TOWARDS A SCALABLE REAL-TIME KERNEL
FOR FUNCTION-DISTRIBUTED MULTIPROCESSORS

H. TAKADA and K. SAKAMURA

University of Tokyo, Department of Information Science,

7-8-1 Hongo, Bunkyo-ku, Tokyo 113, Japan

Abstract. Scalability 1s one of the most important requirements for real-time systems
on function-distributed multiprocessors. In this paper, requirements on a scalable real-
time kernel for function-distributed shared-memory multiprocessors are clarified, and its
specification and implementation issues are discussed. We propose a new kernel model in
which kernel resources are classified into some classes with different characteristics.

Keywords. real-time kernel, function-distributed multiprocessor, scalability, synchroniza-

tion, predictability

1. INTRODUCTION

In many applications of high performance real-time
systems, a large number of external devices such as
sensors, actuators, and network controllers are con-
nected to a system and the system is required to re-
spond to the external events from the devices within
predefined and usually short time-bounds. Adopting
function-distributed (or asymmetric) multiprocessors
in which each device is handled by a fixed processor is
a promising approach to satisfying this requirement.

Because 1t is often the case that external devices are
added to the system during its life-time in such kind
of systems, the system should have the scalability
when the number of processors is increased. In the
concrete, the maximum execution times and response
times of as many jobs as possible should not be pro-
longed when some processors are added to the system.
However, little work has been done to design or imple-
ment a scalable real-time kernel suitable for realizing
application systems with the scalability of worst-case
behavior.

In this study, requirements on a scalable real-time
kernel for function-distributed shared-memory multi-
processors are clarified, and its specification and im-
plementation issues are investigated.

In implementing a real-time kernel on shared-memory
multiprocessors, some mutual exclusion mechanism
among processors, such as spin locks, is necessary for
the access control of shared data structures within
the kernel (e.g. task control blocks and various kind
of queues). It is unavoidable that the worst-case ex-
ecution time of a task that must acquire an interpro-
cessor lock during its execution becomes long as the

number of contending processors is increased. There-
fore, such a task cannot meet the scalability condition
(i.e. the maximum execution time of the task becomes
longer when the number of processors is increased).

To cope with this situation, we have adopted the ap-
proach that tasks are classified into some classes with
different characteristics, and that the tasks belonging
to the appropriate class having the required property
for a job are used for implementing the job. For ex-
ample, there exists a class of tasks that can meet the
scalability condition, but that cannot synchronize or
communicate with the tasks executed on other pro-
cessors. Time-critical jobs should be implemented
with this class of tasks if possible. Another class of
tasks can synchronize with the tasks on other proces-
sors, but cannot meet the scalability condition.

In this paper, we propose a classification method of
kernel resources with which a scalable real-time kernel
satisfying the above requirements can be realized, and
describe its implementation methods.

A real-time kernel investigated in this paper is a basic
software for real-time systems supporting task man-
agement, priority-based preemptive scheduling, inter-
task synchronization and communication, and mem-
ory management functions, which is also called as a
real-time monitor or a real-time executive. In the con-
crete, we have adopted the pITRON3.0 Specification
(Sakamura, 1994), an open real-time kernel specifica-
tion for embedded systems, as the base kernel specifi-
cation to be extended to support multiprocessors. A
multiprocessor discussed in this paper is that having
several or around ten processors. We do not discuss
on massively parallel systems.

%
WI o

<[Local
Memory
—

»

Local s Local
Memory Memory

Global
= (-8

Fig. 1. Function-Distributed Multiprocessor

In Section 2, we describe the important features of
function-distributed multiprocessors and clarify the
requirements on a scalable real-time kernel for them.
Section 3 describes some implementation methods
and issues of multiprocessor real-time kernels. We an-
alyze the access pattern on data structures within ker-
nel and investigate on the lock granularity used in the
kernel. Then, we discuss the classification methods of
tasks and intertask synchronization/communication
objects (such as semaphores and mailboxes), and
their accessibility from each class of tasks in Section 4.

2. SCALABILITY FOR FUNCTION-
DISTRIBUTED MULTIPROCESSORS

2.1 Function-Distributed Multiprocessors

In many applications of real-time systems, where the
required computational resources for each external
device can be estimated beforehand, it is preferable
that each device be handled by a fixed processor and
that the interface with the device be connected to
the local bus of the processor (Fig. 1). A distributed
shared-memory architecture is also adopted in which
a memory module is connected to the local bus of
each processor. In this kind of function-distributed
multiprocessors, because the code and data areas of
the program handling an external device are placed
in the local memory of the processor, the number of
shared-bus (or interconnection network) transactions
can be reduced compared to symmetric multiproces-
sors. This is profitable not only because the high-
performance shared bus and expensive cache mech-
anisms can be omitted, but also because the pre-
dictability of the system can be improved through
the reduction of access conflicts on the shared bus.

When a real-time system is constructed using a
function-distributed multiprocessor, external devices
and jobs handling them are allocated to proces-
sors so that the following conditions are satisfied:
(a) interprocessor synchronization are minimized and
(b) time-critical jobs are processed without syn-
chronizing with other processors as far as possible.
Consequently, in well-designed real-time systems on
function-distributed multiprocessors, many tasks, in-
cluding most of the time-critical tasks in the system,
can be processed without synchronizing with other
processors (we call such a task as closed within a pro-

cessor below).

Even in a system with severe timing constraints, there
often exists some tasks that are not time-critical. The
mechanism that such kind of background tasks is ex-
ecuted on idle processors is very useful. In shared-
memory multiprocessors, task migrations can be re-
alized with a simple mechanism.

2.2 Scalability for Function-Distributed
Multiprocessors

In general, the maintenance cost of a real-time system
is said to be very high because a small modification
of a job can affect the timing behavior of the whole
system. In order to reduce the maintenance cost of
the system, the influence of a modification should be
minimized. In function-distributed multiprocessors,
it is desirable that the timing behavior of the jobs
closed within a processor should not be influenced by
a modification of the jobs on other processors, and
vice versa. We will discuss the most serious problem
to be solved for this requirement in Section 3.4.

In multiprocessor systems, it is often the case that the
number of processors is increased during the life-time
of the system, for example, when the performance re-
quirements on the system is changed or when some ex-
ternal devices are added. In this situation, it is prefer-
able that the worst-case execution times and response
times of the time-critical jobs that are not modified
are not prolonged. In other words, the worst-case be-
havior of the system should have the scalability to the
number of processors.

However, it is unavoidable that the maximum exe-
cution time of a job that uses a shared resource’
exclusively is prolonged as the number of contend-
ing processors is increased, with its linear order at
least. By making the maximum execution times and
response times of other jobs (i.e. jobs that are exe-
cuted without synchronizing with other processors2)
independent of the number of contending processors,
the system maintenance cost can be considerably re-
duced. This is because most of the time-critical jobs
are closed within a processor in well-designed real-
time systems on function-distributed multiprocessors.

Consequently, the scalability requirements on real-
time systems using function-distributed multiproces-
sors can be described as follows.

1. The maximum execution time and response time
of a job that is closed within a processor should
not depend on the jobs on other processors or on
the number of contending processors.

2. The maximum execution time and response time

1In strict, a shared resource that is fairly accessible
from each processor.

2With message passings or remote invocations, pro-
cessors can synchronize without using a shared resource
exclusively. In function-distributed shared-memory mul-
tiprocessors, however, this synchronization method has
some drawbacks. We will describe the drawbacks in Sec-
tion 3.2.

of a job that synchronize with jobs on other
processors should not depend on the jobs closed
within other processors and should be bounded
with the linear order of the number of contending
processors.

In practice, because we cannot satisfy both require-
ments in strict at the same time, the first requirement
is relaxed a little. In the concrete, we allow that the
execution time of a tight loop of the number of pro-
cessors is included in the maximum execution time
or response time of a job closed within a processor.
This is justified from the assumption that we do not
handle massively parallel systems.

3. IMPLEMENTATION METHODS OF
MULTIPROCESSOR REAL-TIME KERNELS

3.1 Basic Kernel Model for Function-Distributed
Multiprocessors

When a hard real-time system is realized on a
function-distributed multiprocessor, the method is of-
ten adopted as a realistic approach that a real-time
kernel for single processor is used on each proces-
sor and synchronizations among processors are im-
plemented with application-level programs. However,
this method has a drawback that when the allocation
of the tasks to the processors is changed, a large part
of the application program is necessary to be mod-
ified. This i1s because the synchronization interface
with tasks on the same processor and that with tasks
on other processors are completely different.

To remedy this problem, a multiprocessor real-time
kernel is necessary with which a task can synchronize
with tasks on other processors with the same interface
with tasks on the same processor. In other words, a
task can synchronize with any task with the same set
of system calls. In such a kernel, each task has its
host processor on which it is executed and is called a
local task of the processor. A ready queue is prepared
for each processor in which all the local tasks that are
ready to execute are included in the descending order
of their priorities. Each task-independent synchro-
nization/communication object (called as a synchro-
nization object or simply as a object below), such as
a semaphore and a mailbox, also has its host proces-
sor and can be accessed from any task in the system.
In this paper, we call this kernel model as the ba-
sic model of real-time kernels for function-distributed
multiprocessors, or the basic kernel model in short

(Fig. 2).

3.2 Direct Access Method and Remote Invocation
Method

There are two approaches to implementing an OS ker-
nel on function-distributed shared-memory multipro-
cessors: the direct access method and the remote in-
vocation method (Chaves et al., 1991).

With the direct access method, when a task oper-

57

I/O

Local ﬁ‘ Local
Memory Memory

& »
7>

E\:‘ : local task

Fig. 2. Basic Kernel Model

ates on a resource on another processor, it directly
accesses the control block of the resource located on
the local memory of the processor. In implementing
a real-time kernel, because the execution time of each
primitive operation is very short, spin locks are used
to access the control block exclusively.

With the remote invocation method, which is used
for multiprocessors without shared memories, when a
task operates on a resource on another processor, it
sends a message requesting the operation to the pro-
cessor and receives the result. The requesting proces-
sor spins until the requested processor completes the
operation.

Below, we will illustrate the behavior with these two
approaches when a task 71 invokes a system call that
operates on a blocked task 7 on another processor
P> and that makes 7 ready to execute.

Direct Access Method

At first, 7 finds the address of m’s task con-
trol block (TCB) and then tries to lock the TCB.
When 7 succeeds to acquire the lock, it accesses
the TCB and changes the state of 7. Because m
becomes ready to execute, 71 enqueues 7> to the
ready queue of P». If P executes lower priority
task than 7 (the priority of the currently executed
task must be stored on a shared memory), 71 re-
quests P to switch the executing task using an
interprocessor interrupt.

Remote Invocation Method

71 enqueues a request information block into the
request queue of P,. The request information
block includes the kind of operation, the param-
eters passed to it, and an empty field to which
the requested processor writes the result. Then,
71 asks P, to process the request using an inter-
processor interrupt and spins until the result of
the operation is written in the request information
block. When P accepts the interrupt, it executes
the requested operation and writes the result in

the block.

Which method of them is appropriate is determined
by the characteristics of the underlying hardware
and the performance requirements of the application.
From the performance requirements of real-time ap-
plications, the direct access method is usually suitable
because the serialization unit of processing is smaller
than the remote invocation method. More precisely,

the remote invocation method has the following draw-
backs in implementing real-time kernels for function-
distributed multiprocessors.

1. Because requests come from other processors asyn-
chronously, any task can be delayed by the pro-
cessing of the requests. This makes the schedula-
bility analysis of the system very difficult.

2. In functional-distributed multiprocessors, inter-
rupt requests from external devices are raised on
each processor. If an external interrupt has a
higher priority than the interprocessor interrupt,
the execution of a requested operation can be de-
layed due to the service of the external interrupt.
This makes it difficult (or even impossible depend-
ing on the situation) to bound the execution time
of a remote invocation. If the interprocessor in-
terrupt has a higher priority than an external in-
terrupt, it is difficult to bound the response time
of the external interrupt (Takada & Sakamura,
1991).

With these reasons, we assume the direct access
method in the following discussion.

3.3 Kernel Data Structures and Lock Units

In implementing a real-time kernel for shared-
memory multiprocessors, the lock granularity of ker-
nel data structures is one of the most important is-
sues. In this section, we first describe the data struc-
tures and access patterns on them in a real-time ker-
nel for single processor systems, and then investigate
on the granularity of lock units.

In general, using fine-grained lock units reduces lock
contention rate and then improves concurrency. Con-
versely, using coarse-grained lock units reduces lock
acquisition overhead and deadlock avoidance over-
head. For real-time kernels, making lock units so
small that many locks are necessary to be acquired for
an operation is not a suitable approach, because the
execution time of each system call is very short and
because lock acquisition overhead is relatively large.
In function-distributed multiprocessors, kernel data
structures on different processors should be placed in
different lock units from the viewpoint of scalability.

In order to determine an appropriate granularity
of lock units, we have examined a real-time kernel
implementation for single processors based on the
pITRON3.0 Specification (Sakamura, 1994), which
we have adopted as the base kernel specification. Ma-
jor data structures in the kernel are as the followings.

(1) task control blocks (TCB)

(2) a task ready queue (a task queue which includes
all the tasks that are ready to execute)

(3) control blocks of each kind of synchronization ob-
jects (including a task queue in which waiting
tasks on the object are included)

(4) a timer event queue (a queue which manages var-
ious events triggered by the system timer)

Name Function Category

sta_tsk start task (a)
ext_tsk exit issuing task (a)
ter_tsk terminate other task (b)
dis_dsp disable task dispatch ()
ena_dsp enable task dispatch ()
chg pri change task priority (a),(b)
rot_.rdq rotate tasks on ready queue (a)
rel wai release wait state of other task (b)
get_tid get issuing task identifier (a)
sus_tsk suspend other task (a)
rsm_tsk resume suspended task (a)
slp_tsk sleep task (a)
wup_tsk wakeup sleeping task (a)
canwup cancel wakeup request (a)
sig_sem signal semaphore (e)
wai_sem wait on semaphore (d)
preg-sem poll and request semaphore (c)
set_flg set eventflag (e)
clr_flg clear eventflag (c)
wai_flg wait for eventflag (d)
pol_flg poll eventflag (c)
sndmsg send message to mailbox (e)
rcvamsg — receive message from mailbox (d)
prcvmsg poll and receive message from (c)

mailbox

loc_cpu disable interrupt and dispatch (H
unl_cpu enable interrupt and dispatch ()
ret_int return from interrupt handler ()
set_tim set system clock ()
get_tim get system clock ()
dly_tsk delay execution of issuing task (a)
get_ver get version information ()

Table 1. System Calls of the uITRON Specification

In this paper, we omit the discussion on the timer
event queue.

The list of the level S* system calls of the gITRON
Specification is presented in Table 1. We have ana-
lyzed the access pattern on the data structures of each
system call. For example, the sig_sem system call,
which returns a resource to the designated semaphore,
first accesses the control block of the semaphore.
When a task that is waiting on the semaphore be-
comes ready to execute, it also accesses the TCB of
the task and the ready queue. The rel_wai system
call, which forcibly releases the waiting state of the
designated task, accesses the TCB of the task and the
ready queue. When the task is waiting for a synchro-
nization object and is included in its waiting queue,
it also accesses the control block of the object and the
TCBs of the tasks that are waiting for the object.

From these observations, because the ready queue
is usually accessed with a TCB, we have concluded
that the TCBs of the local tasks of a processor and
the ready queue for the task should be included in
the same lock unit. Another observation is that one-
write/many-readers type of synchronizations are not

3In the pITRONS3.0 Specification, system calls are clas-
sified into level R (required), level S (standard), level E
(extended), and level C (CPU-dependent) according as

their necessity.

necessary. This is because a read access on a data
structure is usually followed by a write access.

System calls in Table 1 are classified into the following
six categories from their access patterns on the kernel
data structures.

(a) normal operations on a task
A system call of this category accesses the TCB
of the designated task (or issuing task) and/or the
ready queue for the task.

(b) special operations on a task

A system call of this category accesses the TCB of
the designated task, the ready queue for the task,
and the control block of the synchronization object
on which the task is waiting. In some situations,
it also accesses the TCBs of the other tasks that
are waiting on the object and the ready queues for
the tasks. At most one TCB and the ready queue
for it must be locked at once.

(c) simple operations on a synchronization object

A system call of this category accesses only the
control block of the designated synchronization
object.

(d) wait operations on a synchronization object

A system call of this category first accesses the
control block of the designated synchronization
object. When the issuing task is blocked, it also
accesses the TCB of the issuing task and the ready
queue for the task.

(e) release operations on a synchronization object

A system call of this category first accesses the
control block of the designated synchronization
object. When some tasks that are waiting on
the object are released from the waiting states, it
also accesses the TCBs of the tasks and the ready
queues for the tasks. At most one TCB and the
ready queue for it must be locked at once.

(f) other operations

A system call of this category does not access these
kernel data structures.

Table 1 also presents the category to which each sys-
tem call 1s classified. The chg_pri system call, which
changes the priority of the designated task, is classi-
fied into both (a) and (b), because its access pattern
varies depending on the state of the designated task.

As the results of these investigations, a lock unit
should be prepared for the control blocks of synchro-
nization objects on each processor. As described be-
fore, the TCBs and the ready queue on the processor
are included in another lock unit. In order to avoid
deadlocks, when both kind of locks are necessary to be
acquired, the lock unit of the synchronization objects
should be acquired first. In implementing the system
calls of category (b), which are special operations on
a task, a deadlock detection and re-execution mech-
anism must be adopted. If the TCBs and the con-
trol blocks of synchronization objects were included
in the same lock unit, two parallel invocations of sys-
tem calls of category (e), which are usual operations,
could cause a deadlock.

3.4 Scalable Synchronization and Interrupt Latency

In Section 3.2, we have pointed out that the remote
invocation method has the problem on the precedence
of external interrupts and interprocessor synchroniza-
tions. A similar problem can occur with the direct
access method.

In bounded spin lock algorithms, a processor reserves
its turn to acquire a lock when it begins to wait for
the lock. For example, in queueing spin locks (Mellor-
Crummey & Scott, 1991), a processor trying to ac-
quire a lock enqueues itself to a FIFO queue of wait-
ing processors. If the processor services external in-
terrupts and its turn to acquire the lock comes during
the interrupt service, the remaining interrupt service
time is included in the time that the processor holds
the lock. As the consequence, it is difficult (or im-
possible) to give a practical upper bound on the time
that a processor holds a lock and also on the time
until another processor acquires a lock. If a processor
disables interrupt services before enqueueing itself to
the queue, on the other hand, the interrupt disabled
period includes the time to acquire the lock and its
upper bound depends on the number of contending
processors.

In order to realize fast interrupt response and pre-
dictable interprocessor synchronizations at the same
time, we have proposed a queueing spin lock algo-
rithm supporting temporary preemptions for inter-
rupt services (Takada & Sakamura, 1994). In order to
apply the algorithm to a real-time kernel, a long-term
preemption scheme (Wisniewski et al., 1993; Takada
& Sakamura, 1993) is also necessary to handle the
case that a higher priority task becomes ready to exe-
cute and that the task waiting for a lock is preempted.

4. CLASSIFICATION OF KERNEL RESOURCES

4.1 Private Tasks

In order to meet the scalability requirements pre-
sented in Section 2.2, we adopt the approach to clas-
sify tasks into some classes with different character-
istics. The tasks belonging to the class having the
required property for a job should be used for imple-
menting the job.

At first, we classify the tasks that are executed with-
out synchronizing with tasks on other processors as
private tasks, which are managed differently from lo-
cal tasks. Because the TCB of a private task is not
accessed by other processors than its host processor,
no interprocessor lock is necessary to access the TCB.
A separate ready queue that can be accessed without
an interprocessor lock is also prepared for the private
tasks on each processor. The task dispatcher (a ker-
nel module that switches task contexts) first checks
the ready queue for the private tasks, then checks the
ready queue for the local tasks only when the for-
mer one is empty, and determines to which task to
dispatch.

In general, when a task synchronizes with another
task, the former task must access the TCB of the
latter task, and vice versa. Here, the problem arises
that a private task, whose maximum execution time
should be independent of the number of contending
processors, cannot access the TCB of a local task with
a simple method, because the TCB of a local task
is shared among processors and because an interpro-
cessor lock is necessary to access it. To solve this
problem, a precedence to acquire the lock of the local
task’s TCB is given to its host processor. With this
technique, the maximum time duration until a pro-
cessor can lock the TCB of its local task can be de-
termined independently of the number of contending
processors for the lock, and a private task on the pro-
cessor can access the TCB while satisfying the scala-
bility condition.

Because the maximum execution time of an opera-
tion on a remote resource is prolonged as the number
of contending processors is increased, a task whose
worse-case behavior should not depend on the activ-
ities of other processors must not invoke such opera-
tions. Moreover, the same restriction applies to any
higher priority task than the former task in order to
bound its response time independently of the num-
ber of contending processors. Because this restriction
is imposed on each private task and because private
tasks are always scheduled with higher priorities than
the local tasks on the same processor, the worst-case
behavior of private tasks can be determined indepen-
dently of the number of contending processors and of
the tasks on other processors.

4.2 Task-Independent Synchronization Objects

In this section, the classification of synchronization
objects (semaphores, eventflags, and mailboxesin the

pITRON Specification) are discussed.

In order that local tasks on different processors syn-
chronize each other, a class of objects that can be
accessed by local tasks on any processor is necessary.
We call this class of objects as shared objects. When
the control block of a shared object is located on the
local memory of a processor, it is also called as a local
object of the processor. Non-local shared objects are
called global objects.

When a task operates on a shared object, it is neces-
sary for the task to access the TCBs of the tasks that
are waiting on the object in addition to the control
block of the object. Because a private task cannot
access the TCBs of the tasks on other processors that
can walt on a shared object, a private task cannot
operate on the shared object.

Consequently, in order that private tasks and local
tasks on a processor synchronize each other, a class
of synchronization objects that can be accessed only
from the tasks on the processor is necessary. We call
this class of objects as private objects. No interpro-
cessor lock 1s necessary to access the control blocks of
private objects.

)
ANCy N f_?,;o N\
N, N pe) N, &
RN AN EDNAACNIRS
AN AN ECANAANY
U % OC‘Q & OQ % U Q
accessing e\ N\ N\ %, NS
task & SN\ N \H

P,-private task | OK| OK| *1 | NA| NA| NA | NA
P,-local task OK| OK| OK| OK| *1 | NA | NA

Table 2. Accessibility of Kernel Resources

Table 2 presents the accessibility of each class of ker-
nel resources from each class of tasks. P and P in
this table represent different processors in the system,
and P;-private (or local) task denotes a private (or lo-
cal) task on processor P;. “*¥1” represents that a task
can access another task with normal operations (op-
erations of category (a)) but cannot access with spe-
cial operations (operations of category (b)). When a
task tries to operate on an unaccessible resource, the
kernel reports an error.

In Table 2, a P;-private task cannot access a P;-local
task with special operations, because the private task
cannot access the control block of a shared object
on which the Pj-local task may be waiting. A P;-
local task cannot access a Ps-local task with special
operations, because the Pi-local task cannot access
the control block of a P:-private object on which the
Po-local task may be waiting.

4.3 Isolated Tasks and Interrupt Handlers

As described in Section 4.1, a private task is necessary
to acquire an interprocessor lock when it synchronizes
with a local task on the same processor. Therefore,
its maximum execution time and response time are
long compared with a single processor system. When
some deadlines are very short and the same response
time with a single processor system is required, an-
other class of tasks that never use interprocessor locks
becomes necessary. We call this class of tasks as iso-
lated tasks. Isolated tasks are always scheduled with
higher priorities than the private tasks and the local
tasks on the same processor. Because an isolated task
cannot operate on a private object on which a local
task may be waiting, ¢solated objects that can be op-
erated on only by the isolated tasks and the private
tasks are necessary.

In the uITRON Specification, application program-
mers can write interrupt handlers. System calls can
be invoked from interrupt handlers, with the excep-
tion of the operations that make the issuing task
blocked*. Because the execution time of an interrupt
handler is included in the maximum response time
of isolated tasks, interrupt handlers should not use
interprocessor lock and thus the same access restric-
tion with the isolated tasks is applied. When isolated
tasks are not used, it is still reasonable that the same
access restriction is applied to interrupt handlers.

4This is because an interrupt handler does not have a
task context and cannot be blocked.

A system call that disables interrupt services is pre-
pared in the pITRON Specification. While a task
disables interrupt services, both the access restriction
on the task and that on an isolated task on the same
processor are applied to the task.

4.4 Global Tasks

One of the advantages of shared-memory multipro-
cessors is that task migrations can be easily imple-
mented. As described in Section 2.1, time-critical
tasks should be bound to a processor. On the other
hand, task migrations are useful for background jobs
without severe timing constraints. We call the class
of tasks that can execute on any processors in the sys-
tem and that can migrate to other processors during
their execution as global tasks.

One of the most import issues on global tasks is
their scheduling method. Because global tasks are in-
troduced to support background jobs without severe
timing constraints, we handle the priorities of global
tasks always lower than those of local tasks.

Two shared task queues are prepared for global tasks:
the ready queue that includes all global tasks that are
ready to execute but are not being executed, and the
run queue that includes all global tasks that are being
executed. When no task of the other classes is ready
to execute on a processor, the task dispatcher on the
processor removes the highest priority task from the
ready queue for global tasks, and moves it to the run
queue. When a processor makes a global task m ready
to execute, it first finds the lowest priority task = in
the run queue. If 71 has a higher priority than 7, the
processor moves 72 to the ready queue and inserts
71 to the run queue instead. Then, it requests the
processor that is executing 7> to switch the executing
task using an interprocessor interrupt.

Here, a difficulty occurs when a private (or isolated)
task becomes ready to execute with an external event
on a processor F; that is executing a global task. In
this case, the global task is preempted and should mi-
grate to another processor that is executing a lower
priority task or is idle. Because the maximum pro-
cessing time on P; for the migration unavoidably de-
pends on the number of contending processors, the
maximum response time of the private (or isolated)
task becomes long as the number of contending pro-
cessors is increased. In order to avoid this problem,
we allow the situation that a global task is bound to a
processor while it is executing a private (or isolated)
task, just like when it is executing an interrupt han-
dler. When the execution times of private tasks are
relatively short compared to the deadlines of global
tasks, this restriction is considered to be reasonable.

4.5 Accessibility of Kernel Resources

With the similar discussions with the previous sec-
tions, the classes of isolated tasks, isolated object,
and global tasks are added to the accessibility table.
The result is presented in Table 3 and Fig. 3. In this

table, “*2” represents that a task can access a syn-
chronization object with the operations of category
(c) and (e) but cannot access with the operations of
category (d), that is, the task cannot wait on the ob-
ject.

Because the control blocks of isolated and private re-
sources on a processor cannot be accessed from other
processors, a global task, which can be executed on
any processor, cannot operate on them. A global
task cannot access a Pj-local task with special op-
erations, because the global task cannot access the
control block of a P;-private object on which the lo-
cal task may be waiting. A P;-local task cannot wait
on a Pi-isolated object, because a P; isolated task,
which cannot access the TCB of the local task, must
be able to operate on the object.

Note that it is not necessary to implement all the
resource classes in a kernel. It is also possible that
some of the classes are removed from a full-set kernel
when they are not used.

4.6 Kernel Interface

The classification of kernel resources is reflected to the
kernel interface through ID numbers of the resources.
In the pITRON Specification, a kernel resource is ac-
cessed with its ID number. We divide a resource 1D
into the field indicating to which class the resource
belongs and the field identifying the resource in the
class. With this approach, the system call interface
remains unchanged.

It is usually the case that the ID of a kernel resource
is represented with a symbol in source code and that
the mapping of the symbol to an actual number is
given within a definition module. When the class of a
kernel resource is changed, only the definition module
is necessary to be modified.

5. CONCLUSION

In this paper, we clarify the requirements on a scal-
able real-time kernel for function-distributed shared-
memory multiprocessors. Then, we investigate its
specification and implementation issues. As the re-
sult, a kernel model in which kernel resources are
classified into some classes with different character-
istics 1s proposed.

In the concrete, tasks are classified into the following
four classes.

(1) the class of isolated tasks whose worst-case execu-
tion time is same with a single processor system,
but that cannot do any synchronization with other
processors.

(2) the class of private tasks that can meet the scala-
bility condition, but that cannot synchronize with
the tasks on other processors.

(3) the class of local tasks that can synchronize with
the tasks on other processors, but that cannot

accessing
task

P,-isolated task
P,-private task
P,-local task
global task

Table 3. Accessibility of Kernel Resources (Full Set)

P,-isolated

P;-isolated

P,-isolated

P,-isolated

Pi-private

P,-private

*1

P,-private

P,-private

P, -local global

*1
*1

P,-local

[]:task

O : synchronization object

Fig. 3. Accessibility of Kernel Resources (Full Set)

meet the scalability condition.

(4) the class of global tasks that can be executed on
any processor in the system, and that can migrate
to other processors during their execution.

In correspondence with the classification of tasks,
the synchronization objects are classified into three
classes: isolated objects, private objects, and shared
objects. Shared objects can further classified into lo-
cal objects and global objects. Whether a task can
operate on an object or not is determined by the class
of the task and that of the object from Table 3.

We are now implementing the kernel model proposed
in this paper. The evaluation of the model remains
as future work. In order to complete the implemen-
tation, there exist some other problems remaining to
be investigated.

6. REFERENCES

Chaves, Jr., E. M., Das, P. C., LeBlanc, T. J.,
Marsh, B. D., and Scott, M. L. (1991). Kernel-
Kernel Communication in a Shared-Memory Mul-
tiprocessor. Tech. Rep. TR368, Computer Science
Department, University of Rochester, Apr. 1991.

Mellor-Crummey, J. M., and Scott, M. L.
(1991). Algorithms for Scalable Synchronization

on Shared-Memory Multiprocessors. ACM Trans.
on Computer Systems 9(1), 21 — 65.

Sakamura, K., Ed. (1994). pITRONS3.0 Specifica-
tion. TRON Association, Tokyo. (can be ob-
tained from http://tron.is.s.u-tokyo.ac.jp/TRON
/ITRON/SPEC /mitron3.txt.Z).

Takada, H., and Sakamura, K. (1991). Implementa-
tion of Inter-Processor Synchronization/Commu-
nication and Design Issues of ITRON-MP. Proc.
of 8th TRON Project Symposium, Tokyo, Nov.
1991, 44 — 56, IEEE CS Press.

Takada, H., and Sakamura, K. (1993). A Bounded
Spin Lock Algorithm with Preemption. Tech. Rep.
93-2, Department of Information Science, Univer-
saty of Tokyo, Jul. 1993.

Takada, H., and Sakamura, K. (1994). Predictable
Spin Lock Algorithms with Preemption. Proc.
11th Workshop on Real-Time Operating Systems
and Software, Seattle, May 1994, 2 — 6, IEEE CS
Press.

Wisniewski, R. W., Kontothanassis, L., and Scott,
M. L. (1993). Scalable Spin Locks for Multipro-
grammed Systems. Tech. Rep. TR454, Computer
Science Department, University of Rochester, Apr.
1993.

