Experimental Implementations of Priority Inheritance Semaphore
on ITRON-specification Kernel

Hiroaki Takada

Ken Sakamura

Department of Information Science,
Faculty of Science, University of Tokyo.
7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan

Abstract

Using priority inheritance protocols s an effective
approach to solve the problem of uncontrolled priority
mversion, which s among the major sources of dead-
line violations in hard real-time systems. In this paper,
some approaches to incorporate priority inheritance to
the ITRON specification are discussed. As the result,
we propose two specifications of priority inheritance
semaphore functions with which the basic priority in-
heritance protocol can be realized, and implement both
of them for evaluation. The run-time performance and
memory requirements of the functions are evaluated
with the implementations.

1 Introduction

Priority inversion, the state in which a higher pri-
ority task 1s blocked by lower priority tasks due to re-
source sharing, is one of the major sources of deadline
violations in hard real-time systems. Priority inheri-
tance protocols are among the promising approaches
to bound the duration of priority inversion [1].

Some recent multimedia applications, especially
those handling continuous media including voice and
video, require the techniques devised for hard real-
time systems, and then the ITRON specification is
requested to support the techniques. As the first step,
we discuss how to adopt priority inheritance protocols
on ITRON-based systems in this paper. The necessity
of priority inheritance protocols in the ITRON speci-
fication has been also pointed out by other researchers
[2].

The main purpose of this research is to present a
basic material for investigating future ITRON speci-
fications. There are some approaches to incorporate
priority inheritance to the ITRON specifications. We
investigate on the approaches and propose two specifi-
cations of priority inheritance semaphore functions as

the result. Then, we implement them in an existing
ITRON-specification kernel and evaluate them from
the viewpoint of run-time performance.

In Section 2, some approaches to incorporate pri-
ority inheritance to the ITRON specification are dis-
cussed after a short introduction of priority inheri-
tance protocols. How to introduce the priority inheri-
tance semaphore function to the ITRON specification
is investigated in Section 3, and two versions of spec-
ifications are proposed. One of the specifications is
considered to be ideal for application programmers,
but 1ts implementation overhead is large. Though the
implementation of the other specification is compact
and efficient, it has some restrictions in using the func-
tion. Both of the specifications are implemented in an
existing ITRON-specification kernel and their execu-
tion times and memory requirements are evaluated in
Section 4.

2 Incorporating Priority Inheritance
to the ITRON Specification

2.1 Priority Inheritance Protocols

Adopting priority inheritance protocols is one of the
approaches to solve the problem of uncontrolled pri-
ority inversion. A typical example of the problem is
illustrated below.

Example (uncontrolled priority inversion)

Suppose that there are three tasks 7, m, and 73,
with 7 having the highest priority and 73 having the
lowest. 1 and 73 access a shared data within mutually
exclusive regions guarded by a semaphore. Suppose
the case that 73 locks the semaphore and enters the
critical section when 7 and 7 are in wait state. While
T3 1s executing in the critical section, 7y becomes ready
state with some external event, begins to execute pre-
empting 73, and then tries to lock the semaphore for

accessing the shared data. Because the semaphore has
already been locked by 73, 71 is blocked and 73 resumes
to execute. At this moment, priority inversion occurs.
Assume that 7 becomes ready state during this pri-
ority inversion. Since 7o has higher priority than 73,
79 preempts 73. As the result, the priority inversion
duration is prolonged and can not be controlled.

To analyze the schedulability of the system, the
maximum duration of the priority inversion must be
known. It is permissible that 7 is blocked for the du-
ration that 73 executes the critical section, because the
maximum execution time of a critical section is usu-
ally bounded and known. However, if 7 must wait
for the execution of 7 and other intermediate priority
tasks, the duration of the priority inversion becomes
very long or even unbounded.

There are some solutions to this problem. One of
the simplest solutions is to disable task dispatches
while 73 executes the critical section. dis_dsp sys-
tem call' of the ITRON specification can be used to
implement this method.

Another simple solution is to make the priority of
73 higher than 1 while it executes the critical sec-
tion. More exactly, the priority of 73 is raised to the
level of the highest priority task which may lock the
semaphore (or access the shared data). This method
is called stack resource policy [3] or highest locker pro-
tocol [4], and can be implemented using only chg pri
system call of the ITRON specification?.

Another solution is to use priority inheritance pro-
tocols. The fundamental concept of priority inheri-
tance protocols is that when a task blocks some higher
priority tasks, its priority should be raised to the level
of the highest priority task among the blocked ones.
In other words, the task inherits the priority of the
highest priority task blocked by it. The priority is put
back to the original level when the task releases the
blocked tasks. We call the original priority of a task
as its base priority.

With the basic priority inheritance protocol [1],
which 1s the naive realization of the concept, the pri-
ority inversion problem illustrated in the previous ex-
ample 18 solved as follows. When 7 tries to lock the
semaphore and is blocked, 73 inherits the priority of
71 because 71 is blocked by 75. Because the inherited
priority 1s higher than that of 75, 73 is not preempted
by 7 when 7 becomes ready to run. As the result,

1dis_dsp is a newly introduced system call in the nITRON3.0
specification.

2The highest locker protocol has the restriction that a task
which executes a critical section must not enter wait state nor
be suspended.

the duration of priority inversion is bounded by the
maximum time that 73 executes the critical section.

Even when multiple resources are shared and some
tasks lock multiple semaphores, the basic priority in-
heritance protocol bounds the duration of priority in-
version. In this case, priority inheritance must be
transitive. For example, when 74 inherits the prior-
ity of 73 and 73 inherits that of 7, the priority of 74 is
raised to that of 7. Refer to [1] for further discussions.

In this paper, we discuss the ways to incorporate
the concept of priority inheritance protocols to the
ITRON specification, especially the basic priority in-
heritance protocol. We remain it as future work how
to incorporate other variants of priority inheritance
protocols, including the priority ceiling protocol, to
the ITRON specification.

2.2 Some Approaches

From the fundamental concept of priority inheri-
tance protocols, all synchronization and communica-
tion objects of the ITRON specification, which cause
blockings, should have priority inheritance operation
mode. Adding priority inheritance option to the at-
tributes of all synchronization and communication ob-
jects and making them support priority inheritance
mode 1s one of the approaches to incorporate prior-
ity inheritance to the ITRON specification. However,
with some synchronization or communication objects,
the relation between a blocked task and the task that
causes the blocking cannot be determined beforehand
in general. In such cases, it cannot be decided which
task should inherit the priority of a blocked task. A
typical example is the synchronization using an event-
flag.

Another approach is that the kernel supports the
mechanisms with which application programmers can
implement priority inheritance protocols. Actually,
priority inheritance message passing can be realized
using only existing primitives of the ITRON specifica-
tion, chg pri system call, two priority-ordered mail-
boxes, and an additional task that controls priorities
[4]. However, the priority inheritance mutual exclu-
sion mechanism presented in the previous section can-
not be implemented without any restrictions. In ad-
dition to some restrictions, its run-time performance
will be very bad.

From these considerations, we investigate on
the method to support priority inheritance binary
semaphore with ITRON-specification kernels in the
following sections. With priority inheritance binary
semaphore, the basic priority inheritance protocol can
be realized straightforwardly. We do not investigate

cre_pis
del_pis
sig_pis
wail_pis
preq._pis
twai_pis
ref_pis

Create Priority Inheritance Semaphore

Delete Priority Inheritance Semaphore

Signal Priority Inheritance Semaphore

Wait on Priority Inheritance Semaphore

Poll and Request Priority Inheritance Semaphore
Wait on Priority Inheritance Semaphore with Timeout
Refer Priority Inheritance Semaphore Status

Table 1: System Calls Supporting Priority Inheritance Semaphore

on priority inheritance counting semaphore, because
it is less useful than binary semaphore and requires
larger memory space.

3 Specifications of Priority Inheritance
Semaphore

In this section, we propose two specifications to in-
corporate the priority inheritance semaphore function
to the uITRON3.0 specification [5].

3.1 Priority Inheritance Semaphore

Priority inheritance semaphore is the mechanism to
implement the basic priority inheritance protocol.

One method to incorporate the priority inheri-
tance semaphore function to the uITRON3.0 specifi-
cation is to add a priority inheritance option to the
semaphore attribute, which i1s passed to the kernel
when a semaphore is created with cre_sem system
call. Though no new system call is necessary with this
method, it has a drawback that the overhead to check
the attribute becomes large because internal process-
ing of normal semaphore and that of priority inheri-
tance semaphore are quite different.

Therefore, we adopt the other method that a prior-
ity inheritance semaphore is dealt as a new synchro-
nization object. The seven new system calls presented
in Table 1 are introduced to support the priority inher-
itance semaphore function. “pis” is the abbreviation
of priority inheritance semaphore.

Functions of these system calls are same with those
of corresponding system calls for normal semaphores,
except for the following differences in addition to sup-
porting priority inheritance (of course).

e The initial semaphore count and the maximum
semaphore count, which are passed to cre_sem
system call, are not passed to cre_pis system call,
because only binary semaphore is supported with
the priority inheritance semaphore function.

e The current semaphore count is not included in
the return parameter of ref_pis system call with
the same reason. The ID of the task that ob-
tains the priority inheritance semaphore can be
acquired with the system call, instead.

e Only priority-ordered queueing of waiting tasks is
supported, because FIFO queueing is not suitable
for hard real-time systems.

e A priority inheritance semaphore must be re-
leased by the task that has locked it. Otherwise,
sig_pis reports E_.OBJ error.

In addition to them, some other differences exist
depending on the specification of the priority inheri-
tance semaphore function, which will be mentioned in
the following sections.

The priority of a task that accesses priority inheri-
tance semaphores i1s changed by the kernel according
as the priority inheritance rules. We do not stipulate
the exact behavior when chg_pri system call is issued
on such a task. On the other hand, the base priority
of a task is not changed by the priority inheritance
semaphore function. In the specifications presented
below, the initial priority of a task, which is passed
to the kernel when the task 1s created, is considered
to be its base priority for simplicity. The alternative
specifications in which this restriction is removed are
possible. In this case, another new system call that
changes the base priority of a task should be intro-
duced. Though the specifications require additional
area in the task control block (TCB), their impact on
the run-time performance is very small.

3.2 Specification A

The first specification (called Specification A be-
low) is the naive realization of the fundamental con-
cept of the priority inheritance protocols. In the con-
crete, the priority of a task is preserved to be the high-
est priority level among its base (i.e. initial) priority
and the priorities of the tasks that are waiting for one

of the priority inheritance semaphores locked by the
former task.

In order to implement the specification, the list of
priority inheritance semaphores locked by a task must
be maintained. This list is used when the new pri-
ority of a task is decided from the priority rule de-
scribed above. It is actually used in following four
cases. Other cases can be handled without referring
to the list.

1. When a task obtains multiple priority inheri-
tance semaphores and releases one of them (using
sig pis system call), the new priority of the task
is calculated using the list.

2. When a priority inheritance semaphore 1s deleted
(using del_pis system call), the new priority of
the task that has obtained the deleted semaphore
is calculated using the list.

3. When a task that has been waiting for a priority
inheritance semaphore is released its wait state
by timeout or rel_wai system call®, the new pri-
ority of the task that obtains the semaphore is
calculated using the list.

4. When the priority of a task that is waiting
for a priority inheritance semaphore is changed,
the new priority of the task that obtains the
semaphore is calculated using the list.

Actually, some optimization is possible. In the first
case, for example, the task’s new priority is necessary
to be calculated only when its priority before releas-
ing the priority inheritance semaphore is equal to the
priority of the task that is at the head of its waiting
queue.

Because the list of locked priority inheritance
semaphores is maintained, it can be implemented eas-
ily that all priority inheritance semaphores locked by
a task are automatically released when the task ex-
its or is terminated. We implement and evaluate this
alternative specification in Section 4.

3.3 Specification B

Maintaining the list of the priority inheritance
semaphores locked by a task, which is necessary in
Specification A, is expected to degrade the run-time
performance and to require more memory space. If
the maintenance of the list can be omitted with some

3In strict, ter_tsk system call may also release a task’s wait
state.

restrictions, it may be profitable for some applica-
tions. The resulting specification is called Specifica-
tion B and the restrictions with the specification are
discussed below.

The behavior of the priority inheritance semaphore
function in Specification B is different from that in
Specification A in the following points, since the list
of the locked priority inheritance semaphores is not
maintained.

1. When a task releases a priority inheritance
semaphore, the priority of the task is put back
to its base (i.e. initial) priority, even if it obtains
some other priority inheritance semaphores.

2. When a priority inheritance semaphore is deleted,
the priority of the task that has obtained the
deleted semaphore is not changed.

3. When a task that has been waiting for a priority
inheritance semaphore is released its wait state by
timeout or rel_wai system call, the priority of the
task that obtains the semaphore is not changed.

4. When the priority of a task that i1s waiting for
a priority inheritance semaphore is changed, the
priority of the task that obtains the semaphore is
handled as follows. If the new priority of the for-
mer task is higher than that of the latter task, the
priority of the latter task is raised to that of the
former task. Otherwise, it remains unchanged.

From these differences, application programmers
must be aware of the following restrictions in using
the priority inheritance semaphore function.

e When a task obtains multiple priority inheritance
semaphores, it must release all of them at once in
a dispatch disabled region. Otherwise, the pri-
ority of the task is recovered to its base prior-
ity, even if the task blocks some other tasks with
higher priority levels through the priority inher-
itance semaphores that are not released. As the
result, unexpected priority inversion can occur.

e In the cases 2, 3, and 4 described in the above
differece list, the priority of a task may not be
changed to its proper priority level and may re-
main too high. This also causes unexpected pri-
ority inversion.

Because the latter cases do not occur with the ba-
sic priority inheritance protocol presented in [1], the
protocol can be realized with the first restriction.

When the above restrictions are permissible in de-
signing application programs, Specification B is prefer-
able because it has smaller run-time overhead than
Specification A.

At first, we have investigated on another specifica-
tion in which a task’s priority before it locks a pri-
ority inheritance semaphore is stored in the control
block of the semaphore. When the task releases the
priority inheritance semaphore, the task’s priority is
recovered to the level before it locks the semaphore.
We have expected that the first restriction can be re-
moved or relaxed with this specification. However,
since the problem illustrated in the following example
arises without the restriction, this alternative specifi-
cation has little meaning.

Example

Suppose that there are three tasks 7, 7, and 73
and two priority inheritance semaphores S; and S,.
71 has the highest base priority and 73 has the low-
est. Suppose the case that 73 first locks S; and then
locks S;. While 75 obtains both priority inheritance
semaphores, 7 becomes ready state with some exter-
nal event, begins to execute preempting 73, and then
tries to lock S;. Because S is locked by 13, 73 inher-
its the priority of 7 and resumes to execute. When 73
releases S5, the priority of 73 is recovered to the level
before it locks Ss, i.e. the base priority of 3. If
becomes ready state at this moment, 7 preempts 73
and uncontrolled priority inversion results.

4 Implementation and Evaluation

We have implemented the two specifications of the
priority inheritance semaphore functions presented in
the previous section in a real-time kernel based on the
#ITRON3.0 specification called TtIs (ITRON Imple-
mentation by Sakamura Lab), which has been devel-
oped as a research testbed. The target processor of
the kernel is the TRON-specification microprocessor.
Using the implementations, we compare the execution
time and memory requirements of the priority inher-
itance semaphore functions with those of the normal
semaphore function.

First, we compare the structure of the con-
trol blocks of two versions of priority inheritance
semaphores and that of a normal semaphore. Fig-
ure 1 to 3 show the structure of each control block.
The size of the priority inheritance semaphore control
block in Specification B (24 bytes) is 4 bytes smaller
than others (28 bytes).

With Specification A a pointer for the list of locked
priority inheritance semaphores is added to the task

control block (TCB), and its size becomes 4 bytes
larger than the original kernel (Figure 4).

The source and object code size of each module
is compared in Table 2. The source codes are writ-
ten in C language and the sizes presented in the ta-
ble exclude comment lines and empty lines. The
priority inheritance semaphore module in Specifica-
tion A 1s a little larger than the other modules as
we have expected. When the priority inheritance
semaphore function is used, some routines are also
added to other modules. Their object code sizes are
64 bytes in Specification A and 4 bytes in Specifica-
tion B. Compared to the object code size of the normal
semaphore module (1300 bytes) or that of rendezvous
module (1992 bytes), those of the priority inheritance
semaphore modules are considered to be reasonable.

Finally, we present the execution times of seven
operations using the priority inheritance semaphore
functions compared with the normal semaphore func-
tion in Table 3 and Figure 5. We use a system with
GMICRO /300 microprocessor running at 20MHz clock
and no-wait memories for the evaluation. In order to
exclude the effect of cache, both the instruction cache
and the operand cache are purged just before an exe-
cution time is measured.

The seven operations the execution times of which
are measured are as follows (we call priority inheri-
tance semaphore simply as semaphore below).

(a) The execution time of wai_sem/pis is measured
when the semaphore can be locked immediately.
No task dispatch occurs.

(b) Suppose that task 7, and task 7 have the same
base priority and that 75 obtains semaphore 5.
Suppose also that 7 is running, and that 7 is in
ready state. If 7 invokes wai_sem/pis(S;), 7 is
blocked and 75 begins to execute. The execution
time since 71 is about to invoke wai_sem/pis until
79 starts to execute is measured. A task dispatch
time is included.

(¢) Suppose that task 7 has higher base priority than
task 7o and that 7, obtains semaphore S;. If 7
invokes wai_pis(S7), 7y is blocked and 7 begins
to execute with the priority of 7. The execution
time since 7 is about to invoke wai_sem/pis until
75 starts to execute is measured. A task dispatch
time is included.

(d) Suppose that there are three tasks 71, 7, and 73,
with 7 having the highest base priority and 73
having the lowest. Also suppose that m obtains
semaphore S; and is waiting for semaphore S5

struct semaphore_control_block {
QUEUE wait_queue; /* waiting queue for the semaphore */

ID semid; /* semaphore 1D */

VP exinf; /* extended information */

ATR sematr; /* semaphore attribute */

INT semcnt; /* current semaphore count */
INT maxsern; /* maximum semaphore count */

Figure 1: Semaphore Control Block

struct pis_A_control_block {
QUEUE wait_queue; /* waiting queue for the semaphore */

ID pisid; /* semaphore 1D */

VP exinf; /* extended information */

ATR pisatr; /* semaphore attribute */

TCB *pistsk; /* TCB of the task that locks the semaphore */

struct pis_A_control_block *pislist;
/* pointer for the list of semaphores locked by a task */
Figure 2: Priority Inheritance Semaphore Control Block in Specification A

struct pis_B_control_block {
QUEUE wait_queue; /* waiting queue for the semaphore */

ID pisid; /* semaphore 1D */

VP exinf; /* extended information */

ATR pisatr; /* semaphore attribute */

TCB *pistsk; /* TCB of the task that locks the semaphore */

Figure 3: Priority Inheritance Semaphore Control Block in Specification B

Task Control Block

PIS Control Block PIS Control Block

- - pi stsk
pi slist

— pi st sk
pi slist ——# NULL

Figure 4: The List of Priority Inheritance Semaphores (in Specification A)

| Semaphore Module | PIS Module in Spec A | PIS Module in Spec B

Source Code 230 lines 341 lines 244 lines
Object Code 1300 bytes 1748 bytes 1352 bytes

Table 2: Source and Object Code Sizes

Operations Semaphore | PIS in Spec A | PIS in Spec B
(a) wai_sem/pis without switching tasks 11 psec 12 psec 11 psec
(b) wai_sem/pis with a task dispatch 39 psec 39 psec 38 usec
wai_pis with a task dispatch and a o
(c) priority inheritance 48 pisec AT pisec
wai_pis with a task dispatch and two o
(d) priority inheritances P9 pisec P8 pisec
(e) sig-sem/pis without waking up tasks 9 psec 14 psec 11 psec
sig_sem/pis with waking up a task
() but no task dispatch 18 pisec 27 psce 22 pscc
sig_sem/pis with waking up a task, a
(g) task dispatch, and recovering the pri- 30 psec 42 psec 37 psec
ority of invoking task
Table 3: Execution Times
I Semaphore
EZ8 PISin Spec A
[PiSinSpecB

(0asrl) swii uonnoex3

@ () (9

Figure 5: Execution Times

that is locked by 73. According as the priority
inheritance rule, 75 inherits the priority of 7. If 1y
invokes wai_pis(S7), 7 18 blocked and 7 inherits
the priority of 7. Because 15 is waiting for S5 and
Ss 1s locked by 73, 73 also inherits the priority of
71. The execution time since 71 1s about to invoke
wai_pis until 73 starts to execute is measured. A
task dispatch time is included.

The execution time of sig_sem/pis is measured
when no task is waiting for the semaphore. No
task dispatch occurs.

The execution time of sig_sem/pis is measured
when a task that has lower or the same pri-
ority with the running task is waiting for the
semaphore and is made ready state. No task dis-
patch occurs.

Suppose that task 7 has higher base priority than
task 7 and that 7 is waiting for semaphore S
that 1s locked by 7. According as the prior-
ity inheritance rule, 75 inherits the priority of

@ @© (f) ©)

71. When 72 invokes sig sem/pis(S;), 7 can
lock the semaphore. The priority of 75 is recov-
ered to its original level and 7 begins to execute.
The executlion time since 7 1s about to invoke
sig sem/pis until 7 starts to execute is mea-
sured. A task dispatch time 1s included.

When no priority inheritance occurs, the execution
time of wai_pis system call is almost same with that
of wai_sem system call. The execution time to make
a task inherit the priority of another task is about
10 psec with both specifications. This overhead is es-
sential to the priority inheritance semaphore function
and considered to be reasonable.

The execution times of sig_pis with Specifica-
tion A is about 40 to 50% slower than those of
sig_sem. This is because the released priority inher-
itance semaphore must be removed from the list of
locked priority inheritance semaphores of the invoking
task, and because the priority of invoking task must
be recovered if necessary. We have presented only
the cases in that the task invoking sig _pis system

call obtains no other priority inheritance semaphores.
If the task obtains some other priority inheritance
semaphores, the execution times are prolonged a bit.
The execution times will be improved, if we impose
the restriction that wai_pis—sig pis pairs must be
properly nested, in other words, the restriction that
the priority inheritance semaphore that is locked last
must be released first. This s because the list of locked
priority inheritance semaphores can be handled LIFO
(last-in first-out) manner with this restriction.

With Specification B, the execution times of
sig pis are also slower than those of sig_sem, but
they are faster than those with Specification A. They
remain unchanged when the task invoking sig pis
system call obtains some other priority inheritance
semaphores.

5 Conclusions

In this paper, we have investigated on the meth-
ods to incorporate priority inheritance to the ITRON
specification. As the first step, we have proposed two
specifications of priority inheritance semaphore func-
tion with which the basic priority inheritance protocol
can be realized. Then, we have implemented both of
the specifications and evaluated them from the view
point of run-time efficiency.

Specification A is considered to be ideal for appl-
cation programmers, but its implementation overhead
is large. The execution time of releasing semaphore
operation is 40 to 50% longer than that of normal
semaphore. The required memory space is thought
to be reasonable. Specification B is proposed as the
specification which can be implemented efficiently, but
some restrictions are imposed in designing application
programs. It is application dependent and is beyond
the scope of this paper which of the specifications is
preferable.

The method to incorporate other variants of prior-
ity inheritance protocols, including the priority ceiling
protocol, to the ITRON specification remains as future
work. It also remains as future work if the priority in-
heritance message passing function and other synchro-
nization or communication objects supporting priority
inheritance should be adopted as primitive functions
of the ITRON specification.

Acknowledgments

We wish to thank the colleagues of Sakamura Lab-
oratory for their suggestion and encouragement.

References

[1] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Pri-
ority inheritance protocols: An approach to real-
time synchronization,” ITEEE Trans. Computers,

vol. 39, pp. 1175-1185, Sept. 1990.

[2] M. Fukuda and H. Nokubi, “An RTOS allow-
ing the gradual migration,” in Proc. of the Ninth
TRON Project Symposium, pp. 107-114, IEEE CS
Press, 1992.

[3] T. P. Baker, “Stack-based resource allocation pol-
icy for realtime processes,” in Proc. Real-Time
Systems Symposium, pp. 191-200, Dec. 1990.

[4] M. H. Klein, T. Ralya, B. Pollak, R. Obenza,
and M. G. Harbour, A Practitioner’s Handbook
for Real-Time Analysis: Guide to Rate Monotonic
Analysis for Real-Time Systems. Kluwer Academic

Publishers, 1993.

[5] K. Sakamura, ed., pITRON 3.0 Standard Hand-
book. Tokyo: Personal Media, 1993. (in Japanese).

