The
first processor trying the transition from 2R moves to 9R since L remains to be NIL and succeeds
in acquiring the lock. ad

Theorem 10 (Deadlock Freedom (2)) A processor trying to release a lock finishes to release
the lock within finite duration of time, if the number of interrupt requests raised on other processors
during the release operation is bounded.

Proof: There are four loops in the lock releasing routine: 11R—11R, 17TR—17R, 12R—13R—12R,
and 12R— .-+ —19R—12R. This theorem can be proved by showing that a processor trying to
release a lock finishes these loops in finite duration of time under the condition that the number
that other processors make the transition from 6L to 7P is bounded.

1. 11R—11R, 17R—17R
A processor finishes these loops in finite duration of time from Lemma 8.
2. 12R—13R—12R

When LH is in 12R or 13R, succ—state never becomes Released or Canceled. It never
becomes Released because the processor designated by succ is included in the lock queue
and is not LH. It never becomes Canceled from Lemma 5.

Consequently, the transition 13R—12R occurs only when succ—state is modified from
Preempted to Locked while LH is in 13R. From the assumption that the number of interrupt
requests raised on other processors during the release operation is bounded, the number of the
transition from 6L to 7P, which is the only transition changing the state field to Preempted,
is bounded, and the execution of this loop is finished in finite duration of time.

3. 12R— - —=19R—12R

When LH makes the transition from 18R to 19R, the first processor of the lock queue is
removed from the queue. Therefore, the length of the lock queue becomes shorter as the
processor executes this loop. From the assumption that the number of interrupt requests
raised on other processors during the release operation is bounded, the maximum number
of processors which are included in the lock queue when release operation is started and the
processors which are inserted to the queue afterwards is bounded. Therefore, the maximum
execution number of this loop is bounded. a

Finally, we show the equivalence of the algorithm in Figure 5 and the one in Figure 13. When
a processor 1s in 16R or 18R, succ->state is fixed to be Canceled from Lemma 5. Therefore, the
compare_and_swap operations in the lines marked with (8 and (® in Figure 13 are equivalent to
simple assignments.

A processor refers to the state field of another processor only when the latter processor is
designated by a next field of LH or other processors in the lock queue. In other words, the state
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field of a processor is referred to only when the processor is included in the lock queue and is not
LH and after it makes the next field of its predecessor designate itself. In short, it is referred only
when the processor is in &), ®, @, or ®. Consequently, its initial value is never referred to.
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