Global Rate-Monotonic Scheduling with Priority Promotion

Shinpei Kato†‡, Akira Takeda‡, and Nobuyuki Yamasaki‡

†Department of Electrical and Computer Engineering, Carnegie Mellon University
‡Department of Information and Computer Science, Keio University

Abstract

In this paper, we consider a multicore real-time scheduling algorithm incorporating benefits of both fixed-priority and dynamic-priority disciplines. Specifically, the algorithm first assigns globally-effective priorities to real-time tasks statically, based on the well-known Rate-Monotonic scheduling policy. It may however change the task priorities at runtime, only when the tasks reach the zero-laxity condition, where no slack remains until the deadline, to avoid timing violations as much as possible. Implementation simplicity and response time predictability are therefore inherited from the fixed-priority discipline, while minimal dynamic-priorities are exploited, if necessary, to maintain the system to be schedulable as much as possible. We also provide a schedulability analysis and derive a schedulability test for the algorithm. Our evaluation then demonstrates that the algorithm outperforms the existing global fixed-priority scheduling algorithms in terms of schedulability.

1 Introduction

The advent of multicore technology has accelerated a better use of computing systems. Due to further successful development of low-power chips, multicore platforms are becoming to be used commonly even in embedded real-time systems, where energy constraints are usually imposed. Recently, the real-time systems community has therefore been interested in extending resource management schemes into the multicore context. In particular, much attention is being paid to studies on multicore real-time scheduling, given the natural need for concurrency management on multiple CPU cores.

Traditionally, one often discusses and compares fixed-priority and dynamic-priority scheduling algorithms. Fixed-priority algorithms, such as Rate-Monotonic (RM) [14] and Deadline Monotonic (DM) [13], usually lead to simpler system implementation and better response time predictability. On the other hand, dynamic-priority algorithms, such as Earliest Deadline First (EDF) [14] and Least Laxity First (LLF) [16], likely achieve better system utilization under deadline constraints. Other issues to be compared between the the fixed-priority and the dynamic-priority approaches are reported in [6].

As for multicore extensions, one often discusses and compares global and partitioned scheduling schemes. In a global scheduling scheme, all tasks are conceptually stored in a global queue, and at any moment the \(m \) highest-priority tasks, if any, are scheduled on \(m \) CPU cores. Task migrations may therefore be exploited. In a partitioned scheduling scheme, on the other hand, each CPU core has its own task queue. Each task is then assigned to a specific CPU core, and is scheduled on the local CPU core without migrations. Indeed, there are relative merits in the two scheduling schemes. Global scheduling algorithms, such as Pfair [3], LLREF [9], and EDZL [12], are potentially able to maintain the system schedulable even with high-utilization task sets, whereas partitioned scheduling algorithms, such as EDF-FF [11] and EDF-FFD [15], allow us to ignore runtime overhead and complexity regarding task migrations. The summary of the two scheduling schemes is reported in [8].

This paper presents multicore global real-time scheduling with efficient priority assignments, where benefits of both fixed-priority and dynamic-priority disciplines are incorporated. Specifically, we propose a scheduling algorithm, called Rate-Monotonic until Zero Laxity (RMZL), which applies a laxity-driven priority promotion strategy adopted in the EDZL algorithm to the Rate-Monotonic algorithm. The primary advantage of the RMZL algorithm is that it provides any task sets schedulable under the Rate-Monotonic algorithm with implementation simplicity and response time predictability as the Rate-Monotonic algorithm does, while it maintains the system to be schedulable as much as the EDZL algorithm does, far beyond the Rate-Monotonic algorithm can do.

The rest of this paper is organized as follows. Section 2 describes our system model, including assumptions and terminologies used in this paper. Section 3 presents the RMZL algorithm and its properties, and Section 4 provides its schedulability analysis. The schedulability performance of the RMZL algorithm is evaluated through both simulation studies and practice experiments in Section 5. We summarize our concluding remarks in Section 6.
2 System Model

The system is composed of \(m \) CPU cores. A task set including \(n \) tasks, denoted by \(\tau = \{\tau_1, \tau_2, ..., \tau_n\} \), is given to the system. Each task \(\tau_i \) is represented by a tuple \((C_i, T_i)\), where \(C_i \) and \(T_i \) are the worst-case execution time (WCET) and the period of \(\tau_i \), respectively. Tasks in \(\tau \) are assumed to be sorted in non-decreasing order of periods, i.e., \(T_1 \leq T_2 \leq ... \leq T_n \) holds. The utilization \(U_i \) of \(\tau_i \) is defined to be \(U_i = C_i/T_i \), and the total utilization \(U(\tau) \) of the tasks in \(\tau \) is defined to be \(U(\tau) = \sum_{i \in \tau} U_i \). In particular, we use a word "system utilization" for \(U(\tau)/m \), which indicates the total utilization of the tasks normalized by the number of CPU cores.

Each task \(\tau_i \) produces an infinite sequence of jobs periodically. The \(k \)th job of \(\tau_i \) is denoted by \(\tau_{i,k} \). The release time and the deadline of \(\tau_{i,k} \) are denoted by \(r_{i,k} \) and \(d_{i,k} \) respectively. Note that \(d_{i,k} = r_{i,k+1} = r_{i,k} + T_k \) holds for any \(\tau_{i,k} \). We also denote the remaining execution time of \(\tau_{i,k} \) at time \(t \) by \(C_{i,k}(t) \). The laxity \(L_{i,k}(t) \) of \(\tau_{i,k} \) at time \(t \) is then defined to be \(L_{i,k}(t) = d_{i,k} - (t - C_{i,k}(t)) \). The laxity of a job directly reflects the degree of urgency to meet its deadline. The less the laxity of a job is, the more the job is urgent. In particular, when the laxity of a job becomes zero, the job is said to be in the zero-laxity condition. The absolute value of the laxity is also called the tardiness, when the laxity becomes negative. The tardiness indicates the amount of time behind the deadline.

When all CPU cores are occupied by jobs with priorities higher than a ready job \(\tau_{i,k} \), \(\tau_{i,k} \) is said to be blocked. All tasks are preemptive and independent of each other. No more than one CPU core executes the same job at the same time. Once the system begins running, no tasks join and leave there dynamically.

A task set to be schedulable under a scheduling algorithm means that all jobs in the task set are guaranteed to scheduled by the scheduling algorithm, without any deadline misses. The schedulability test is a function that verifies whether or not the given task set is schedulable under the given scheduling algorithm. Any scheduling algorithms used in hard real-time systems must contain explicit schedulability test functions. In soft real-time systems, meanwhile, explicit schedulability test functions may not be necessary, though the tardiness of each task is desired to be bounded in advance so that quality of service is guaranteed at a certain level. It is also preferable for the scheduling algorithm to be work-conserving when response times are important in the system. Here, the scheduling algorithm is said to be work-conserving, if it has a property to ensure that the system does not become idle in the presence of ready jobs.

3 The RMZL Scheduling Algorithm

We now present the RMZL algorithm. The RMZL algorithm applies the laxity-driven priority promotion strategy adopted in the EDZL algorithm to the Rate-Monotonic algorithm. Specifically, it schedules jobs according to the Rate-Monotonic algorithm until some jobs reach the zero-laxity condition, and the priorities of these zero-laxity jobs are immediately promoted to the top to avoid timing violations. Figure 1 illustrates the pseudo-code of the RMZL algorithm. Every time some job is released, it is first assigned the Rate-Monotonic priority (line 2-4). However, if the laxity of some job becomes zero, priority promotion is exploited (line 5-7). At any moment, jobs are scheduled according to their priorities (line 8-12). It should be noted that it depends on system implementation how to deal with the case where more than \(m \) jobs have the zero-laxity condition. In such a case, some job inevitably has negative laxity, which means that the job would miss its deadline if its execution time is equal to the WCET. If we consider hard real-time systems, this case should never happen. If we consider soft real-time systems, on the other hand, this case may happen, and our solution is to keep jobs with negative laxity being assigned the highest priority so that they can complete as early as possible.

Figure 2 shows a simple example that demonstrates how the RMZL algorithm outperforms the Rate-Monotonic algorithm on two CPU cores, regarding task set \(\tau = \{\tau_1 = (2, 3), \tau_2 = (2, 3), \tau_3 = (2, 3)\} \). For simplicity, let us assume that ties are broken in favor of lower-indexed tasks. Since \(\tau_1 \) and \(\tau_2 \) are scheduled first, \(\tau_3 \) misses a deadline under the Rate-Monotonic algorithm. However, \(\tau_3 \) can preempt \(\tau_2 \) due to the zero-laxity condition under the RMZL algorithm, and as a result, all the tasks successfully meet deadlines.

Work-conserving property: The RMZL algorithm is work-conserving as the Rate-Monotonic algorithm is. Specifically, the system never becomes idle as long as there are ready jobs. The average response time of the system is therefore maximized. This property improves the average response time in particular when the system load is low, as compared to such algorithms that are not work-conserving.

Domination property: The RMZL algorithm strictly dominates the Rate-Monotonic algorithm under the worst-case assumption, given the fact that the RMZL algorithm changes task priorities only when some jobs are verified to

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>while TRUE do</td>
</tr>
<tr>
<td>2</td>
<td>if some job (\tau_{i,j}) is released then</td>
</tr>
<tr>
<td>3</td>
<td>assign the Rate-Monotonic priority to (\tau_{i,j});</td>
</tr>
<tr>
<td>4</td>
<td>end if</td>
</tr>
<tr>
<td>5</td>
<td>if the laxity of some job (\tau_{i,k}) becomes zero then</td>
</tr>
<tr>
<td>6</td>
<td>assign the highest priority to (\tau_{i,j});</td>
</tr>
<tr>
<td>7</td>
<td>end if</td>
</tr>
<tr>
<td>8</td>
<td>if there are more than (m) jobs in the ready queue then</td>
</tr>
<tr>
<td>9</td>
<td>schedule the (m) highest-priority jobs;</td>
</tr>
<tr>
<td>10</td>
<td>else</td>
</tr>
<tr>
<td>11</td>
<td>schedule all the jobs in the ready queue;</td>
</tr>
<tr>
<td>12</td>
<td>end if</td>
</tr>
<tr>
<td>13</td>
<td>end while</td>
</tr>
</tbody>
</table>

Figure 1. The RMZL algorithm.
reach the zero-laxity condition. In other words, any task sets that are schedulable under the Rate-Monotonic algorithm are also schedulable under the RMZL algorithm, if all the execution times are equal to the WCETs. Hence, the RMZL algorithm inherits all the properties of the Rate-Monotonic algorithm, such as implementation simplicity and response time predictability. Meanwhile, another global scheduling algorithm derived from the Rate-Monotonic algorithm, called RM-US [1], does not dominate the Rate-Monotonic algorithm. The RM-US algorithm statically assigns the highest priority to tasks that have utilization greater than \(m/(3m - 2)\). Figure 3 shows a simple example where task set \(\tau = \{\tau_1 = (1, 2), \tau_2 = (3, 4), \tau_3 = (3, 4)\}\) is schedulable under the Rate-Monotonic algorithm, while it is not under the RM-US algorithm. As one can see, all the tasks are successfully scheduled by the Rate-Monotonic algorithm. However, \(\tau_1\) misses a deadline under the RM-US algorithm, since \(\tau_2\) and \(\tau_3\) are scheduled in priority due to their utilization.

Comparison with EDZL: We now compare the RMZL algorithm with the EDZL algorithm. Both the two algorithms use the same priority promotion strategy. However, the RMZL algorithm is more predictable than the EDZL algorithm in terms of response times, since it is based on the fixed-priority approach. The RMZL algorithm is also expected to accept more task sets than the EDZL algorithm by schedulability test, given that the Rate-Monotonic algorithm is able to accept more task sets than the EDF algorithm by schedulability test [4]. We show this effect by simulation studies in Section 5.

4 Schedulability Analysis

In this section, we present the RMZL schedulability analysis. Our approach is based on the response time analysis (RTA) for globally-scheduled systems [4] and the EDZL schedulability analysis [10]. Before providing our analysis, we define the following terms and terminologies.

Definition 1 (Interference). Interference \(I_k(a, b)\) to task \(\tau_k\) in interval \([a, b)\) is a cumulative length of intervals in \([a, b)\), for which \(\tau_k\) is blocked by higher-priority tasks and cannot execute. The contribution of each individual task \(\tau_i\) to \(I_k(a, b)\) is then denoted by \(I^i_k(a, b)\).

Definition 2 (Work). Work \(W_k(a, b)\) for task \(\tau_k\) in interval \([a, b)\) is the total amount of time that must be consumed by \(\tau_k\) in \([a, b)\) under the given timing constraints.

Regarding the interference, we provide Lemma 1.

Lemma 1. All global scheduling algorithms hold Condition (1), where \(x\) is any positive value.

\[
I_k(a, b) \geq x \iff \sum_{i \in k} \min (I^i_k(a, b), x) \geq mx
\]

Proof. The proof is subject to the EDF schedulability analysis provided by Lemma 4 in [5].

Our analysis proceeds as follows. Let \(J^*_k\) be a job of each task \(\tau_k\), which executes with the worst-case response time. Let also \(R^b_k\) be the upper bound on the response time of \(\tau_k\). We first obtain the upper bound \(L^b_k\) on the interference to \(J^*_k\) in interval \([r^k, r^k + R^b_k]\). We then derive \(R^b_k\) based on \(I^b_k\) and \(C_k\). Note that the lower bound \(L^b_k\) on the laxity of a job of \(\tau_k\) is computed by \(R^b_k - T_k\). According to the RMZL algorithm, if more than \(m\) jobs reach the zero-laxity condition at the same time, Hence, the necessary condition for the RMZL algorithm to cause deadlines to be missed is that \(L^b_k \leq 0\) is true for \(m + 1\) tasks and one of them strictly holds \(L_k^b < 0\). In fact, this is the same condition for the EDZL to cause deadlines to be missed, as presented in [10].

Now, we obtain \(I^b_k\) as follows.

Lemma 2. The contribution \(I^i_k(a, b)\) of task \(\tau_i\) to the interference to \(\tau_k\) in interval \([a, b)\) does not exceed work \(W_k(a, b)\) of task \(\tau_i\) in \([a, b)\).

Proof. A task interferes with another only when it is executed. It is therefore trivial from the definitions of the interference and the work.
Lemma 3. Work $W_{i}^{ub}(r_{k}^{*}, r_{i}^{*} + R_{k}^{ub})$ of task τ_{i} in interval $[r_{k}^{*}, r_{i}^{*} + R_{k}^{ub})$, which interferes with task τ_{k}, is computed by Equation (2), when task set $\tau = \{\tau_{1}, ..., \tau_{n}\}$ is scheduled by the RMZL algorithm on m CPU cores, where $n_{i}(R_{k}^{ub})$ is obtained by Equation (3).

$$W_{i}^{ub}(r_{k}^{*}, r_{i}^{*} + R_{k}^{ub}) = W_{i}^{ub}(R_{k}^{ub})$$

$$= \begin{cases} n_{i}(R_{k}^{ub})C_{i} & (i < k) \\ C_{i} + \min(C_{i}, R_{k}^{ub} + T_{i} - C_{i} - n_{i}(R_{k}^{ub})T_{i}) & (i > k) \end{cases}$$

(2)

$$n_{i}(R_{k}^{ub}) = \left\{ \frac{R_{k}^{ub} + T_{i} - C_{i}}{T_{i}} \right\}$$

(3)

Proof. We first consider task τ_{i} that has a longer period than task τ_{k}, i.e., $i > k$. According to the RMZL algorithm, in order for τ_{i} to interfere with τ_{k}, it is necessary for τ_{i} to have zero-laxity, since τ_{k} is assigned a lower priority when its laxity is positive. The work of τ_{i} is therefore maximized when each job of τ_{i} executes for C_{i} time units at the very end of the period. As seen in Figure 4, the work of τ_{i}, indicated by the shaded area in Figure 4, is no greater than C_{i}. Hence, Work $W_{i}^{ub}(r_{k}^{*}, r_{i}^{*} + R_{k}^{ub})$ must satisfy Condition (4).

$$W_{i}(r_{k}^{*}, r_{i}^{*} + R_{k}^{ub}) \leq C_{i}$$

(4)

We next consider task τ_{i} that has a shorter period than τ_{k}, i.e., $i < k$. It is clear from the prior discussion that the work of a job of τ_{i}, which has a release time before and a deadline within the interval under consideration is maximized when the job executes for C_{i} time units at the very end of the period. The work of a job of τ_{i}, which has a release time within and a deadline after the interval under consideration is, on the other hand, maximized when the job executes for C_{i} time units at the very beginning of the period. Now, we claim that the work of τ_{i} is maximized when the job of τ_{i} which has a release time before and a deadline within the interval under consideration is released at time r_{k}^{*}; namely when J_{k}^{*} is released at the same time, as shown in Figure 5. Figure 5 implies that the number $n_{i}(R_{k}^{ub})$ of jobs which can execute for C_{i} time units completely in $[r_{k}^{*}, r_{i}^{*} + R_{k}^{ub})$ is given by Equation (3).

The work of a job executing at the end of the interval under consideration, indicated by the shaded area in Figure 5 is bounded by $\min(C_{i}, R_{k}^{ub} + T_{i} - C_{i} - n_{i}(R_{k}^{ub})T_{i})$. Hence, Condition (5) must hold.

$$W_{i}(r_{k}^{*}, r_{i}^{*} + R_{k}^{ub}) \leq n_{i}(R_{k}^{ub})C_{i} + \min(C_{i}, R_{k}^{ub} + T_{i} - C_{i} - n_{i}(R_{k}^{ub})T_{i})$$

(5)

The lemma is thus true. □

The upper bound on the contribution of each task τ_{i} to the interference to task τ_{k} in interval $[r_{k}^{*}, r_{k}^{*} + R_{k}^{ub})$ is now known from Lemma 3. According to the definition of the interference, however, the interference to τ_{k} is no greater than $R_{k}^{ub} - C_{k}$. Otherwise, the response time of τ_{k} would exceed R_{k}^{ub}. This observation leads to Lemma 4.

Lemma 4. The response time of task does not exceed R_{k}^{ub}, if Condition (6) is satisfied.

$$\sum_{i \neq k} \min(I_{i}^{*}(R_{k}^{ub}), R_{k}^{ub} - C_{k} + 1) < m(R_{k}^{ub} - C_{k} + 1)$$

(6)

Proof. By Lemma 1, the following condition holds if Condition (6) holds.

$$I_{k}(R_{k}^{ub}) < (R_{k}^{ub} - C_{k} + 1)$$

Hence, the interference to J_{k}^{*} is no greater than $R_{k}^{ub} - C_{k}$, and J_{k}^{*} can complete by R_{k}^{ub} by the definition of the interference. □

Lemma 4 implies that the contribution of each task τ_{i} to the interference to task τ_{k} is bounded by $\min(W_{i}^{ub}, R_{k}^{ub} - C_{k} + 1)$. The above discussion leads to the upper bound on the response time of each task under the RMZL algorithm as follows.
Theorem 1 (RTA for RMZL). The upper bound on the response time of task τ_k under the RMZL algorithm is obtained by solving fixed-point iteration for Expression (7) beginning with $R_k^{ub} = C_k$, where $\hat{f}_i(R_k^{ub})$ is computed by Equation (8) and $W_i^{ub}(R_k^{ub})$ is given by Equation (2).

$$ R_k^{ub} \leftarrow C_k + \left[\frac{1}{m} \sum_{i=1}^m \hat{f}_i(R_k^{ub}) \right] $$ \hspace{1cm} (7)

$$ \hat{f}_i(R_k^{ub}) = \min(W_i^{ub}(R_k^{ub}), R_k^{ub} - C_k + 1) $$ \hspace{1cm} (8)

Proof. We provide proof by contradiction. Specifically, we assume that the convergent value of R_k^{ub} is greater than the response time of τ_k. The convergent value of R_k^{ub} is computed by the following expression.

$$ R_k^{ub} = C_k + \left[\frac{1}{m} \sum_{i=1}^m \min(W_i^{ub}(R_k^{ub}), R_k^{ub} - C_k + 1) \right] $$

By Lemma 2, $W_i^{ub}(R_k^{ub}) \geq \hat{f}_i(r_i^*, r_i^* + R_k^{ub})$ holds. Therefore, the following condition must hold.

$$ R_k^{ub} \geq C_k + \left[\frac{1}{m} \sum_{i=1}^m \min(W_i^{ub}(R_k^{ub}), R_k^{ub} - C_k + 1) \right] $$

By our assumption and Lemma 4, the following condition must also hold.

$$ R_k^{ub} \geq C_k + \left[\frac{1}{m} m(R_k^{ub} - C_k + 1) \right] = R_k^{ub} + 1 $$

This is a contradiction. The theorem is thus true. □

As discussed before, the necessary condition for the RMZL algorithm to cause deadlines to be missed is that more than m tasks satisfy $L_i^{lb} \leq 0$ and one of them strictly holds $L_i^{lb} < 0$. Finally, the schedulability test for the RMZL algorithm is derived as follows.

Theorem 2 (RMZL test). Task set $\tau = \{\tau_1, \ldots, \tau_n\}$ is schedulable under the RMZL algorithm on m CPU cores, unless at least $m + 1$ tasks satisfy Condition (9) and one of them strictly holds $< \text{in Condition } (9)$, where R_k^{ub} is given by Theorem 1.

$$ L_i^{lb} = T_i - R_k^{ub} \leq 0 $$ \hspace{1cm} (9)

The schedulability test derived in Theorem 2 can be improved. If the response time of τ_k which interfere with task τ_k is known, the contribution of τ_k to the interference to τ_k can be underestimated by taking into account the lower bound on the laxity of τ_k. Figure 6 depicts the case where L_i^{lb} is taken into account. Now, Equation (2) and (3) can be rewritten as follows.

$$ W_i^{ub}(r_i^*, r_i^* + R_k^{ub}) = W_i^{ub}(R_k^{ub}) $$

$$ = \begin{cases} n_i(R_k^{ub}) C_i + \min(C_i, \quad \ quad
\end{cases} $$ \hspace{1cm} (10)

The refined upper bound on the response time of τ_k is given by Theorem 3.

Theorem 3 (Refined RTA for RMZL). The upper bound on the response time of task τ_k under the RMZL algorithm is obtained by solving fixed-point iteration for Expression (7) beginning with $R_k^{ub} = C_k$, where $\hat{f}_i(R_k^{ub})$ is computed by Equation (8) and $W_i^{ub}(R_k^{ub})$ is given by Equation (10).

$$ n_i(R_k^{ub}) = \frac{R_k^{ub} + T_i - C_i - L_i^{lb}}{T_i} $$ \hspace{1cm} (11)

Theorem 5 (Tardiness bound for RMZL). The tardiness bound for task τ_k executing in the system scheduled by the RMZL algorithm on m CPU cores is obtained by Equation (12), where R_k^{ub} is given by Theorem 3.

$$ \text{tardiness}(\tau_k) = R_k^{ub} - T_k $$ \hspace{1cm} (12)

5 Evaluation. We now provide a quantitative evaluation of the RMZL algorithm. Our performance metric is the success ratio defined by the following formula, which indicates the ability of a scheduling algorithm to successfully schedule given task sets.

$$ \text{Success Ratio} = \frac{\# \text{ of successfully scheduled task sets}}{\# \text{ of scheduled task sets}} $$
In our evaluation, we compare the RMZL algorithm with the two well-known fixed-priority scheduling algorithms: Rate-Monotonic and RM-US. We also in part compare it with the EDZL algorithm that adopts the same priority promotion strategy as the RMZL algorithm under a dynamic-priority discipline.

5.1 Simulation Studies

We first study the performance of the RMZL algorithm through simulations. Each simulation generates a random task set including 1000 tasks. The system load to be produced by the task set is determined by two parameters: the number \(m \) of CPU cores and the system utilization \(U_{sys} \). Due to space constraints, we show only the results with limited characteristics of task sets as follows. For each task set \(\tau \), the utilizations of the tasks are uniformly set within range \([0.01, 1.0]\) so that \(U_{sys} = \sum_{i \in \tau} U_i / m \) is satisfied. The task periods are also uniformly set within range \([100, 3000]\), and the WCET for each task \(\tau_i \) is computed by \(C_i = U_i T_i \).

Figure 7, 8, 9, and 10 show the simulation results for the schedulability test ability of each algorithm on 2, 4, 8, and 16 CPU cores respectively. Here, task sets are said to be successfully scheduled if they are verified to be schedulable by the schedulability test. For simplicity, the schedulability tests presented in [2] are used for the Rate-Monotonic and the RM-US algorithms. Those for the RMZL and the EDZL algorithms are respectively provided by Theorem 4 in this paper and Theorem 3 in [10]. These results demonstrate that the RMZL algorithm outperforms the traditional fixed-priority scheduling algorithms, i.e., Rate-Monotonic and RM-US in terms of hard real-time schedulability test guarantees. Since the current state of the art in global scheduling analysis is still pessimistic in particular when a large number of CPU cores is given, the absolute success ratios decrease as the number of CPU cores increase. Especially, the Rate-Monotonic algorithm suffers from a larger number of CPU cores due to the well-known Dhall’s effect [11]. One can also observe that it is competitive with and even better for a large number of CPU cores than the EDZL algorithm. Such superiority comes from the fact that the global scheduling analysis is less pessimistic for fixed-priority algorithms than dynamic-priority algorithms [4].

Figure 11, 12, 13, and 14 show the simulation results for the runtime scheduling ability of each algorithm on 2, 4, 8, and 16 CPU cores respectively. Here, task sets are
said to be successfully scheduled if they are actually scheduled without any deadline misses in 1000000 simulation time units. As compared to the schedulability test results, all the algorithms achieve much higher success ratios. This means that there are still huge gaps between analysis and practice, which should be mitigated in the future. One can remark that the RMZL algorithm is competitive with the EDZL algorithm even for the runtime scheduling performance. Given that the RMZL algorithm still inherits the nice properties of fixed-priority algorithms, such as implementation simplicity and response time predictability, we believe that it is a good choice as a scheduling algorithm for future multicore systems.

5.2 Practice Experiments

We next evaluate the practice performance of the RMZL algorithm, using the LITMUSRT operating system [7] and the Intel Core 2 Duo and Quad processors operating at 1.83GHz and 2.0GHz respectively. All the scheduling algorithms tested are implemented as the LITMUSRT scheduler plugins. To detect the zero-laxity condition for the RMZL algorithm, the laxity check procedure is added to the scheduler tick function. In our experiments, busy-loop tasks consuming the assigned WCETs are used to measure the runtime scheduling performance. The utilizations, the periods, and the WCETs of the tasks are determined by the same method as the one presented in Section 5.1. The number of tasks in each task set is however reduced to 100 and the test duration of each experiment is set at 30 seconds in consideration of the total time consumption.

Figure 15 and 16 show the experimental results for the runtime scheduling ability of each scheduling algorithm on the Intel Core 2 Duo and Quad processors. Like simulation studies, the RMZL algorithm outperforms the Rate-Monotonic and the RM-US algorithms. The performance difference between the RMZL algorithm and the other algorithms is however decreased as compared to the simulation cases. The performance decrease for the RMZL algorithm is mainly caused by the runtime overhead. While the Rate-Monotonic and the RM-US algorithms simply assign static priorities to the tasks, the RMZL algorithm needs to check the laxity of the current task at every scheduler tick and change its priority if necessary. However, we still claim that non-trivial performance improvements are achieved by the RMZL algorithm in practice.
6 Conclusions

In this paper, we have presented the Rate-Monotonic until Zero Laxity (RMZL) algorithm, which applies the laxity-driven priority promotion strategy to the global Rate-Monotonic algorithm. We also have derived the schedulability test and the tardiness bound for the RMZL algorithm, based on the prior schedulability analytical results. According to our evaluation, the RMZL algorithm is able to accept more task sets than the Rate-Monotonic and the RM-US algorithms by schedulability test. In fact, the RMZL algorithm is competitive with and is even better for a larger number of CPU cores than the EDZL algorithm. We also have shown that the RMZL algorithm in practice outperforms the Rate-Monotonic and the RM-US algorithms on the real-world machines.

In future work, we will consider more strict schedulability analysis for the RMZL algorithm, since our evaluation shows that the presented schedulability test is pessimistic, while it outperforms the existing fixed-priority algorithms. We are also interested in deriving the upper bound on the system utilization where any task sets are schedulable under the RMZL algorithm, given that scheduling algorithms are often compared in terms of this schedulable system utilization. In addition, implementation issues, such as how to detect the zero-laxity condition, are still left open for future work.

References