TECHNICAL REPORT 95-02

Controlling Priority Inversion using Abortions

Hiroaki Takada and Ken Sakamura

January 11, 1995

DEPARTMENT OF INFORMATION SCIENCE
FACULTY OF SCIENCE, UNIVERSITY OF TOKYO

7-3—-1 HoNGO, BUNKYO-KU TOKYO, 113 JAPAN

TECHNICAL REPORT 95-02

TITLE
Controlling Priority Inversion using Abortions

AUTHORS

Hiroaki Takada and Ken Sakamura

KEY WORDS AND PHRASES

real-time system, scheduling algorithm, synchronization protocol, abortion, priority inversion

ABSTRACT

Making critical sections abortable is a promising approach to controlling priority inversions. To
improve the schedulability of a system using abortions, the maximum number of abortions should
be decreased. In this paper, we propose a real-time synchronization protocol named the selective
abort protocol (SAP) which introduces a new abort scheme to the priority ceiling protocol. Our
proposed scheme can make the maximum number of abortions smaller than with the conventional
priority-based abort schemes. A method to determine an upper bound on the number of abor-
tions under the SAP is presented, and schedulability analyses of systems using the protocol are
illustrated. Some extensions of the SAP are also discussed.

REPORT DATE WRITTEN LANGUAGE
January 11, 1995 English

TOTAL NO. OF PAGES NO. OF REFERENCES
11 10

ANY OTHER IDENTIFYING INFORMATION OF THIS REPORT

DISTRIBUTION STATEMENT
First issue 45 copies. This technical report is available via anonymous FTP from
ftp.is.s.u-tokyo.ac.jp (directory /pub/tech-reports).

SUPPLEMENTARY NOTES

DEPARTMENT OF INFORMATION SCIENCE
Faculty of Science, University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan

Controlling Priority Inversion using Abortions

Hiroaki Takada and Ken Sakamura

Department of Information Science,
Faculty of Science, University of Tokyo
7-3-1, Hongo, Bunkyo-ku, Tokyo 113, Japan

Technical Report 95-02
January 11, 1995

Abstract

Making critical sections abortable is a promising approach to controlling priority
inversions. To improve the schedulability of a system using abortions, the maximum
number of abortions should be decreased. In this paper, we propose a real-time syn-
chronization protocol named the selective abort protocol (SAP) which introduces a
new abort scheme to the priority ceiling protocol. Our proposed scheme can make
the maximum number of abortions smaller than with the conventional priority-based
abort schemes. A method to determine an upper bound on the number of abortions
under the SAP is presented, and schedulability analyses of systems using the protocol
are illustrated. Some extensions of the SAP are also discussed.

1 Introduction

Priority inversion, the state in which a higher priority task is blocked by lower priority tasks due
to resource sharing, is a major cause to degrade schedulability in hard real-time systems. Some
real-time synchronization protocols are proposed with which the maximum blocking duration is
limited to at most the duration of one critical section of a lower priority task [1, 2]. However,
in some application systems in which the maximum processing times of some critical sections are
very long, the schedulability is severely degraded due to priority inversions even though one of
these protocols is adopted.

For such application systems, making critical sections abortable is a promising approach to
reducing priority inversions. Some real-time synchronization protocols using abortions have been
proposed and evaluated [3, 4]. Though the schedulability of higher priority tasks is improved
using these protocols, the schedulability of lower priority tasks is degraded because aborted critical
sections must be re-executed from the beginning. In hard real-time environments in which lower
priority tasks also have severe timing constraints, this re-execution time should be minimized. It
is also important to evaluate the worst-case re-execution time to guarantee their schedulability.
However, it is only lately that these issues are laid importance [5, 6, 7).

In this paper, we propose a real-time synchronization protocol named the selective abort pro-
tocol (SAP) which introduces an improved abort scheme called the selective abort scheme to the
priority ceiling protocol (PCP) [1]. With this scheme, an abort task set is defined for each critical
section, and only the tasks included in the abort task set can abort the critical section. The
other tasks cannot abort it and are executed according to the base synchronization protocol, i.e.
the PCP. Our proposed scheme can make the maximum number of abortions smaller than the
conventional priority-based abort schemes [6, 7] and can improve the schedulability of a system.

For analyzing the schedulability of a system using the SAP, we present a method to determine
an upper bound on the number of abortions under the protocol. Schedulability analyses of example
task sets using the SAP are illustrated, and the effectiveness of the protocol is demonstrated. We
also present some simplifications and extensions of the SAP.

2 Assumptions and Notations

In this paper, the same assumptions with the PCP are adopted except that critical sections
are abortable. In this section, we formalize abortable critical sections after reviewing the basic
assumptions adopted with the PCP. The definition of the schedulable laxity, which is a useful
concept in discussing schedulability, 1s also presented.

2.1 Basic Assumptions

A system consists of n periodic tasks 7, 7, - - -, 7,,. Each task has a priority determined by the rate
monotonic scheduling algorithm. 7; and P; denote the period and priority of task 7; respectively,
and 71,79, --, T, are sorted in descending order of priority. Hence, T; < T and F; > P; if ¢ < j.

An execution of a task is called a job. 7; also denotes a job requested by task 7;. Each task
requests a job at the beginning of each period, and the job’s deadline 1s at the end of the period.
The priority of a job is set to the priority of the requesting task when it starts, and is changed
during its execution. The priority of a job at any given moment 1s called its current priority or
simply its priority.

Each job is preemptive and executed according to the priority-driven scheduling. The highest
priority job that is ready to run is executed first. Jobs with the same priority are scheduled in a
FCFS order. When the execution of a job is delayed due to the execution of other jobs of higher
or equal priority tasks, the job is said to be preempted.

Each task includes critical sections guarded by binary semaphores. The j-th critical section
in task 7; is represented as z; ;. When a job is preempted within a critical section, the critical
section 1s said to be preempted. Two critical sections included in a task must be either disjoint
or properly nested. Job 7; is called blocked, when 7; 1s forced to wait for the execution of lower
priority tasks.

The maximum processing time of job 7; is denoted as C; and the maximum blocking duration
during its execution is denoted as B;. The execution of a job is not delayed due to reasons
other than being preempted or blocked. When the schedulability of a system is discussed, we
ignore the overheads of task scheduling, context switches, and other processing needed for task
synchronization.

2.2 Abortable Critical Sections

An abortable critical section consists of an abortable segment followed by an unabortable segment.
When a job is executed within the abortable segment, the execution of the critical section may
be aborted and restarted from the beginning. Once the job enters the unabortable segment, the
critical section is not aborted and is executed to the end.

The maximum processing times of the abortable segment of z; ; and its unabortable segment are
denoted as A; ; and U; ; respectively. Though the maximum processing time of the entire critical
section is less than or equal to A; ; + U; ; in general, we assume that it is equal to A; ; + U, ; in
this paper. Also, we ignore various overheads when aborting a critical section for simplicity. In
the following, we refer to an abortable critical section as defined above simply as a critical section.
A critical section z ; is called unabortable when A4; ; = 0. We use the word abortable to make
A; ; # 0 explicit.

If abortable critical sections are nested arbitrarily, evaluation of the maximum processing time
of the outer critical section becomes complicated. Thus, when z; ; and z; ;» are nested, we allow
only the following two cases (z; ;s is assumed to be the outer critical section, here).

e z; ; is unabortable and is included in the unabortable segment of z; ;.

e The abortable segment of z; ; is identical with that of z; ;», and the unabortable segment
of z; ; is included in that of z; ;;. When one of the critical sections is aborted, the other is
regarded to also be aborted.

Ci | I | B | Aip+Usq || Bi | Li
1 4 10 P1 - 0 6
nll 4|15 | P 2 4|21
T3 4 30 | Ps 2 4 2
74 || 10 | 100 | Py 4 0 8

Table 1: Task Set for Example 1

Ci | T | B | Aip+Usq || Bi | Li
1 4 10 P1 - 0 6
To 3 15 | P 2 4 0
T3 4 20 | Ps 2 4 -2
4 || 10 | 100 | Py 4 0 9

Table 2: Task Set for Example 2

As a result of these simplifications, when z;; is aborted m times during its execution, its
maximum processing time is prolonged by mA; ;. The maximum duration that z; ; can block a
higher priority job that can abort z; ; is reduced to Uj ;.

2.3 Schedulable Laxity

The schedulable laxity L; of task 7; is the time duration having the following properties. Even
if the maximum blocking duration of 7; is prolonged by a duration shorter than or equal to
L;, the task 1s schedulable. If it is prolonged by a duration longer than L;, the task becomes
unschedulable. When 7; is not schedulable, L; takes a negative value having the property that
7; becomes schedulable if the maximum blocking duration of 7; is shortened by a duration longer
than or equal to — L.

Under the PCP, the schedulable laxity of each task can be derived by transforming the formula
of the necessary and sufficient condition of the schedulability [8] as the following.

Ty = > G PTEW

reP;

L; = max — By,

(k,1)ER;

where P; ={jlj=1,---,n,and P; > FP; } and Ry = {(k,{) | ke P;, I=1,---,|T;/T%]}.

3 Necessity of Abortions

In this section, we present some example task sets which cannot be scheduled with the PCP because
the execution times of some critical sections are quite long. These task sets can be scheduled with
our proposed protocol, which will be shown later in Section 5.

Example 1 The first example task set consisting of four tasks is presented in Table 1. Here,
T2, T3, and 74 include critical sections zs 1, 231, and z4; respectively. These critical sections are
guarded by the same binary semaphore. The columns of B; and L; present the maximum blocking
duration and the schedulable laxity of each task respectively when the task set is scheduled with
the PCP.

From this table, 7 is found to be unschedulable because L5 is negative. To make 75 schedulable,
its maximum blocking duration must be reduced. By making z4; abortable and permitting 7 to
abort it, 5 becomes schedulable. Because the schedulable laxity of 7 is —1, z4 ; should be divided
into the abortable and the unabortable segments such that A4, = 1 and Us; = 3. In order to
minimize the number of abortions, only 7 should be permitted to abort z;; and the other jobs
should not abort it.

Example 2 The second example task set is presented in Table 2. 79, 73, and 74 include critical
sections 221, 231, and 241 respectively guarded by the same binary semaphore. The columns of
B; and L; have the same meanings with Table 1.

In this example, 73 is not schedulable with the PCP. To make 73 schedulable; 73 must be
permitted to abort z, ;. Because the schedulable laxity of 73 is —2, 24 should be divided such
that As1 = 2 and Uy = 2. In order to minimize the number of abortions, the jobs other than 73
should not abort z47.

4 Selective Abort Protocol

4.1 Definition of the SAP

Our definition of the priority ceiling is the same with the PCP, i.e. the priority ceiling of a
semaphore is equal to the priority of the highest priority task that may lock the semaphore.
The priority ceiling of a critical section z; ; is defined to be the priority ceiling of the semaphore
guarding z; ;.

A set of tasks called an abort task set is defined for each abortable critical section. Z; ; denotes
the abort task set of z; ;.

Definition 1 (Abort Task Set) The abort task set Z; ; of a critical section z; ; is defined stat-
ically such that the following conditions are satisfied.

1. The priority of a task included in Z; ; is higher than P; and is lower than or equal to the
priority ceiling of z; ;.

2. When two abortable critical sections are nested and their abortable segments are identical,
their abort task sets must be the same. i

With the selective abort scheme, a critical section z; ; is aborted in its abortable segment when
a job of a task included in Z; ; is blocked or preempted. We introduce this scheme to the PCP
and define the selective abort protocol (SAP) as presented below.

Definition 2 (Selective Abort Protocol) When a job 7; tries to enter a critical section z; ;,
it is checked if any critical sections are preempted with higher priority ceilings than the priority
of 7;. If some such critical sections are preempted!, 7; must execute one of the following steps.

1. When these critical sections are preempted within their abortable segment and a task in-
cluded in their abort task sets® is preempted or blocked, all of the critical sections are
aborted.

2. Otherwise, the job 7, that is executing these critical sections inherits the priority of 7; and is
executed first. When 7, finishes the execution of the critical sections or the critical sections
are aborted by another job, 7 releases the semaphore and its priority is reset to the priority
before the inheritance. Then, the execution of 7; resumes.

Now, 7; can lock the semaphore guarding z; ; and begins to execute z; ;.

When z; ; is aborted during the execution of its abortable segment, the semaphore guarding
z; ; 1s released and the priority of 7; is reset to the priority it had before entering z; ;. Then, 7
re-executes z ; from the beginning.

When a job of a task 73 is requested and some of the critical sections whose abort task sets
include 75, are being executed or preempted within their abortable segments, all of the critical
sections are aborted®. ad

When all critical sections are unabortable, Step 1 in the above protocol definition is never
executed, and the behavior of the SAP corresponds to that of the PCP. In this sense, the SAP 1s
an extension of the PCP.

1Tt is easily proved from the definition of this protocol that all of these critical sections are included in a job.
?Because these critical sections are included in a job and are nested, their abort task sets are the same.
3Tt is also proved that all of these critical sections are included in a job.

T1 |:| :l :l ___: preempted or blocked
T2 I - I_l:-] blocked [‘ []: executing

[: unabortable segment

T3 blocked
: abortable segment
aborts unabortable segment start h=a
w o EH m
abortable segment starts abortable segment restarts
0tit2 3 "4 15 s t6 718 X

Figure 1: Scheduling Example under the SAP

4.2 Properties of the SAP
The SAP inherits the important properties of the PCP [8] presented in the following two theorems.

Theorem 3 The SAP prevents deadlocks. a

Theorem 4 A job can be blocked for at most the duration of one execution of the critical sections
or their unabortable segments that can possibly block the job. a

In other words, each job is blocked no more than once. Therefore, By can be determined by
calculating the maximum processing time of the critical sections or their unabortable segments
that can possibly block 7. 71 can be blocked by a critical section z; ; included in a lower priority
task or its unabortable segment, if the priority ceiling of z; ; is higher than or equal to the priority
of 7,. 7, can be blocked by the whole z; ;, if 7 is not included in Z; ;. Otherwise, it can be
blocked only by its unabortable segment.

The following theorem is also important in evaluating the maximum overheads for aborting
critical sections.

Theorem 5 During an execution of a job, at most one critical section of a lower priority task is
aborted. ad

In the SAP, the priority of a job is changed according to the priority inheritance policy. An-
other protocol adopting the stack resource policy (SRP) [2] instead is possible and has the same
properties as the SAP presented above. It is also possible to apply the SRP to the unabortable
segment only.

4.3 Scheduling Example under the SAP

Example 3 (Scheduling Example under the SAP) We present a scheduling example of the
task set described in Example 2 using the SAP. As mentioned in Section 3, z4 ; should be made
abortable such that A4; = 2 and Us; = 2, and should be aborted only by 73, then Z4; = {rs}.
Note that the priority ceiling of 221, 23,1, and 24 is Ps.

Figure 1 illustrates an example scheduling of the tasks. We will describe important events in
the figure.

o At time 7o, 74 enters the abortable segment of 24 ;.
e At time ¢1, ™ 18 requested and begins to execute preempting 7a.

e At time ?5, 75 tries to enter z3 1. Though 24 is preempted in its abortable segment, 24
is not aborted because no task included in Z4; is being preempted or blocked. Therefore,
T2 is blocked by z41. 74 inherits the priority of 72 and continues to execute the abortable
segment.

e At time t3, 73 is requested, just before 74 finishes the execution of the abortable segment.
Because 73 is included in Z; ; and because the abortable segment of z4; is being executed,
24,1 1s aborted and the priority of 74 is reset to Ps. Now, 75 resumes execution and can enter

Z2.1-

e At time ¢4, the execution of 7 is finished and 73 begins to execute. Because 241 has been
aborted, 73 can be executed to the end without blocking.

o At time #g, 74 resumes execution. As z4; has been aborted, 74 restarts the abortable segment
of z41 from the beginning.

e At time ?7, 74 enters the unabortable segment of z4 ;.

o At time g, 73 is requested. Because 74 is executing the unabortable segment of 241, 241 is
not aborted. 735 begins to execute preempting 74.

o At time fg, 73 tries to enter z3 ;. Because z4; is preempted in its unabortable segment, z4;
is not aborted and 73 is blocked by 24 1. 74 inherits the priority of 73 and resumes to execute
the unabortable segment of 24 ;.

e At time 0, 74 finishes the execution of z4 ;. The priority of 74 is reset to P.

In this example, every job meets its deadline.

5 Schedulability Analysis of the SAP

5.1 Schedulability Analysis Method

To analyze the schedulability of a system using the SAP, we can apply the results of the PCP
presented below [8]. P; in the following theorems denotes the index set of the tasks whose priority
is higher than or equal to B, ie. P, ={j|j=1,---,n, and P; > P; }.

Theorem 6 A set of n periodic tasks using the PCP is schedulable by the rate monotonic schedul-
ing algorithm, if

B . ;
Vi, 1 <i<n, Z_+T<Z(21/Z—1)'

O

Theorem 7 A set of n periodic tasks using the PCP is schedulable by the rate monotonic schedul-
ing algorithm for all task phasings, if and only if

IT
Vi, l<i<n, Li= max |IT,—) Cr[kl —B; >0,
(kvl)ERz 7‘673 TT
where R; = {(k,1) |k e P;, L =1,---,|T;/T}]}.]

The latter theorem presents the necessary and sufficient condition, when Cj is equal to the
maximum processing time of 7; and B; is equal to its maximum blocking duration. When larger
values are used, this theorem provides a sufficient condition for the schedulability.

Next, we examine the effects of abortions on each parameter that appears in the theorems. By
making a critical section z; ; abortable, the effects on the schedulability of 7, can be examined for
each of the following four cases. The maximum number of times that z; ; is aborted is represented
as m; ; below.

e When F; is higher than the priority ceiling of z; ;, making z; ; abortable has no effect on
any parameter of 7.

e When P, > F;, P is lower than or equal to the priority ceiling of z; ;, and 73 is included in
Z; ;, the maximum duration that 73 can be blocked by z; ; is reduced to U; ;. Consequently,
By, can possibly be decreased by making z; ; abortable.

e When P, > F;, P is lower than or equal to the priority ceiling of z; ;, and 73 is not included
in Z; ;, making z; ; abortable has no effect on any parameter of 7.

e When P, < F;, the schedulability of 7, may be affected by the increase of C;. Cj is prolonged
by m; ;A; ; because one abortion of z; ; requires additional processing time for A4;;. By
remains unchanged.

From these examinations, if m; ; can be determined for each ¢ and j, the schedulability of the
system using the SAP by the rate monotonic scheduling algorithm can be checked using Theorem 6
or 7.

The following theorem presents a method to determine an upper bound of m; ; when the SAP
1s used.

Theorem 8 m; ;, the maximum number of times that z; ; is aborted when a set of n periodic
tasks using the SAP is scheduled by the rate monotonic scheduling algorithm, is less than or equal
to m that satisfies the following inequality.

1T}
T — ST G, > DA, ;. 1
o max | T TEZC; [TJ > (m+1)4; (1)
where @; ={r|r=1,---,n, and P. > P; }
and R; jm ={(k,)) | ke Q;, I =0,1,---,|T3/Tx], and ZTTEZ,J' [ITy/T,] < m}. O

The notion of worst-case phasing [9] is used to prove this theorem. The worst-case phasing
for a task is the system status in which the time until the termination of its job is the longest
possible. Under static priority assignments, the worst-case phasing for a task 7; has been proved
to be the instant when every task having a higher or equal priority with 7; requests a job [10].
This instant 1s called a critical instant, and is determined independently of the processing time
of 7;. From this property, the execution of the abortable segment of z; ; finishes latest, when a
critical instant occurs immediately after 7; enters the abortable segment of z; ;.

Another necessary property to prove this theorem is that 7; is not blocked within z; ; once the
execution of z; ; begins. This property holds under the SAP as well as under the PCP.

As a result, the left side of (1) represents the minimum processing time given to z; ;, while
the jobs that can possibly abort z; ; are requested in m times or less. Here, the effect of the jobs
that have equal priorities with 7; is not counted. This is because the execution of 7; has already
started at the critical instant and precedes these jobs by the FCFS discipline. The right side of
(1) represents the maximum processing time of the abortable segment, when z; ; is aborted m
times. Therefore, if (1) is met, the execution of the abortable segment will be finished despite the
abortions.

Because the left side of (1) stops increasing when m > ZTTEZ,J [T:/T:], the minimum value

of m satisfying (1), if any, can be obtained by checking (1) for each m such that 1 < m <
> ez, [T/,

The upper bound of m;; calculated with this method is a pessimistic bound. Accordingly,
using the parameters calculated from this upper bound, Theorem 7 gives a sufficient condition for
the schedulability.

5.2 Schedulability Analysis Examples

Using the method described above, we illustrate schedulability analyses of the task sets of Exam-

ple 1 and 2 under the SAP.

m | LS of (1) | RS of (1)
1 0 2
2 6 3
3 6 4
4 12 5
5 12 6
6 18 7
7 18 8

Table 3: Determining an Upper Bound of m4 1 (Eg. 1)

Tl]]] [S _:preemptedor blocked
T — [] - executing
[: unabortable segment
v Lot (1 E. . | D -5 [5] : abortable segment
m ort abort (2
T ay b (1) mayv ort (2)
< 3—>
worst-case phasing <6
} } } } +—t —t } } } >
to 11 t2

Figure 2: Determining an Upper Bound of ma (Eg. 1)

Example 4 (Schedulability Analysis under the SAP (Eg. 1)) We illustrate a schedulabil-
ity analysis of the task set of Example 1 under the SAP. As mentioned in Section 3, z4; should
be made abortable such that A4, = 1 and Us; = 3, and should be aborted only by 72, then
2471 = {Tz}.

At first, we calculate an upper bound of m4; using Theorem 8. Table 3 presents the value of
the left and right sides of (1) for each m such that 1 <m <37 - [T4/T,.](= 7). From this
table, we can see that (1) is first met when m = 2. Figure 2 illustrates the scheduling of each task,
when 71, 7 and 73 are requested at time ¢y, which is the worst-case phasing for 4. Until time ¢;,
24,1 can be aborted no more than twice, while the processing time given to 74 is sufficient to finish
the execution of the abortable segment despite the abortions.

The result of calculating the effects on the schedulability of each task is presented in Table 4.
In this table, C'ZT" denotes the maximum re-execution time required for 7; when critical sections
are made abortable. Since my4; is known to be two or less, an upper bound of C’Z is 2441(= 2).
Because no schedulable laxity is negative in this table, this task set can be scheduled with the

SAP.

Example 5 (Schedulability Analysis under the SAP (Eg. 2)) Next, we illustrate a schedu-
lability analysis of the task set of Example 2. In this task set, only 73 can abort z4,, ie.
Z41 = {r3}. Table b presents the value of the left and right sides of (1) for each m such that
1<m< erezm [T4/T.] (= b). From this table, we can see that (1) is first met when m = 2.
Therefore, m, ; is shown to be two or less by Theorem 8.

The result of calculating the effects on the schedulability of each task is presented in Table 6.
Since mg4 1 is two or less, an upper bound of C’Zf is 2441(= 4). Because no schedulable laxity is
negative in this table, this task set can be scheduled with the SAP.

C;o | T 1P Ay [Ua || B | CF T Ly
I 4 10 P1 - - 0 0 6
T 4 15 P2 0 2 3 0 0
T3 4 30 | Ps 0 2 4 0 2
T4 10 | 100 | P4 1 3 0 2 6

Table 4: Schedulability Analysis under the SAP (Eg. 1)

m | LS of (1) | RS of (1)
1 2 4
2 7 6
3 12 8
4 14 10
5 19 12

Table 5: Determining an Upper Bound of m4 1 (Eg. 2)

Co| T TP 4 |UL || B | CF T L
I 4 10 P1 - - 0 0 6
T 3 15 P2 0 2 4 0 0
T3 4 20 P3 0 2 2 0 0
T4 || 10 | 100 | P4 2 2 0 4 5

Table 6: Schedulability Analysis under the SAP (Eg. 2)

To demonstrate the validity of the SAP, we present the results of schedulability analyses of
this task set under conventional approaches. In Example 2, we have already shown that the task
set cannot be scheduled with the PCP. The center columns of Table 7 show the result when z4; is
aborted by any higher priority task, i.e. the priority abort scheme [3] is used. In this case, 241 is
aborted not only by 73, but also by 72. As a result, an upper bound of m4; cannot be determined
with Theorem 8 and the schedulability of the task set cannot be shown. Permitting only m to
abort z4 1, which can be realized with a simpler abort scheme called the ceiling abort scheme [6],
does not solve the problem. The right columns of Table 7 show this case.

5.3 Finding a Feasible Assignment of Abort Task Sets

There remains a problem how to determine the abort task set of each abortable critical section to
make a given set of tasks schedulable. An assignment of abort task sets is called feasible, if the
task set can be shown to be schedulable under the assignment with our schedulability analysis
method presented above. In the SAP, a feasible assignment of abort task sets can be obtained, if
any, using the following algorithm.

1. First, the null set is assigned to each abort task set.

2. The schedulable laxity of each task is calculated. If all of them are zero or larger, the current
assignment of abort task sets is feasible.

3. Let 7; be the highest priority task whose schedulable laxity is negative. 7; is added to each of
the abort task sets of the critical sections that make L; negative. The maximum processing
times of their unabortable segments must be shorter than B; + L;. If it is impossible (when
B; + L; < 0, for example), feasible assignments of abort task sets do not exist.

4. As a result of the previous step, if the schedulable laxity of 7; remains negative, feasible
assignments of abort task sets do not exist.

5. Return to Step 2.

C;l T [P AU | B |CF] Li |AL|Ua B [CF L
I 4 10 | A - - 0 0 6 - - 0 0 6
To 4 15 | P 0 2 2 0 2 0 2 2 0 2
T3 4 30 | P 0 2 2 0 0 0 2 4 0 -2
74 || 10 | 100 | Py 0 4 0 - <0 2 2 0 8 1

Table 7: Schedulability Analyses under the PAP and the CAP

Note that the above algorithm depends on our schedulability analysis method. If some other
method is used for analyzing the schedulability, this algorithm must be modified also.

6 Simplifications and Extensions of the SAP

A priority-based abort scheme is obtained by limiting the definition of abort task sets such that
Z; j 1s determined by one priority value F; as follows®. Z; ; includes all the tasks that have higher
priority than Pfj and have lower or equal priority with the priority ceiling of z; ;.

With this simplification, only one value i1s necessary to be maintained for each critical section
instead of a set of tasks. Therefore, the implementation overhead can be reduced. The abort
ceiling protocol [7] is essentially the same protocol with the SRP-variant of the SAP with this
simplification.

It is also possible to determine Z; ; by more than one priority values.

The SAP can be extended in the following ways.

e The abortable segment of a critical section 1s divided into sub-segments, and an abort task
set is defined for each sub-segment such that the tasks included in the abort task set will
not increase as the execution proceeds.

With this extension, the maximum re-execution time of the abortable segment, which is
included in the right side of (1), can be reduced.

e A whole critical section is executed at a higher priority level than the priority of the task.
When a critical section is aborted, its priority is reset to that priority level instead of the
task’s priority.

With this extension, the execution of the critical section precedes some higher priority jobs
and thus the chance of abortions is decreased. The maximum blocking durations of preceded
jobs are prolonged instead.

e Different priority ceilings are assigned to the abortable and the unabortable segments of a
critical section z; ;. Though the priority ceiling of the unabortable segment must be the
priority ceiling of the semaphore guarding z; ;, that of the abortable segment can be an
arbitrary value PZ‘T‘] satisfying the following two conditions.

1. P;f‘]» must be lower than or equal to the priority ceiling of the unabortable segment.

2. P;j‘j must be higher than the priority of the tasks that have lower or equal priority with
the priority ceiling of the unabortable segment and that are not included in Z; ;.

With this extension, Theorem 3 and 4, which are the most important properties of the SAP,
are preserved. However, the property of Theorem 5 is lost.

This extension can avoid some unnecessary abortions and thus the maximum number of
abortions can be reduced. The ceiling abort protocol [6] is a simplified protocol of this
extension.

7 Conclusion

In this paper, a real-time synchronization protocol called the selective abort protocol (SAP) is
proposed and a sufficient condition for the schedulability under the protocol 1s presented. As an
example of the SAP’s applicability, we present a set of tasks which cannot be scheduled using
conventional protocols, but can be scheduled using the SAP. We also discuss some simplifications
and extensions of the SAP.

In this paper, the rate monotonic scheduling is adopted as the base scheduling algorithm in
which the deadline of each job is at the end of each period. When the deadline of one of the jobs

4PZ

;; must be higher than or equal to P; and must be lower than or equal to the priority ceiling of z; ;.

10

is earlier due to a jitter requirement or for some other reason, making critical sections abortable is
even more effective [5, 7]. Another useful application of abortable critical sections is to incorporate
them into the earliest deadline first scheduling algorithm, in which a higher priority task has a
smaller schedulable laxity. Combining the selective abort scheme with the earliest deadline first
scheduling remains as future work.

References

(1]

2]

[10]

R. Rajkumar, L. Sha, and J. P. Lehoczky, “Real-time synchronization protocols for multipro-
cessors,” in Proc. Real-Time Systems Symposium, pp. 259-269, Dec. 1988.

T. P. Baker, “Stack-based resource allocation policy for realtime processes,” in Proc. Real-
Time Systems Symposwum, pp. 191-200, Dec. 1990.

J. Huang, J. A. Stankovic, K. Ramamritham, and D. Towsley, “On using priority inheritance
in real-time databases,” in Proc. Real-Time Systems Sympostum, pp. 210-221, Dec. 1991.

H. Tokuda and T. Nakajima, “Evaluation of real-time synchronization in real-time Mach,” in
Proc. USENIX Mach Symposium, pp. 213-221, Nov. 1991.

>

L. Shu and M. Young, “A mixed locking/abort protocol for hard real-time systems,” in Proc.

Real-Time Operating Systems and Software, pp. 102-106, May 1994.

H. Takada and K. Sakamura, “Real-time synchronization protocols with abortable critical
sections,” in Proc. Real-Time Computing Systems and Applications, pp. 48-52, Dec. 1994.

L. Shu, M. Young, and R. Rajkumar, “An abort ceiling protocol for controlling priority
inversion,” in Proc. Real-Time Computing Systems and Applications, pp. 202-206, Dec. 1994.

L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance protocols: An approach to
real-time synchronization,” IFEE Trans. Computers, vol. 39, pp. 1175-1185, Sept. 1990.

J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling algorithm: Exact charac-
terization and average case behavior,” in Proc. Real-Time Systems Symposium, pp. 166-171,

Dec. 1989.

C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a hard real-
time environment,” JACM, vol. 20, no. 1, pp. 46-61, 1973.

11

